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Effects of nuclear surface polarization on exotic cluster radioactivity in trans-lead nuclei
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Radioactive dynamics of unstable nuclei are subject to nuclear deformation. The experimentally identified
cluster radioactivities in the trans-lead region are reexamined using an improved density-dependent cluster
model in this work, where the role of deformation is fully taken into account. Especially, the effects of nuclear
diffuseness polarization [Phys. Rev. C 88, 064327 (2013)], a nontrivial distortion of the nuclear surface due to
deformation, are further investigated in the calculations of cluster radioactivity as well. In the present work,
we generalize a new unified form of deformation-dependent diffuseness in the nuclear density distribution
by introducing an adjustable parameter, whose sign determines the specific surface polarization mode, while
its amplitude together with the deformation parameters handle the surface polarization degree of a deformed
nucleus. Within this diffuseness correction, we first examine the improved model’s capability of investigating
the properties of cluster radioactivity. The experimental half-lives are found to be well reproduced with a
factor of ≈3. Sequentially we consider three different surface polarization modes for the emitted cluster in
the calculations and compare their impacts on the properties of cluster radioactivity. Distinct features and effects
of these three surface polarization modes are presented in detail. As a result, it is found that the three different
surface polarization modes may alter the geometry of daughter-cluster interactions, leading to a fluctuation of the
cluster radioactivity half-lives. It is expected this work can serve as a helpful reference for both the experimental
and theoretical studies of nuclear structures in the future.
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I. INTRODUCTION

The instability of nuclei leads to radioactivity. Since the
first discovery of radioactivity by Becquerel in 1896, vari-
ous radioactivities have been observed experimentally, among
which α decay and spontaneous fission are the two main dis-
integration processes in heavy and superheavy unstable nuclei
[1]. Between these two above-mentioned decay modes, there
is also a special case named cluster radioactivity, in which an
unstable heavy or superheavy nucleus would spontaneously
emit a charged particle heavier than α particle (4He nu-
cleus) while lighter than the fragment in spontaneous fission.
Pioneering work was done by Sǎndulescu, Poenaru, and
Greiner in 1980, who first theoretically predicted the cluster
radioactivity of heavy nuclei based on the superasymmetric
fission model (SAFM) [2]. Subsequently, the cluster radioac-
tivity was experimentally confirmed by Rose and Jones in
1984, via the observation of 14C emission from 223Ra [3].
Since then, emissions of various clusters (e.g., 14C, 20O,
22,24–26Ne, 28,30Mg, 32,34Si, etc.) from heavy or superheavy nu-
clei, decaying to daughters around the doubly magic nucleus,
have been detected and confirmed experimentally [4–6]. As
compared with α decay, the branching ratios of these cluster
radioactivities are extremely small, thereby making very long
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half-lives. It is therefore critical to have a trustworthy method
to estimate the cluster decay rates accurately.

A full microscopic quantum-mechanical treatment of clus-
ter radioactivity is extremely difficult due to the complications
of quantum many-body problems. In general, cluster ra-
dioactivity is phenomenologically studied in theory from two
perspectives, namely, the “α-decay like” theory [7–15] and
the “fission like” theory [2,16–19], as an intermediate case
between α decay and spontaneous fission. The former treats
the cluster radioactivity as a quantum tunneling process of a
preformed heavy cluster, whereas the latter considers it to be
a consecutive evolution of geometrical shapes that reaches the
scission configuration after passing over the Coulomb barrier.
Additionally, many semi-empirical formulas have also been
developed to study cluster radioactivity [8,20–23]. Experi-
mental half-lives are found to be approximately reproduced in
a satisfactory manner by all these models or formulas. Among
the above-mentioned models, the density-dependent cluster
model (DDCM), which takes the nuclear density distributions
and the effective nucleon-nucleon interactions into account,
has been proven to be successful in explaining the proper-
ties of α decay [24–30], proton emission [31], two-proton
radioactivity [32,33], and cluster radioactivity [7,9]. Recently,
we enhanced the DDCM by incorporating the anisotropic
nuclear surface diffuseness of deformed daughter nucleus
[34–36] into α-decay calculations, as well as explored the
effects of nuclear diffuseness anisotropy and polarization on
favored α decay [28,29]. It was shown that the diffuseness
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polarization would change the shape of nucleon density pro-
file and effective α-core interactions and could even lead to
an increase of about 20% in the α-decay half-life of a nu-
cleus with large deformation. The improved model known as
DDCM+ significantly improved the accuracy over DDCM.
Inspired by our previous works [28,29], we make a further
extension of DDCM+ to investigate the properties of cluster
radioactivity in this work.

Differing from the α particle, which is a doubly magic
nucleus, deformation of the cluster emitted from heavy or
superheavy nuclei is usually not negligible and should be
considered in calculations. Nontrivial distortion of the nuclear
surface thus occurs due to the deformation. In our previous
works on α decay [28,29], the surface polarization in the
deformed heavy system, i.e., the diffuseness reduces along the
elongated axis while increasing along the compressed axis,
is addressed in DDCM+ by using a deformation-dependent
diffuseness correction. The situation for the emitted cluster
which is a light system, however, becomes more compli-
cated than that in a heavy nucleus. As demonstrated in
Ref. [35], the systematic tendency of surface polarization
in the deformed heavy system can hardly be discovered in
the light systems through the SkM∗ and Sly4 energy density
functional calculations. Instead, various surface polarization
modes emerge in the light systems. Therefore, motivated by
Refs. [34,35] and our previous work [28,29], we attempt to ex-
plore the effects of nuclear surface anisotropy and polarization
on the properties of cluster radioactivity in this work. Espe-
cially, the various impacts resulting from the different surface
polarization modes will be discussed in detail.

The remaining parts of this paper are organized as follows:
Relevant details of the theoretical framework are presented
and discussed in Sec. II. A series of calculated results includ-
ing a detailed comparison of different polarization modes are
presented in Sec. III. In addition, the effects of nuclear surface
polarization on cluster radioactivity are somewhat discussed
as well. A summary and sequential conclusions are given in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. The improved density-dependent cluster model (DDCM+)

The cluster emitter is treated in DDCM+ as a binary
spherical-deformed system of the cluster (heavier than 4He)
interacting with the daughter nucleus after the cluster is as-
sumed to be preformed at the surface of parent nucleus. In
previous works of α decay, the α cluster is considered to be
spherical, while the daughter nucleus is usually assumed to
be deformed [25,28,29]. However, the situation of cluster ra-
dioactivity differs slightly from that of α decay. For the exotic
cluster radioactivity, the daughter nucleus is often the doubly
magic nucleus (i.e., 208Pb) or a nucleus in its neighborhood,
which is spherical or weakly deformed, while the deformation
of the emitted cluster cannot be negligible [9,11,13]. Thus, in
the present work, the axially symmetric deformation of the
emitted cluster is taken into account, as well as the daughter
nucleus is assumed to be spherical for simplification. The
daughter-cluster system is shown in Fig. 1.

daughter nucleus
cluster

FIG. 1. Schematic illustration of coordinate systems used in the
double-folding form interactions between the spherical daughter nu-
cleus and deformed cluster. ξ is the orientation angle of the symmetry
axis of the deformed cluster with respect to the vector connecting the
center of masses of the two interacting nuclei.

The total interaction between the emitted cluster and
the residual daughter nucleus consisting of nuclear potential
VN (r, ξ ), Coulomb potential VC (r, ξ ) and centrifugal potential
is given by

V (r, ξ ) = VN (r, ξ ) + VC (r, ξ ) + h̄2

2μr2
l (l + 1), (1)

where ξ is the orientation angle of the symmetry axis of
the deformed cluster, μ = mcmd/(mc + md ) is the reduced
mass of daughter-cluster system, l is the angular momentum
carried by the emitted cluster. As the spin-parity of the ground
state for the even-even cluster is 0+, the conservation laws of
angular momentum and parity yield [37]

|Ii − I f | � l � Ii + I f , πi = (−1)lπ f , (2)

where Ii, f and πi, f are the spins and parities of the initial
(denoted by i) and final (denoted by f ) states, respectively.
Then we adopt the minimum one among all possible l val-
ues verifying Eq. (2) in our calculations. The nuclear and
Coulomb potential are performed through the double-folding
procedure [38], which are

VN (r, ξ ) = λ(ξ )
∫

d�rc

∫
d�rdρc(�rc)ν(|�rc + �r − �rd |)ρd (�rd ),

ρc(�rc) = ρ p
c (�rc) + ρn

c (�rc), ρd (�rd ) = ρ
p
d (�rd ) + ρn

d (�rd ),
(3)

and

VC (r, ξ ) = e2

4πε0

∫
d�rc

∫
d�rd

ρ
p
c (�rc)ρ p

d (�rd )

|�rc + �r − �rd | . (4)

In Eqs. (3) and (4), λ(ξ ) is the strength factor of the nuclear
potential depth at each orientation angle ξ , which is deter-
mined by reproducing the decay energy for the quasibound
state in subsequent calculations. ρ

p,n
c (�rc) and ρ

p,n
d (�rd ) denote

the proton (denoted by p) and neutron (denoted by n) density
distribution for the cluster and daughter nucleus, respectively.
s = |�rc + �r − �rd | is the relative separation between the two
interacting nucleons in the daughter-cluster system, while
the strength of M3Y-Reid nucleon-nucleon interaction ν(s) is
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given as [39]

ν(s) = 7999.00
exp(−4.0s)

4.0s
− 2134.25

exp(−2.5s)

2.5s

− 276[1 − 0.005(Ec/Ac)]δ(�s), (5)

where Ec/Ac represents the kinetic energy per nucleon of the
emitted cluster.

The density distribution of the protons and neutrons for
daughter nucleus and the cluster are described by the two-
parameter Fermi (2pF) form

ρτ
c,d (�rc,d ) = ρ

τ0
c,d

1 + exp

[ |�rc,d | − Rτ (θ )

aτ (θ )

] , (6)

with τ(0) = p(0) or n(0). The half-radius parameter is given by

Rτ (θ ) = Rτ
0

⎡
⎣1 +

∑
i=2, 4, 6

βiYi,0(θ )

⎤
⎦. (7)

βi (i = 2, 4, 6) in Eq. (7) represent the multipole deformation
parameters, whose values for the emitted cluster are mainly
taken from FRDM2012 [40] or Ref. [41], whereas they are
assumed to be zero for the daughter nucleus in present work.
Yl,m(θ, φ) is the spherical harmonics, the azimuth angle φ is
implied in Eq. (7) and hereafter due to the axial symmetry
of the nucleus. In DDCM+, we take the surface anisotropy
and polarization effect into account by replacing the isotropic
diffuseness parameter with the anisotropic one as [28,29]

aτ (k′, θ ) = a′(k′, θ )

√
1 +

[
1

Rτ (θ )

dRτ (θ )

dθ

]2

, (8)

in which the factor a′(k′, θ ) is given by

a′(k′, θ ) = aτ
0[1 + k′β2Y2,0(θ )]. (9)

Here, k′ is an adjustable parameter handling the specific mode
and degree of the nuclear surface polarization, and we will
explicitly discuss it in Sec. III B. The similar expressions to
Eq. (9) have also been proposed in Refs. [11,35,36,42].

The values of Rτ
0 and aτ

0 entering Eqs. (7) and (9) are
estimated by the São Paulo parametrization with [43]

Rp
0 = 1.81Z

1
3 − 1.12 fm, ap

0 = 0.47 − 0.000 83Z fm,

Rn
0 = 1.49N

1
3 − 0.79 fm, an

0 = 0.47 − 0.000 46N fm,

(10)

respectively, which consider the differences between proton
and neutron density distribution.

Once the nuclear and Coulomb potentials are constructed
via the above procedure, the partial decay width of cluster
radioactivity can be determined by numerically solving the
quasibound Schrödinger equation, which is given by [9,14,44]

Γ (ξ ) = h̄2k

μ

|Ψl (R, ξ )|2
Gl (η, kR)2 + Fl (η, kR)2

≈ h̄2k

μ

|Ψl (R, ξ )|2
Gl (η, kR)2

.

(11)

In Eq. (11), Gl (η, kr) and Fl (η, kr) are the irregular and
regular Coulomb wave function with the wave number being
k = √

2μQc/h̄, η is the Sommerfeld parameter, and Ψl (r, ξ )
is the radial wave function at each certain orientation angle,
respectively. The distance R should be chosen beyond the
range of nuclear potential, and the final result is not sensitive
to the choice of R. The approximation made in the last term
of Eq. (11) is based on the fact that the half-lives of cluster
radioactivity hereto observed are usually longer than 1010 s,
indicating the imaginary part of the resonance energy (i.e.,
decay width) is extremely small, thus one could use energies
and wave functions that are real instead without significant
loss of accuracy [14,44].

The internal nodes in the radial wave function are deter-
mined by the well-known Wildermuth-Tang condition [45]

G = 2n + l =
Ac∑

i=1

(
gAc+Ad

i − gAc
i

)
, (12)

which approximately accounts for the Pauli-blocking effect,
ensuring the nucleons in the emitted cluster occupy the phys-
ically allowed orbits. In Eq. (12), Ac (Ad ) is the mass number
of the emitted cluster (daughter nucleus), gAc+Ad

i are the os-
cillator quantum numbers of the nucleons forming the cluster
required to ensure that the cluster is completely outside the
shell occupied by the daughter nucleus, and gAc

i are the internal
quantum numbers of the nucleons in the emitted cluster [46].
In the present work, the values of gi are taken as gi = 4
for nucleons with 50 � Z , N < 82, gi = 5 for nucleons with
82 � Z , N < 126, and gi = 6 for nucleons with N � 126.
These values correspond to the 4h̄ω, 5h̄ω, and 6h̄ω harmonic-
oscillator shells, respectively. Given the values of G and l , the
number of nodes n in the radial wave function Ψl (r, ξ ) can
then be determined.

Subsequently, the total decay width of cluster radioactivity
thus can be obtained by averaging the partial decay width over
the different orientations as

Γ =
∫ π

0 Γ (ξ ) sin ξdξ∫ π

0 sin ξdξ
= 1

2

∫ π

0
Γ (ξ ) sin ξdξ . (13)

Finally, the half-life of cluster radioactivity Tc reads

Tc = h̄ ln 2/(PcΓ ), (14)

where Pc denotes the preformation probability of the heavy-
cluster in the parent nucleus. Similar to the case of
α decay, microscopical calculation on the cluster prefor-
mation probability is still a pending problem as well, thus
phenomenological estimates on Pc are often used in various
cluster radioactivity calculations [7]. Based on the available
experimental data, the preformation probability Pc is found to
be related to the size of the cluster and the daughter nucleus.
With these factors in mind, we choose an empirical formula
to estimate Pc as [14]

log10 Pc = a
√

μ̃ZcZd + b, (15)

where μ̃ = AcAd/(Ac + Ad ), Zc and Zd are the proton num-
bers of the emitted cluster and daughter nucleus, respectively.
The parameters a and b can be determined by fitting the
extracted Pc values from the experimental data.
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B. Unified decay formula for cluster radioactivity

The expression of the unified decay formula (UDF) for
cluster radioactivity proposed by Ni et al. [8] is given as

log10 T1/2 = cZcZd

√
μ̃

Qc
+ d

√
μ̃ZcZd + h. (16)

In Eq. (16), μ̃, Zc, and Zd denote the same quantities in
Eq. (15), and Qc is the decay energy.

The values of c, d , and h are taken from Ref. [8] as follows:

c = 0.38617,

d = −1.08676,

he−e = −21.37195,

ho−A = −20.11223. (17)

Here, different values of parameter h are adopted for even-
even and odd-A nuclei, respectively, to reflect the hindrance
in different kinds of nuclei, i.e., the hindrance of centrifugal
barrier and so on. In some empirical formulas on α decay
[47,48], the terms related to angular momentum l are of-
ten included explicitly to account for the hindrance of the
centrifugal barrier, which could significantly improve the ac-
curacy in calculating α-decay half-lives. Unlike the case of
α decay, however, the emitted cluster in cluster radioactivity
has relatively larger mass compared with an α particle. More-
over, the Coulomb barrier also becomes much higher than that
in α decay. As a result, the centrifugal barrier plays a minor
role in cluster radioactivity [14]. With this in mind, the hin-
drance of centrifugal barrier can be approximately involved
in the parameter h by taking different values for each kind of
nuclei, which could simplify the form of the UDF without any
significant loss of accuracy in calculating half-lives of cluster
radioactivity.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Half-lives of the exotic cluster radioactivity
in trans-lead nuclei

Before analyzing the impacts of nuclear surface polariza-
tion, we first look at DDCM+’s capability of investigating the
exotic cluster radioactivity in this section. In the present work,
a total of 22 heavy-cluster emissions with certain half-lives
and branching ratios are selected, and only those ground-state-
to-ground-state transitions are considered in our calculations.
We temporarily set the value of k′ in Eq. (9) as k′ = 0 in
this section, corresponding to the case proposed by Bohr and
Mottelson [34], to calculate the half-lives of cluster radioac-
tivity ranging from 14C up to 34Si. As known, one of the most
important inputs in DDCM+ is decay energy. Here, the decay
energy Qc is extracted from Ref. [50] by taking the relation

Qc = �M(Z, A) − �M(Zd , Ad ) − �M(Zc, Ac), (18)

with �M(Z, A), �M(Zd , Ad ), and �M(Zc, Ac) being the mass
excesses of parent nucleus, daughter nucleus, and emitted
cluster, respectively. The experimental uncertainty of decay
energy σQc is given by

σ 2
Qc

= σ 2
�M (Z, A) + σ 2

�M (Zd , Ad ) + σ 2
�M (Zc, Ac), (19)

with σ�M (Z, A), σ�M (Zd , Ad ), and σ�M (Zc, Ac) being
the corresponding experimental uncertainty of �M(Z, A),
�M(Zd , Ad ), and �M(Zc, Ac), respectively [50]. Then there
are only the cluster preformation factors Pc to be determined.
We extracted the values of Pc via the ratio between the exper-
imental and calculated decay widths:

Pextr
c = Γexpt/Γtheo, (20)

where the experimental decay width Γexpt is related to the
experimental half-life T expt

c by the well-known relationship
Γexpt = h̄ ln 2/T expt

c , while the calculated decay width Γtheo is
obtained by Eqs. (11) and (13). Sequentially, the parameters
a and b in Eq. (15) are determined by fitting the extracted
cluster preformation factor Pextr

c in Eq. (20) within the experi-
mental half-lives. Here, the parameter a remains the same for
all the nuclei, while different values of parameter b are taken
for the even-even (be−e) and odd-A (bo−A) nuclei respectively
to denote the various hindrance effects on cluster preformation
factor, such as the blocking effect of the unpaired nucleon in
odd-A nuclei and so on [14]. During the fitting procedure, the
parameter a is determined together with be−e for even-even
nuclei first. Then the parameter bo−A for odd-A nuclei can be
determined with the fixed parameter a.

As per Eqs. (7)–(9), both the theoretical quadrupole defor-
mation parameter β theo

2 taken from FRDM2012 [40] and the
experimental one β

expt
2 [41] are used in our calculations for a

contrast. Due to the lack of experimental data for the hexade-
capole and hexacontatetrapole deformation parameters, only
theoretical values β theo

4 , β theo
6 taken from FRDM2012 [40]

are adopted in calculations. That is, two sets of deformation
parameters (β theo

2 , β theo
4 , β theo

6 ) and (βexpt
2 , β theo

4 , β theo
6 ) are

respectively adopted in present work. It should be noticed
here that the experimental value of β

expt
2 has to be used

together with the theoretical ones of β theo
4 and β theo

6 in the
second parameter set, since the inclusion of hexadecapole and
hexacontatetrapole deformation are found to be essential in
calculating the half-lives of cluster radioactivity, especially
for the cases with large quadrupole deformation (see the dis-
cussions in Sec. III B). Thus we give two sets of parameters
a and b for the cases calculated with different deformation
parameter sets. The optimized parameters a and b in Eq. (15)
for cases calculated with (β theo

2 , β theo
4 , β theo

6 ) are given together
with the uncertainties as

a = −0.05663 ± 0.00441,

be−e = 0.8501 ± 0.6041,

bo−A = −0.02201 ± 0.18733, (21)

with the covariance matrix �e−e for even-even nuclei and
�o−A for odd-A nuclei being

�e−e =
[

Cov(a, a) Cov(a, be−e)

Cov(be−e, a) Cov(be−e, be−e)

]

=
[

1.9434 × 10−5 −2.5889 × 10−3

−2.5889 × 10−3 3.6502 × 10−1

]
,

�o−A = Cov(bo−A, bo−A) = 3.5096 × 10−2. (22)
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FIG. 2. The logarithm of cluster preformation factor log10(Pc )
extracted with deformation parameter set (β theo

2 , β theo
4 , β theo

6 ) versus
the quantity

√
μ̃ZcZd for (a) even-even and (b) odd-A cluster emit-

ters, respectively. Note that the linear fitted curves in red are to guide
the eyes. The light red bands in both panels correspond to the 95%
prediction intervals of the fitted curves.

Here, the matrix element Cov(a, b) denotes the covariance
between a and b. While for the cases calculated with (βexpt

2 ,
β theo

4 , β theo
6 ), the optimized parameters a and b are given as

a = −0.07892 ± 0.00579,

be−e = 2.5932 ± 0.7942,

bo−A = 1.7829 ± 0.1771, (23)

with the covariance matrix being

�e−e =
[

3.3584 × 10−5 −4.4739 × 10−3

−4.4739 × 10−3 6.3078 × 10−1

]
,

�o−A = 3.1333 × 10−2. (24)

The uncertainty of log10(Pc) can be estimated by using the
formula [52,53]

σ 2
Pc

=
∑
i, j

Cov(xi, x j )
∂ f

∂xi

∂ f

∂x j
, (25)

in which f denotes the formula of Eq. (15), and xi denotes the
parameter a or b. For a clear insight, the logarithm of cluster
preformation factor log10(Pextr

c ) extracted with deformation
parameter set (β theo

2 , β theo
4 , β theo

6 ) and the analytical formula
of Eq. (15) are presented in Fig. 2, where Fig. 2(a) represents
even-even nuclei and Fig. 2(b) odd-A nuclei. The 95% predic-
tion bands of the fitted curve are also presented. From Fig. 2,
one can directly see the good linear dependence of log10(Pextr

c )
on the quantity

√
μ̃ZcZd in both panels, which shows a posi-

tive response to the assumption of cluster preformation factor
in Eq. (15).

Within the above-mentioned deduced parameters, we give
the theoretical results for the half-lives of cluster radioactivity
by using the DDCM+ introduced in Sec. II A. Meanwhile,
the theoretical half-lives obtained from the UDF introduced
in Sec. II B are also given as contrasts. The detailed numerical
results could be found in Table I. The first three columns
present the serial numbers and detailed decay modes for

the various cluster emissions. Qc denotes the decay energy,
while l denotes the orbital angular momentum carried by
the emitted cluster. β theo

2 , β theo
4 , and β theo

6 are separately the
theoretical quadrupole, hexadecapole, and hexacontatetrapole
deformation parameters for the emitted cluster mainly taken
from Ref. [40], while β

expt
2 is the experimental quadrupole

deformation parameter taken from Ref. [41]. T expt
c denotes the

experimental half-lives of exotic heavy cluster radioactivity
taken from Refs. [49,50]. T theo1

c and T theo2
c denote the the-

oretical half-lives of cluster radioactivity given by DDCM+
with (β theo

2 , β theo
4 , β theo

6 ) and (βexpt
2 , β theo

4 , β theo
6 ), respectively,

while T theo3
c denotes the theoretical half-lives of cluster ra-

dioactivity given by UDF. Here, we adopt the same sign of
β

expt
2 with β theo

2 . For the heavy cluster-emitters with multiple
decay channels, the values of T expt

c listed in Table I are derived
by T expt

c = T expt
1/2 /γc with T expt

1/2 being the real experimental
half-lives and γc being the corresponding branching ratios for
the cluster radioactivity.

In Table I, we also present the uncertainties associated
with the experimental and theoretical data, if available. The
uncertainties of experimental quantities, such as Qc, β

expt
2 ,

and log10(T expt
c ), are extracted directly from the correspond-

ing referenced sources of Refs. [41,49,50]. However, the
uncertainties of theoretical deformation parameters β theo.

2,4,6 are
absent in Table I because they are not given in Ref. [40]. In
addition, we give a preliminary and tentative estimation on
the uncertainties of theoretical cluster radioactivity half-lives.
This estimation is done by calculating the lower and upper
bounds of theoretical half-lives, considering the uncertainties
propagation of Qc, β

expt
2 , and log10(Pc). It is evident in Table I

that the theoretical uncertainties of log10(T theo2
c ) are relatively

larger than those of log10(T theo1
c ), which is mainly attributed

to the inclusion of uncertainties of β
expt
2 in the calculations for

log10(T theo2
c ). More accurate measurements of the deforma-

tion parameters could be anticipated to reduce the theoretical
uncertainties significantly. Similarly, the theoretical uncertain-
ties of log10(T theo3

c ) are the smallest among the three groups of
theoretical half-lives, primarily because only the uncertainties
of Qc are considered in the calculations. The uncertainties
propagation of the parameters for the UDF is not performed
because the uncertainties of parameters are not available in the
original source [14]. It is worth noting again that the current
study is just a preliminary exploration of the uncertainties
of the theoretical results. It is important to acknowledge that
the total uncertainty of a theoretical model is usually known
as a mixture of systematic, statistical, and experimental un-
certainty [54]. Hence, a more accurate estimation of these
uncertainties can be anticipated in the future through a more
comprehensive and in-depth analysis.

One could see in Table I that both the theoretical results
within the DDCM+ and UDF agree fairly well with the
experimental data, despite the selected cluster radioactivities
having extremely long half-lives in a wide range from 1011

to 1027 s. To see the agreement between the theoretical half-
lives T theo

c and the experimental data T expt
c more intuitively,

we plot the logarithmic deviations δT = log10(T theo
c /T expt

c )
for the DDCM+ with (β theo

2 , β theo
4 , β theo

6 ) and (βexpt
2 , β theo

4 ,
β theo

6 ), as well as UDF in Fig. 3, which are denoted by red
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TABLE I. Calculations of the half-lives of exotic heavy cluster radioactivity in the trans-lead region, from ground state to ground state.
In this table, Qc denotes the decay energy, l is the angular momentum carried by the emitted cluster, β theo

2 , β theo
4 , and β theo

6 are separately
the theoretical quadrupole, hexadecapole, and hexacontatetrapole deformation parameters for the emitted cluster mainly taken from Ref. [40],
while β

expt
2 is the experimental quadrupole deformation parameter taken from Ref. [41]. T expt

c denotes the experimental half-lives of exotic heavy
cluster radioactivity taken from Refs. [49,50]. T theo1

c and T theo2
c denote the theoretical half-lives of cluster radioactivity given by DDCM+ with

(β theo
2 , β theo

4 , β theo
6 ) and (βexpt

2 , β theo
4 , β theo

6 ), respectively, while T theo3
c denotes the theoretical half-lives of cluster radioactivity given by UDF.

All the half-lives are in units of seconds, the logarithms of which are presented for the sake of comparison. In this table, the experimental
uncertainties are extracted from the corresponding referenced sources, in which the symbol “(± ?)” denotes the lack of uncertainty information
for this datum. The lower and upper bounds of theoretical cluster radioactivity half-lives, resulting from the uncertainties of Qc, β

expt
2 , and Pc,

are presented for useful references as well.

No. Parent Cluster Qc (MeV) l β theo
2 β theo

4 β theo
6 β

expt
2 log10(T expt

c ) log10(T theo1
c ) log10(T theo2

c ) log10(T theo3
c )

1 221Fr 14C 31.291+0.007
−0.007 3 −0.361a 0.000 0.000 −(0.361+0.024

−0.024) 14.515+0.058
−0.052 14.347+0.201

−0.201 14.322+0.226
−0.227 14.625+0.014

−0.014

2 221Ra 14C 32.396+0.005
−0.005 3 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 13.319+0.667
−0.319 13.246+0.197

−0.197 13.231+0.222
−0.223 13.476+0.009

−0.009

3 222Ra 14C 33.049+0.004
−0.004 0 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 11.049+0.181
−0.131 11.089+0.281

−0.281 11.136+0.401
−0.402 11.022+0.007

−0.007

4 223Ra 14C 31.828+0.003
−0.003 4 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 15.045+0.021
−0.019 14.436+0.193

−0.193 14.422+0.217
−0.219 14.560+0.006

−0.006

5 224Ra 14C 30.534+0.002
−0.002 0 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 15.895+0.155
−0.114 15.856+0.279

−0.278 15.903+0.399
−0.401 15.864+0.004

−0.004

6 225Ac 14C 30.476+0.007
−0.007 4 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 17.279+0.162
−0.118 18.104+0.202

−0.202 18.102+0.228
−0.229 18.237+0.014

−0.014

7 226Ra 14C 28.197+0.003
−0.003 0 −0.361 0.000 0.000 −(0.361+0.024

−0.024) 21.288+0.116
−0.092 20.919+0.281

−0.278 20.968+0.401
−0.402 20.937+0.007

−0.007

8 228Th 20O 44.723+0.002
−0.002 0 0.010 −0.024 0.020 0.269+0.011

−0.008 20.728+0.058
−0.077 21.650+0.181

−0.181 21.773+0.269
−0.278 21.539+0.004

−0.004

9 230U 22Ne 61.388+0.005
−0.005 0 0.384 0.096 −0.007 0.562+0.005

−0.005 19.561+0.235
−0.152 19.339+0.152

−0.151 19.061+0.237
−0.237 20.091+0.007

−0.007

10 230Th 24Ne 57.760+0.021
−0.021 0 −0.063 0.013 −0.030 −(0.418+0.084

−0.035) 24.613+0.112
−0.091 24.910+0.173

−0.176 25.070+0.346
−0.533 24.580+0.033

−0.033

11 231Pa 24Ne 60.410+0.005
−0.005 1 −0.063 0.013 −0.030 −(0.418+0.084

−0.035) 22.886+0.062
−0.055 22.996+0.196

−0.196 23.117+0.312
−0.498 23.086+0.008

−0.008

12 232U 24Ne 62.310+0.002
−0.002 0 −0.063 0.013 −0.030 −(0.418+0.084

−0.035) 20.388+0.038
−0.035 20.799+0.145

−0.145 21.002+0.316
−0.503 20.356+0.003

−0.003

13 233U 24Ne 60.485+0.003
−0.003 2 −0.063 0.013 −0.030 −(0.418+0.084

−0.035) 24.844+0.058
−0.052 24.369+0.191

−0.192 24.502+0.309
−0.497 24.412+0.005

−0.005

14 234U 24Ne 58.825+0.002
−0.002 0 −0.063 0.013 −0.030 −(0.418+0.084

−0.035) 25.935+0.654
−0.251 25.991+0.146

−0.144 26.179+0.318
−0.507 25.811+0.003

−0.003

15 234U 26Ne 59.413+0.018
−0.018 0 0.121 −0.052 −0.035 0.413+0.043

−0.043 25.935+0.654
−0.251 25.958+0.172

−0.173 25.602+0.525
−0.537 26.520+0.031

−0.031

16 234U 28Mg 74.111+0.021
−0.021 0 0.277 −0.073 0.008 0.503+0.031

−0.031 25.540+0.339
−0.342 24.743+0.198

−0.195 24.610+0.526
−0.534 25.255+0.029

−0.029

17 235U 28Mg 72.426+0.031
−0.031 1 0.277 −0.073 0.008 0.503+0.031

−0.031 27.444 (± ?) 27.832+0.233
−0.227 27.632+0.498

−0.505 29.002+0.045
−0.045

18 236Pu 28Mg 79.670+0.002
−0.002 0 0.277 −0.073 0.008 0.503+0.031

−0.031 21.524+0.102
−0.133 20.456+0.177

−0.175 20.357+0.511
−0.521 20.763+0.003

−0.003

19 238Pu 28Mg 75.912+0.002
−0.002 0 0.277 −0.073 0.008 0.503+0.031

−0.031 25.664 (± ?) 25.276+0.176
−0.176 25.162+0.512

−0.519 25.962+0.003
−0.003

20 238Pu 30Mg 76.793+0.002
−0.002 0 0.119 −0.005 −0.031 0.415+0.021

−0.021 25.664 (± ?) 25.654+0.191
−0.191 25.079+0.446

−0.451 26.104+0.003
−0.003

21 238Pu 32Si 91.187+0.021
−0.021 0 −0.124 −0.030 −0.033 −(0.228+0.034

−0.021) 25.296 (± ?) 26.008+0.262
−0.262 26.289+0.422

−0.489 25.588+0.026
−0.026

22 242Cm 34Si 96.544+0.002
−0.002 0 0.000 0.000 −0.039 0.183+0.035

−0.035 23.107+0.197
−0.135 23.534+0.262

−0.264 23.979+0.633
−0.667 23.481+0.003

−0.003

aThe value and sign of quadrupole deformation parameter for 14C are separately taken from Refs. [41] and [51].

circles, green squares, and blue diamonds in Figs. 3(a)–3(c),
respectively. Running horizontally along Fig. 3 is the serial
number of various cluster radioactivities, which is listed in the
first column of Table I. The black dot-dashed lines correspond
to the deviations within a factor of ten. As shown in Fig. 3,
the δT values for the most of nuclei are found to lie between
the two black lines, implying that the theoretical results are
in reasonable agreement with the latest experimental data.
Nevertheless, the relatively larger deviations can be seen for
several cluster radioactivities, such as 228Th → 208Pb + 20O
and 236Pu → 208Pb + 28Mg. This may indicate that more
structural factors, e.g., nuclear surface polarization and so
on, should be considered in the calculations, which we shall
discuss in Sec. III B soon. In addition, the measuring error
may also result in large deviations between the theoretical
results and experimental data. For example, 20O emission of
228Th has a tiny branching ratio of 1.13+0.22

−0.22 × 10−13, which
is even much smaller than the one measured for 14C emission
of 223Ra (8.9+0.4

−0.4 × 10−10) [49]. In the original literature for

20O emission of 228Th [55], the authors introduced the “rarity”
of 20O emission from 228Th, and also mentioned that several
so-different theories had reproduced its experimental half-life
within a factor of ten as well. Consequently, the results may be
improved with more accurate experimental data in the future.

Finally, to systematically evaluate the agreements be-
tween the theoretical half-lives and experimental data,
we also calculate the root-mean-square (rms) deviations
between theoretical and experimental half-lives of σ =
{ 1
N

∑N
i=1[log10(T theo, i

c /T expt, i
c )]2}1/2, with i denoting the ith

nuclei, and N being the total number of nuclei included in
present calculations. As shown in Fig. 3, the rms deviation for
the DDCM+ with (β theo

2 , β theo
4 , β theo

6 ) and (βexpt
2 , β theo

4 , β theo
6 ),

as well as UDF are 0.4954, 0.6068, and 0.5412, respectively.
All of these theoretical results agree well with the experimen-
tal data. Furthermore, the rms deviation for the DDCM+ with
(βexpt

2 , β theo
4 , β theo

6 ) is found to be slightly larger than that of the
other two cases, which may due to the lack of experimental
values of hexadecapole and hexacontatetrapole deformation
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FIG. 3. The logarithmic deviations between the experimental
data and the theoretical results given by (a) DDCM+ with (β theo

2 ,
β theo

4 , β theo
6 ), (b) DDCM+ with (βexpt

2 , β theo
4 , β theo

6 ), and (c) the UDF.
The black dot-dashed lines in each panel correspond to the deviation
between the theoretical results and the experimental data with a
factor of ten.

parameters. Moreover, β
expt
2 may not be self-consistent with

β theo
4 and β theo

6 as well. One can see that the value of β
expt
2 in

Table I varies in a very large range from −0.418 to 0.562, then
the hexadecapole and hexacontatetrapole deformation would
play important roles in calculating half-lives of cluster ra-
dioactivity and should not be negligible. Thus, more abundant
experimental data of nuclear hexadecapole and hexacontate-
trapole deformation are anticipated to improve the results. The
above theoretical results demonstrate that the DDCM+ is a
reliable model in the studies of cluster-radioactivity half-lives.

B. Effects of nuclear surface polarization on exotic
cluster radioactivity

In view of the good reliability of the DDCM+ shown in
Sec. III A, we tend to discuss the effects of nuclear surface
polarization on the cluster radioactivity within DDCM+ in
this section. The theoretical deformation parameter set (β theo

2 ,
β theo

4 , β theo
6 ) would be used in calculations hereafter. Denot-

ing, by aτ
L and aτ

S the diffuseness along the elongated and
compressed axis, then we can define the different polariza-
tion modes of one deformed nucleus via the quantity δa =
(aτ

L − aτ
S )/aτ

0 . According to the values of δa, one can find that
there may be three different polarization modes as follows:

(i) When δa < 0, the surface diffuseness of a deformed
system tends to reduce along the elongated axis while
increasing along the compressed axis. This is just an
approximate of the case proposed in Ref. [35] for a
deformed heavy nucleus, which is denoted “mode 1”
in the present work.

(ii) When δa = 0, there is no diffuseness polarization
occurring along the two symmetric axes. The surface
diffuseness would be identical to the corresponding
spherical case along both the elongated and com-
pressed axis, while anisotropic at the other orientation
angles. This is denoted “mode 2” in the present work,

which corresponds to the case proposed by Bohr and
Mottelson [34].

(iii) When δa > 0, it is on the opposite side of case 1
that the surface diffuseness of a deformed system
would increase along the elongated axis while reduc-
ing along the compressed axis. This is denoted “mode
3” in the present work, which is similar to the case
utilized in Ref. [11].

In terms of Ref. [35], the surface polarization of mode 1
holds true for the most of deformed heavy nuclei with A >

120. While a systematic tendency of the surface polarization
in the light system is difficult to discover, all three cases
introduced above are plausible (see Figs. 4 and 10 of Ref. [35]
for more details). Through the detailed comparison of the
theoretical results with the above three polarization modes, the
effects of different surface polarization modes on the exotic
cluster radioactivities could be well investigated. Hereafter,
we shall take the cluster radioactivity 236Pu → 208Pb + 28Mg
for illustration, involving a spherical daughter nucleus 208Pb
interacting with a deformed cluster 28Mg.

For sake of intuitive illustration, we take k′ = −1, 0, and
1 in Eq. (9) to denote mode 1, 2, and 3, respectively. Then
we show the form factor of half-density radius fR(θ ) =
Rτ (θ )/Rτ

0 and diffuseness f k′
a (θ ) = aτ (k′, θ )/aτ

0 for 28Mg in
Fig. 4(a). In Fig. 4(a), the values of fR(θ ) are denoted by
black circles, while the values of f k′

a (θ ) with k′ = −1, 0,
and 1 are denoted by red diamonds, blue triangles, and green
squares, respectively. According to Fig. 4(a), the elongated
axis for 28Mg goes along with the angle θ = 0 while the
compressed axis goes along with the angle θ = π/2. The dif-
fuseness becomes anisotropic in all three polarization modes
due to deformation, and the behavior of diffuseness varies
with the changing of parameter k′ at the angle θ = 0 and
θ = π/2, which is consistent with the descriptions of modes
1–3. Further investigation reveals that the sign of parameter
k′ determines the specific polarization mode of the emitted
cluster, with k′ < 0 corresponding to mode 1, k′ = 0 corre-
sponding to mode 2, and k′ > 0 corresponding to mode 3
(strictly speaking, this relationship is not always established
for all the deformed system, but it holds for all the emitted
cluster considered in present work). In Fig. 4(b), a linear
correlation between the quantity δa and parameter k′ can be

directly observed, with the slope calculated as 3
4

√
5
π
|β2| =

0.2621 according to Eq. (9). This means that the amplitude of
k′ handles the degree of surface polarization for a deformed
nucleus.

To figure out the sensitivity of cluster-daughter interaction
to the different polarization modes, we illustrate in Figs. 5(a)
and 5(b) the sum of nuclear and Coulomb potential near the
barrier region for the 208Pb ⊗28Mg system. Similar to Fig. 4,
we also take the specific values of k′ = −1, 0, and 1 to rep-
resent modes 1–3 and plot the daughter-cluster interaction in
various cases. Due to the deformation of 28Mg, the daughter-
cluster interaction is anisotropic at different orientation angles
ξ . The barrier height at ξ = 0◦ is obviously lower than at
ξ = 90◦. In addition, differing polarization modes may alter
the geometry of interactions as well. In Fig. 5(c), we further
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FIG. 4. (a) The form factor of half-density radius fR(θ ) = Rτ (θ )/Rτ
0 and diffuseness f k′

a (θ ) = aτ (k′, θ )/aτ
0 with k′ = −1, 0, and 1 versus

the angle θ for 28Mg. (b) The quantity δa = (aτ
L − aτ

S )/aτ
0 for 28Mg as a function of parameter k′ ranging in −1 � k′ � 1.

present the variations of potential barrier height VB(ξ ) and the
logarithmic partial decay width log10[Γ (ξ )] in Eq. (11) with
the orientation angle ξ for the cluster radioactivity 236Pu →
208Pb + 28Mg. As shown, both the barrier height and partial
decay width are anisotropic along different orientations, and a
higher potential barrier would yield a smaller decay width. For
example, the barrier heights at ξ = 0◦ are 117.017, 115.780,
and 114.376 MeV for mode 1, 2, and 3, respectively, the val-
ues of which increase to 118.861, 119.446, and 119.954 MeV
at ξ = 90◦. As for the partial decay width (in MeV), the
logarithmic values at ξ = 0◦ are −33.555, −32.896, and
−32.118 for modes 1, 2, and 3, respectively, whereas re-
ducing to −35.420, −35.672, and −35.880 at ξ = 90◦. This
can be easily understood by the quantum tunneling theory.
It is well established that the penetration probability of the
cluster is particularly sensitive to the height of inner potential
barrier, which decreases exponentially as the barrier height
increases. Therefore, according to Eqs. (13) and (14), the var-
ied polarization modes would certainly lead to a considerable
variation in the half-life of cluster radioactivity, which we will
discuss next.

To manifest the overall impacts of different surface po-
larization modes on the cluster radioactivity half-life, we
define the percentage change Dk′ in the half-life for a cluster

emission as

Dk′ = T k′
c − T 0

c

T 0
c

× 100%, (26)

in which T k′
c denotes the theoretical half-life of cluster ra-

dioactivity in one specific k′ value and T 0
c denotes that in

spherical case (namely, β2 = β4 = β6 = 0). Here we still take
the cluster radioactivity 236Pu → 208Pb + 28Mg as an exam-
ple, and proceed to show in Fig. 6 the variation of Dk′ values
with changing k′ in a range of −1 � k′ � 1. The red star
in Fig. 6 represents mode 2 with k′ = 0. Several interesting
features emerge from Fig. 6:

(i) All the Dk′ values presented in this figure are nega-
tive, indicating that the deformation would shorten the
theoretical half-life of cluster radioactivity 236Pu →
208Pb + 28Mg regardless of the surface polarization
mode. This is consistent with the previous researches
[11,25].

(ii) In contrast to mode 2 with k′ = 0, mode 1 with k′ < 0
yields longer theoretical half-lives, whereas mode 3
with k′ > 0 yields shorter theoretical half-lives as the
amplitude of k′ grows.

FIG. 5. Impact on the cluster-daughter potential due to different polarization modes at orientation angle (a) ξ = 0 and (b) ξ = π/2, as well
as (c) the potential barrier height VB(ξ ) and the logarithm of partial decay width log10[Γ (ξ )] varying with the orientation angle ξ for the cluster
radioactivity 236Pu → 208Pb + 28Mg. In panels [(a)–(c)], the solid, dashed, and dot-dashed lines respectively denote the cases with k′ = −1,
k′ = 0, and k′ = 1. Specially, the diamonds represent the potential barrier height while the circles denote the logarithmic partial decay width
in panel (c). In addition, only the barrier regions are plotted in panels (a) and (b) for clarity.
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FIG. 6. The percentage change Dk′ in the half-life varies with
the change of parameter k′ for the cluster radioactivity 236Pu →
208Pb + 28Mg. The red star represents the Dk′ value of mode two with
k′ = 0.

(iii) The changing rate of Dk′ values with parameter k′
gradually decreases as k′ grows, and it is noticeably
larger in mode 1 with k′ < 0 than in mode 3 with
k′ > 0, indicating the theoretical half-life in mode 1
is more sensitive to the changes in the amplitude of
k′ than mode 3 for the cluster radioactivity 236Pu →
208Pb + 28Mg.

Denoting D−1
k′ , D0

k′ , and D1
k′ by the values of Dk′ with

k′ = −1, 0, and 1 for all the cluster radioactivities in Table I,

we further present these values in the last three columns
of Table II. Meanwhile, the logarithm of half-lives for vari-
ous cluster radioactivities in spherical cases assuming Pc = 1
are also given as log10(T 0

c ) in Table II for reference. From
Table II, we can see that all the Dk′ values are negative,
indicating the first conclusion deduced from Fig. 6 is also well
established for other cluster radioactivities, i.e., the half-lives
would decrease after the inclusion of deformation regardless
of the surface polarization mode. Moreover, the second feature
mentioned above holds true for all the cluster radioactivities
as well. However, the third conclusion deduced from Fig. 6 is
not always established for all the cluster radioactivities. For
example, the differences between D−1

k′ and D0
k′ for the 28Mg

emissions are significantly greater than that between D1
k′ and

D0
k′ , whereas the differences are almost the same for 32,34Si

emissions. This may be due to the different values of the
deformation parameters. Therefore, in the end, we continue
to check the sensitivity of the theoretical half-life with the
changes of deformation parameters. Here we mainly consider
the quadrupole β2 and hexadecapole β4 deformation parame-
ters. We plot in Fig. 7 the logarithmic derivations between the
theoretical half-life given by DDCM+ and that of spherical
case for 236Pu → 208Pb + 28Mg, denoted as log10(T β

c /T 0
c ),

versus the deformation parameters β2 and β4 in ranges of
−0.3 � β2 � 0.3 and −0.1 � β4 � 0.1. The cases with k′ =
−1 and k′ = 1 are respectively displayed in panels (a) and (b)
of Fig. 7. From both Figs. 7(a) and 7(b), one could see that
the half-life would decrease with the growth of |β2| regardless

TABLE II. Percent changes Dk′ (%) of cluster radioactivity half-lives for different surface polarization modes. β theo
2 , β theo

4 , and β theo
6 are

separately the theoretical quadrupole, hexadecapole, and hexacontatetrapole deformation parameters for the emitted cluster mainly taken from
Ref. [40]. T 0

c denotes the half-lives of cluster radioactivity in spherical cases assuming Pc = 1, which are in units of seconds. The last three
columns display the values of Dk′ for various cluster radioactivities in mode 1 with k′ = −1, mode 2 with k′ = 0 and mode 3 with k′ = 1,
respectively.

No. Parent Daughter Cluster β theo
2 β theo

4 β theo
6 log10(T 0

c ) D−1
k′ (%) D0

k′ (%) D1
k′ (%)

1 221Fr 207Tl 14C −0.361a 0.000 0.000 10.128 −32.911 −52.340 −72.744
2 221Ra 207Pb 14C −0.361 0.000 0.000 8.999 −32.953 −52.380 −72.791
3 222Ra 208Pb 14C −0.361 0.000 0.000 7.709 −32.619 −51.835 −72.241
4 223Ra 209Pb 14C −0.361 0.000 0.000 10.188 −32.984 −52.376 −72.690
5 224Ra 210Pb 14C −0.361 0.000 0.000 12.480 −33.078 −52.510 −72.777
6 225Ac 211Bi 14C −0.361 0.000 0.000 13.625 −33.474 −53.127 −73.378
7 226Ra 212Pb 14C −0.361 0.000 0.000 17.549 −33.485 −53.110 −73.256
8 228Th 208Pb 20O 0.010 −0.024 0.020 16.313 −1.588 −1.663 −1.784
9 230U 208Pb 22Ne 0.384 0.096 −0.007 14.832 −91.600 −98.668 −99.882
10 230Th 206Hg 24Ne −0.063 0.013 −0.030 18.388 −7.463 −11.613 −17.030
11 231Pa 207Tl 24Ne −0.063 0.013 −0.030 15.553 −7.425 −11.583 −17.026
12 232U 208Pb 24Ne −0.063 0.013 −0.030 14.181 −7.407 −11.541 −16.954
13 233U 209Pb 24Ne −0.063 0.013 −0.030 16.877 −7.498 −11.664 −17.097
14 234U 210Pb 24Ne −0.063 0.013 −0.030 19.370 −7.567 −11.755 −17.201
15 234U 208Pb 26Ne 0.121 −0.052 −0.035 19.256 −28.709 −42.951 −58.380
16 234U 206Hg 28Mg 0.277 −0.073 0.008 17.966 −77.426 −91.756 −97.904
17 235U 207Hg 28Mg 0.277 −0.073 0.008 20.194 −77.864 −91.973 −97.968
18 236Pu 208Pb 28Mg 0.277 −0.073 0.008 13.559 −76.987 −91.628 −97.906
19 238Pu 210Pb 28Mg 0.277 −0.073 0.008 18.397 −78.049 −92.070 −98.005
20 238Pu 208Pb 30Mg 0.119 −0.005 −0.031 17.723 −34.403 −51.640 −67.952
21 238Pu 206Hg 32Si −0.124 −0.030 −0.033 17.128 −30.303 −42.988 −55.839
22 242Cm 208Pb 34Si 0.000 0.000 −0.039 14.035 −5.025 −5.025 −5.025

aThe value and sign of quadrupole deformation parameter for 14C are separately taken from Refs. [41] and [51].
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FIG. 7. The logarithmic derivations between the theoretical half-life given by DDCM+ and that of spherical case (denoted by T 0
c ) with

(a) k′ = −1 and (b) k′ = 1, as a function of deformation parameters β2 and β4 of 28Mg in the emission of 236Pu.

of the sign of β2 when the value of β4 is fixed, and the de-
creasing rate of the half-life with the quadrupole deformation
parameter β2 is slightly smaller in the oblate shape (β2 < 0)
of the cluster than in the prolate case (β2 > 0). When the
value of β2 is fixed, the half-life is found to decrease as the
value of β4 grows from −0.1 to 0.1. It is also interesting to
see that the decreasing trend of the half-life with β4 is much
more evident in the prolate cases. While in the oblate cases,
the half-life decreases relatively slower with the growth of
β4 than that in the prolate cases. Moreover, it can be directly
seen that the half-life would decrease much more drasti-
cally with the growth of β4 when the cluster has a larger
quadrupole deformation in both cases. For instance, as shown
in Fig. 7(b), when β2 = 0, the value of log10(T β

c /T 0
c ) reduces

by 0.083 with β4 varying from 0 to 0.1. When β2 = 0.300,
however, the value of log10(T β

c /T 0
c ) reduces by 0.765 with

β4 varying from 0 to 0.1, which means the effects of higher
multipole deformation are not negligible in calculating half-
lives of cluster radioactivity and should be considered in the
calculations especially for the cases with large quadrupole
deformation.

As a result, all of these discussed above indicate that the
deformation would determine the obviousness of the surface
polarization effects on cluster radioactivity half-lives, together
with the amplitude of parameter k′. This is also consistent with
the conclusions obtained from our previous studies on α decay
[28,29].

IV. SUMMARY AND CONCLUSIONS

In summary, we systematically investigate the effect of
nuclear surface polarization on the exotic cluster radioactivity
via DDCM+. Especially, three different surface polariza-
tion modes for the emitted cluster are taken into account by
introducing an adjustable parameter k′ into the deformation-
dependent diffuseness parameter, the value of which handles
the specific mode and degree of the nuclear surface po-
larization. In this work, we first examine the capability of
DDCM+ in studying exotic cluster radioactivity with tem-
porarily taking k′ = 0. A total of 22 cluster emissions with
certain half-lives and branching ratios are selected in our
calculations. The theoretical results given by DDCM+ are
in good accordance with the latest experimental data within

a factor of ≈3, indicating DDCM+ is reliable for studying
exotic cluster radioactivity.

Sequentially, we investigate the effect of surface polariza-
tion on cluster radioactivity half-lives by considering three
different polarization modes with mode 1–3. It is found
that the surface polarization would change the geometry
of daughter-cluster interaction and optimize the half-life of
cluster radioactivity accordingly. The global conclusions are
summarized as follows:

(i) Including the effects of deformation of the light clus-
ter in cluster radioactivity would lead to a decrease of
half-life regardless of the nuclear surface polarization
mode.

(ii) Different surface polarization modes of nuclei would
have various effects on the half-life of cluster radioac-
tivity. Concretely, in contrast to the case of mode
2 with k′ = 0 which has no polarization along both
symmetric axes, the surface polarization of mode
1 with k′ < 0 lengthens the theoretical half-lives,
whereas the surface polarization of mode 3 with k′ >

0 shortens the theoretical half-lives as the amplitude
of k′ grows.

(iii) Except for the amplitude of parameter k′, the obvious-
ness of the surface polarization effects also depends
on the deformation degree of the emitted cluster.
It would be much more evident for the diffuseness
polarization effects on the half-life of cluster radioac-
tivity as the emitted cluster has a larger deformation
degree.

The present work makes a detailed analysis of the pos-
sible surface diffuseness polarization effects on the half-life
of cluster radioactivity, it is expected that these results could
be useful for the forthcoming experimental and theoretical
studies on nuclear structure. Furthermore, the experimental
confirmation and explanation of the nuclear surface polariza-
tion phenomenon are also anticipated in the future.
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