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New insights into backbending in the symmetry-adapted shell-model framework
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We provide insights into the backbending phenomenon within the symmetry-adapted framework which
naturally describes the intrinsic deformation of atomic nuclei. For 20Ne, the canonical example of backbending
in light nuclei, the ab initio symmetry-adapted no-core shell model shows that while the energy spectrum
replicates the backbending from experimental energies under the rotor-model assumption, there is no change in
the intrinsic deformation or intrinsic spin of the yrast band around the backbend. For the traditional example of
48Cr, computed in the valence shell with empirical interactions, we confirm a high-spin nucleus that is effectively
near-spherical, in agreement with previous models. However, we find that this spherical distribution results, on
average, from an almost equal mixing of deformed prolate shapes with deformed oblate shapes. Microscopic
calculations confirm the importance of spin alignment and configuration mixing, but surprisingly unveil no
anomalous increase in moment of inertia. This finding opens the path toward further understanding the rotational
behavior and moment of inertia of medium-mass nuclei.
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I. INTRODUCTION

Backbending refers to an anomalous increase in nuclear
moment of inertia along the yrast band at some critical angular
momentum. Based on experimental energy spectra, backbend-
ing is found to occur in nuclei ranging from 20Ne through 48Cr
to the actinide region. Understanding the backbending phe-
nomenon is essential to resolve the elusive physics of the high
angular-momentum rotational behavior of strongly deformed
nuclei. Possible explanations of this phenomenon relate to the
physics of spin alignment due to Coriolis force pair-breaking
[1,2], phase transitions between irrotational and rigid rotor
flow, and shape coexistence [3]. Theoretically testing these
explanations has been restricted to heavier nuclei, for many
of which microscopic A-body descriptions are intractable
computationally.

In this paper, we provide an ab initio study of the
backbending phenomenon for 20Ne, a canonical example of
backbending in light nuclei [4], with a focus on translationally
invariant moments of inertia and intrinsic deformation and
triaxiality. We use ab initio wave functions for 20Ne from our
earlier study [5] calculated in the symmetry-adapted no-core
shell model (SA-NCSM) [5,6]. The SA-NCSM provides nu-
clear wave functions in terms of SU(3) ⊃ SO(3) basis states
without breaking the rotational symmetry. The SU(3) quan-
tum numbers, in turn, directly provide the intrinsic nuclear
deformation in the body-fixed frame [6]. We show that the
energy spectrum of 20Ne replicates the backbending from
experimental energies under the rotor-model assumption, but
interestingly, the ab initio results show no change in the

intrinsic deformation or intrinsic spin of the yrast band around
the backbend in 20Ne. To further understand this, we examine
spin alignment in low-lying states in 20Ne.

For the last two decades, the heavier nucleus of 48Cr has
been a key example of backbending, because it tests the
predictions of both mean-field and configuration-interaction
methods. Almost all previous studies of 48Cr find an yrast
band with an intrinsic prolate deformation before the back-
bend, and, after the backbend, find that 48Cr transitions
towards sphericity and with a lack of an intrinsic state above
the backbend (see for example [7–16], and Ref. [17] for a
detailed model comparison). However, when Herrera et al.
[17] decomposed configuration-interaction shell-model wave
functions into components specified by the eigenvalues of the
SU(3) second-order Casimir invariant operator, they found
consistently large deformations above the backbend rather
than sphericity. While the full SU(3) content of the wave
function provides information about the intrinsic deformation
and rotational bands [5,18–23], the second-order Casimir in-
variant alone is not sufficient to fully decompose into SU(3)
irreducible representations (irreps) and distinguish between
prolate, oblate, and triaxial deformations.

To resolve this apparent contradiction about the structure
of 48Cr after the backbend, we again employ the symmetry-
adapted framework. To understand the results of Ref. [17],
we utilize the same model conditions as those used in [17]
for 48Cr, namely, a core of inactive particles, valence-shell
model space, and an empirical interaction for the p f shell.
With this, we can now compute 48Cr wave functions in a

2469-9985/2023/108(2)/024304(12) 024304-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1059-7384
https://orcid.org/0000-0003-3568-8223
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.024304&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevC.108.024304


NICHOLAS D. HELLER et al. PHYSICAL REVIEW C 108, 024304 (2023)

FIG. 1. Backbending of 48Cr at J = 12 and of 20Ne at J = 8 traditionally seen in 2I/h̄2 vs (h̄ω)2 [3] as well as J vs. Eγ (insets), based
on Eq. (2) and excitation energies calculated for: (a) 48Cr in the SA-SM with the GXPF1 interaction, and (b) for 20Ne in the SA-NCSM with
the NNLOopt chiral potential for h̄� = 15 MeV and Nmax = 8 (blue squares), and in the SA-SM with the USDA interaction (gray circles).
Excitation energies are in close agreement with experiment, as shown in Fig. 2.

configuration-interaction framework with complete informa-
tion about intrinsic deformation. We show that for the yrast
band above the backbend the deformed configurations ob-
served in Ref. [17] are a part of a remarkably balanced mixing
of prolate and oblate intrinsic shapes, which leads to a nucleus
that appears near spherical on average. This reconciles the
outcomes of Ref. [17] and previous studies.

Similarly to 20Ne, our results for 48Cr do not show an
anomalous change in moment of inertia at the backbend,
suggesting that a rigid shape change is not the sole mechanism
for the backbend.

The outcomes of our study for 20Ne and 48Cr emphasize
the importance of band crossing and spin-alignment in driving
backbending, which affects the energy of the states, but with
only very little effect on the nuclear spatial distribution.

II. THEORETICAL FRAMEWORK

A. Backbending and the rotor model: A traditional approach

Backbending is, in principle, observed from applying the
rotor model to high-spin energy spectra. The rigid rotor
Hamiltonian is

Ĥ = const + h̄2

2I Ĵ2 (1)

with eigenvalues E (J ) = E0 + h̄2

2I J (J + 1), where I is the
moment of inertia and Ĵ is the total angular momentum op-
erator.1 Traditionally, the anomalous increase in the moment

1In general, Ĥ = const + ∑
j

h̄2

2I j
Ĵ2

j , where I j are the moments of
inertia relative to a set of body-fixed (principal) axes, j = 1, 2, and 3.

of inertia has been identified from the dependence of 2I/h̄2

on the nuclear rotational frequency (h̄ω)2 derived from the
rotor-model excitation energies [1] (e.g., see Fig. 1):

2I
h̄2 = 4J − 2

Eγ

(h̄ω)2 = (J2 − J + 1)

(
Eγ

2J − 1

)2

, (2)

where Eγ = E (J ) − E (J − 2) is the excitation energy. In
Eq. (2), I is derived from the first discrete derivative of E (J )
with respect to J (J + 1), whereas h̄ω is derived from the
rotational energy at midpoint E (J )+E (J−2)

2 ∼ 1
2
I
h̄2 (h̄ω)2 (e.g.,

see [25]).

B. Symmetry-adapted framework

Ab initio descriptions of spherical and deformed nuclei up
through the calcium region are now possible with the ab ini-
tio SA-NCSM without the use of interaction renormalization
procedures, as reviewed in Refs. [6,18]. In particular, we have
shown that the SA-NCSM, using the SU(3)-adapted basis [18]
or the Sp(3, R)-adapted basis [5,26], can use significantly
reduced model spaces as compared to the corresponding ul-
tralarge conventional model spaces without compromising
the accuracy of results for various observables. This allows
the SA-NCSM to accommodate larger model spaces and to
reach heavier nuclei, such as 20Ne [5], 21Mg [27], 22Mg [28],
28Mg [29], as well as 32Ne and 48Ti [6].

The SA-NCSM with SU(3)-adapted basis solves the many-
body nuclear Hamiltonian in basis states that are labeled

Yrast states can be effectively described by an intrinsic deformation
rotating perpendicular to the three-axis with I ∼ I1 ∼ I2 [24].
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schematically as

|�γ ; N (λ μ)κL; (SpSn)S; JM〉, (3)

where Sp, Sn, and S denote proton, neutron, and total intrin-
sic spins, respectively, N is the total number of harmonic
oscillator (HO) excitation quanta, and (λ μ) represent a set
of quantum numbers that labels an SU(3) irrep. The label κ

distinguishes multiple occurrences of the same orbital angular
momentum L in the parent irrep (λ μ). The L is coupled with
S to the total angular momentum J and its projection M.
The symbol �γ schematically denotes the additional quantum
numbers needed to specify a distribution of nucleons over the
major HO shells and their single-shell and intershell SU(3)
quantum numbers. All of these labels uniquely determine the
SA-NCSM basis states (3) [18]. Note that in this paper, we
use N given by the total HO energy Nh̄� of all particles (for
a HO frequency h̄�), and for example, N = 50 (N = 156) for
the valence-shell configurations of 20Ne (48Cr).

For comparatively large model spaces, it is often advan-
tageous to assume a core of inactive particles. For this, we
introduce a core in the SA-NCSM and allow only the valence
particles to excite to higher shells. This approximate model is
henceforth referred to as the symmetry-adapted shell model
(SA-SM). When solved only in the valence shell with empiri-
cal interactions, it coincides with earlier valence-shell models
with SU(3) ⊃ SO(3) basis [30–41]. For the SA-SM, we
transform the effective one-body interactions (Appendix A)
and two-body matrix elements [42] to the SU(3) basis. In
this study, we apply the valence-shell SA-SM with empirical
interactions to 48Cr with a 40Ca core, and to 20Ne with a 16O
core. For 20Ne, we also employ the ab initio SA-NCSM for
comparison.

Following Ref. [19], we identify rotational bands as states
that exhibit quasidynamical SU(3) symmetry. Namely, the
corresponding wave functions have similar (λ μ) decompo-
sition. Alternatively, the wave function can be expressed in
terms of the C2 eigenvalues of the second-order SU(3) Casimir
invariant, as done in Ref. [17], where

C2(λ,μ) = 2
3 (λ2 + μ2 + λμ + 3λ + 3μ). (4)

Since C2 eigenvalues are symmetric under the exchange of λ

and μ, we will need a second measure to determine if a defor-
mation is prolate (λ > μ), triaxial (λ = μ), or oblate (λ < μ),
as discussed in the next section. In this study, we also use
the C3 eigenvalues of the third-order SU(3) Casimir invariant
operator, proportional to λ − μ, which provide exactly this
(see, e.g., [43])

C3(λ,μ) = 1
9 (λ − μ)(λ + 2μ + 3)(2λ + μ + 3) (5)

with C3 > 0 (C3 < 0) for prolate (oblate) and C3 = 0 triaxial.

C. Intrinsic deformation and moments of inertia

The SU(3) basis is ideal for calculations of the microscopic
intrinsic moments of inertia. The moments of inertia operators

are defined as

Îz =
A∑

i=1

m
(
r2

i − z2
i

)
, Îx =

A∑
i=1

m
(
r2

i − x2
i

)
, Îy

=
A∑

i=1

m
(
r2

i − y2
i

)
, (6)

where m is the nucleon mass, A is the total number of particles,
and ri is the coordinate of the ith particle relative to the center
of mass with projection zi along the z direction, the axis of
quantization.

For each basis state (3), the SU(3) quantum numbers
N (λ μ) fully define an extremal-weight (EW) state |φN (λμ)

0 〉
(or simply |φ0〉), similarly to |φJ

0 〉 = |J, M = J〉 that is the
highest-weight SU(2) state, from which all other |JM〉 states
can be induced through the lowering Ĵ− operator; equivalently
all states can be induced through the raising Ĵ+ operator on
the lowest-weight SU(2) state |J, M = −J〉. As discussed
below, this extremal-weight SU(3) state has been shown to
practically coincide with an intrinsic state [44], defined as an
eigenstate of the quadrupole moment operator.

The expectation value of the moment of inertia (6)
for the extremal-weight state |φ0〉 can be readily calcu-
lated using (see, e.g., [45]) 〈φ0|

∑
i z2

i |φ0〉 = b2(Nz − 1
2 ),

〈φ0|
∑

i x2
i |φ0〉 = b2(Nx − 1

2 ), and 〈φ0|
∑

i y2
i |φ0〉 = b2(Ny −

1
2 ), where subtracting 1/2 ensures the removal of the center-
of-mass spurious contribution (see Appendix C), and where
b = √

h̄/m� is the HO length and Nx, Ny, and Nz are HO
quanta along the three directions with N = Nx + Ny + Nz. For
Nz � Nx � Ny, λ = Nz − Nx and μ = Nx − Ny, and hence,

|φ0〉 can be equally specified as |φNzNxNy

0 〉. For the extremal-
weight state |φ0〉, our codes use the convention of the
lowest-weight state |φLW ′ 〉 for λ � μ and the highest-weight
states |φHW ′ 〉 for λ < μ, as detailed in [46,47]. For a com-
plete labeling of SU(3) states |N (λ μ)ε	M	〉 according to
the SU(3) ⊃SU(2) canonical group chain, all the additional
labels of |φ0〉 are specified through λ and μ only [46]:

λ � μ (LW ′) : ε = 2λ + μ,	 = M	 = μ

2
,

λ < μ (HW ′) : ε = − (λ + 2μ),	 = −M	 = λ

2
. (7)

Most importantly, the matrix elements of the
monopole operator

∑
i r2

i and the quadrupole moment
Q̂2m = ∑

i

√
16π/5r2

i Y2m(r̂i ) with, e.g., Q̂20 = ∑
i(3z2

i − r2),
are expressed only in terms of N , λ, and μ for the
extremal-weight state:

〈φ0|
∑

i

r2
i |φ0〉 = b2

(
N − 3

2

)
,

〈φ0|Q̂20|φ0〉 = b2ε ≡ q0,

〈φ0|Q̂2±1|φ0〉 = 0,

〈φ0|Q̂2±2|φ0〉 = b2

√
3

2
2M	 ≡ q2 (8)
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(cf. [45]). In the rotor limit of SU(3) (for large λ and μ), |φ0〉
is indeed an eigenstate of Q̂2m, Q̂2m |φ0〉 = qm |φ0〉 (cf. Eq. (6)
of Ref. [48]).2 Hence, in this limit, the SU(3) extremal-weight
state corresponds to an intrinsic rotor state with intrinsic
quadrupole moments given by q0,2 [49]. For this state, we
can then define the body-fixed frame with principal axes
1, 2, and 3, such that q0 = 2Q3 − Q1 − Q2 = b2ε and q2 =√

3
2 (Q1 − Q2) = √

6b2M	. Using that
∑

j Q j = 0, the intrin-
sic quadrupole moments along the one-, two-, and three-axis
are given in this limit as

Q3

b2
= ε

3
,

Q1

b2
= −ε

6
+ M	,

Q2

b2
= −ε

6
− M	. (9)

These are expressed through λ and μ using Eq. (7). This
relation is important, since it directly relates λ and μ to the
intrinsic deformation of each SU(3) basis state (3). We note
that this relation is exact in the limit and practically holds for
most SU(3) basis state, whereas it is a very good approxi-
mation even when λ and μ are both small (typically, it is
sufficient to ensure that L < |ε| [48] for a given λ and μ,
which is usually the case since the maximum possible L is
Lmax = λ + μ < |ε|).

We note that the descriptions in terms of the highest and
lowest-weight states are equivalent, they only differ by the
choice of the principal axes. For the choice of Eq. (7), the
intrinsic state will have a prolate shape for λ > μ with positive
intrinsic quadrupole moment Q3 = q0/3 along the axis of
symmetry (three-axis) that coincides with the z quantization
axis (with λ = μ being triaxial); for λ < μ, the intrinsic state
will be oblate with negative intrinsic quadrupole moment q0

along the three-axis that also coincides with the z quantization
axis. This choice is therefore very convenient in considering
their rotor limit (cf. Ref. [48]).

For nuclear wave functions |Jπ 〉 in the SU(3) basis (3)
with probability amplitudes (cJ

N (λμ) )
2, one can calculate the

intrinsic quadrupole moment as (cf. Eq. (25) of Ref. [48])

qJ
0 =

∑
N (λμ)

(
cJ

N (λ μ)

)2
q0(λ,μ), (10)

where q0(λ,μ) is defined in Eq. (8) as q0 for given λ and
μ. This, as discussed in Ref. [48], effectively describes a
soft-rotor rotational band consisting of rotational states that
share a common intrinsic state, which is an admixture of
eigenstates of the quadrupole moment. While the quadrupole
moment observable Q(J ) = 〈Jπ |Q̂20|Jπ 〉 is calculated exactly
in the SA-NCSM using the physically relevant basis (3) with
complete labeling |N (λ μ)κLM〉 according to the SU(3) ⊃
SO(3) group chain, the convention (7) allows one to directly

2In a single valence shell, Q̂2 = √
3Ĉ (1 1)

2 , where C (1 1)
2 is an SU(3)

generator that does no mix (λμ) configurations, |φ0〉 is an eigenstate
of Q̂20 for any λ and μ.

use the rotor-model estimate3

Q(J, K = 0) ≈ CJJ
JJ,20C

J0
J0,20

∑
N (λμ)

(
cJ

N (λ μ)

)2
q0(λ,μ). (12)

Note that the approximations arise when we aim to compare
to the rotor-model estimate, while exact expressions are ob-
tained when using the SA-NCSM code. for a given K band,
Qrot (J, K ) = CJJ

JJ,20C
JK
JK,20qJ

0 (see, e.g., [24]) with qJ
0 given by

Eq. (10).
Finally, the intrinsic (body-fixed) moments of inertia can

be calculated using Eq. (8) and their relation to the intrinsic
matter quadrupole moments 2I j

m = 4
3 (r2 − 3

2 Qj ), for j = 1, 2
and 3:

2

h̄2 〈φ0|I3|φ0〉 = 4

3h̄�

(
N − 3

2
− ε

2

)
,

2

h̄2 〈φ0|I1|φ0〉 = 4

3h̄�

(
N − 3

2
+ ε

4
− 3

2
M	

)
,

2

h̄2 〈φ0|I2|φ0〉 = 4

3h̄�

(
N − 3

2
+ ε

4
+ 3

2
M	

)
. (13)

This yields the translationally invariant and body-fixed mo-
ments of inertia for each basis state (3), which can be
expressed in terms of N , λ, and μ only. We note that I3

can be generalized beyond the valence shell to multishells, as
discussed in Appendix B.

We use Eq. (13) with our code convention (7) to calculate
the moment of inertia for each SU(3) basis state, and take
the probability-weighted sum to find the microscopic moment
of inertia of the entire wave function (C6). While SU(3)
basis states are regarded as rigid rotors, nonrigid degrees of
freedom such as spin-coupling or phase transitions manifest
themselves through the SU(3) mixing that results from the
nuclear interaction.

D. Mapping to shape parameters β and γ

The connection to an intrinsic state in the SU(3) scheme
establishes a mapping of the quantum numbers (λ μ) of
the SU(3) basis states (3) to the collective shape parame-
ters, namely, the deformation β and triaxiality γ [44,49].
In general, the β and γ parameters are defined through the
intrinsic quadrupole moments q̄0 and q̄2, k0β cos γ = q̄0, and

1√
2
k0β sin γ = q̄2 for a suitable normalization constant k0.

3As an illustrative example, one can show that for a K = 0 band
(κ ≈ 0) for a valence shell

(λ μ)κL′MQ20(λ μ)κLM

= CL′M
LM,20

〈(λμ)κL; (1 1)02‖(λμ)κL′〉
〈(λμ)ε	; (1 1)00‖(λ μ)ε	〉EW

q0(λ,μ)

≈ CL′M
LM,20C

L′0
L0,20

√
2L + 1

2L′ + 1
q0(λ,μ) (11)

(the approximation is about 5–20 % and verified with the SU(3)
package [47]; the largest approximations arise for λ and μ that are
small and comparable to L). This, for low spin and high J , yields the
rotor expression for the quadrupole moment.
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These can be calculated from the expectation values of two
scalars in the laboratory frame, 1

2 trQ2 = 1
12 〈Q · Q〉 = 1

12 k2
0β

2

and 1
3 trQ3 = − 1

108

√
7
2 〈[Q × Q]2 · Q〉 = 1

108 k3
0β

3 cos 3γ , with

k0 determined from the liquid drop model as k0/3b2 ≡ k =√
5/9πAr2

rms/b2 for a root-mean-square (rms) radius rrms =√
〈r2〉/A (cf. Ref. [43] for k and Ref. [50] for k0). As men-

tioned above, in the rotor limit (large λ and μ), the SU(3)
extremal-weight state becomes an eigenstate of Q, thereby q0

and q2 of Eq. (8) coincide with q̄0 and q̄2, respectively. Hence
(using k),

kβ cos γ = ε

3
, kβ sin γ = 1√

3
2M	, with tan γ =

√
12M	

ε
.

(14)

This relation maps each SU(3) basis state with (λ μ) to an
average ellipsoid with deformation β and triaxiality γ [43,51].
Equation (14) provides the exact relation for q0 for valence-
shell calculations with

k =
√

5

9π

〈 ∑
i

r2
i

b2

〉
=

√
5

9π

(
N − 3

2

)
(15)

(see, e.g., [52]). For the rotor-like choice of Eq. (7), this
implies that kβ cos γ and kβ sin γ are both positive for prolate
shapes and both negative for oblate shapes, whereas tan γ �
0. With β being the magnitude of deformation, this implies
that 0◦ � γ � 30◦ for λ � μ and 180◦ � γ < 210◦ for λ <

μ. However, a natural choice is β to adopt the sign of ε and
reflect the displacement along the three-axis from the non-
deformed spherical shape, implying 0◦ � γ � 30◦ with β >

0 (< 0) for prolate (oblate) shapes. Importantly, this naturally
links to mean-field frameworks, especially when triaxiality is
neglected (γ = 0◦ with k0β = q0).

Similarly, as derived in Ref. [53,54] for a valence shell
and L2 < 2C2, for each SU(3) basis state β and γ can be
determined through the SU(3) Casimir invariants of Eqs. (4)
and (5):

3

2
k2β2 = C2(λ,μ),

3

4
k3β3 cos 3γ = C3(λ,μ) ∼ (λ − μ) (16)

with k defined in Eq. (15). While the Casimir invari-
ants provide a unique solution for k2β2 and kβ cos 3γ , in
general, there are multiple solutions for β and γ : kβ =
±

√
2
3C2(λ,μ) and cos 3γ = ±

√
6C3(λ,μ)

C2(λ,μ)1/3 . Indeed, for oblate
shapes [C3(λ,μ) < 0], using β < 0 and 0◦ � γ < 30◦ cor-
responds to Eq. (14) and the associated rotor limit with the
three-axis and z axis aligned (cf. Ref. [48], Sec. 3.3). We note
that Eq. (16) maps a nuclear state to an average ellipsoid with
β and γ only when the state consists of a single SU(3) con-
figuration. In the case of mixing of SU(3) configurations, in
general, the state can no longer be viewed as a single ellipsoid
for which β and γ are determined through the 〈C2〉 and 〈C3〉
expectation values. The state is instead a liner superposition of
rigid ellipsoids, each of which has β and γ determined from
Eq. (16), or equivalently from Eq. (14), as discussed next.

For completeness, we mention other mappings (β, γ ) ↔
(λ,μ) available in the literature. For C2 � 2, which is practi-
cally the case for most SU(3) states, Ref. [54] uses Eq. (16)
to obtain kβ cos γ = (2λ + μ + 3)/3 and kβ sin γ = (μ +
1)/

√
3 for prolate shapes. Reference [48] provides a multi-

shell generalization based on the rotor expansion of SU(3) ⊂
Sp(3, R), namely, for prolate shapes in a K band: kβ cos γ =
(2λ + μ + 3)/3 and kβ sin γ = √

(μ − K )(μ + K + 2)/3,
and for oblate shapes: kβ cos γ = −(λ + 2μ + 3)/3 and
kβ sin γ = −√

(λ − K )(λ + K + 2)/3, valid for small L and
large λ or μ. Notably, these relations for β cos γ and β sin γ

(for low K) agree with each other and coincide with Eq. (14)
used in this paper at O(1/N ).

III. RESULTS

We explore the backbending phenomenon by calculating
moments of inertia for the yrast band of 20Ne and 48Cr, and
by examining the symmetry-adapted wave functions in terms
of their expansion in SU(3) basis states.

SA-SM calculations for 48Cr use the p f valence shell, a
closed 40Ca core, and the GXPF1 empirical interaction [55]
in SU(3) basis, along with an optimal h̄� = 10 MeV. SA-SM
calculations for 20Ne use the sd valence shell, a closed 16O
core, and the USDA empirical interaction [56] in SU(3) basis.
For 20Ne, we compare to the ab initio SA-NCSM calculations
in 11 HO shells (Nmax = 8) of Ref. [5] with the NNLOopt

chiral potential [57] for h̄� = 15 MeV (see Figs. 1 and 3 of
Ref. [5] for wave functions and energies, respectively). Using
these SA-NCSM calculations, we present the first investiga-
tion of backbending and moments of inertia for 20Ne within
an ab initio framework.

A. Moments of inertia: Microscopic vs. energy-spectrum
informed

We start with the traditional approach to calculating the
moment of inertia as a function of the nuclear rotational
frequency (h̄ω)2 by using the rotor-model Eq. (2) deduced
from excitation energies. Indeed, the SA-SM and SA-NCSM
calculations yield energies that reproduce the well-known
backbends of 48Cr and 20Ne (Fig. 1).

Likewise, according to Eq. (1), moments of inertia can be
extracted within a rotational band if the energy of its states
follow the rigid rotor J (J + 1) dependence, as shown in Fig. 2
(cf. Ref. [17] for 48Cr). In the SA framework, we organize
states into rotational bands according to the dominant SU(3)
basis states [18]. To guide the eye, a linear regression for each
of the rotational bands identified in Fig. 2 provides a slope
that is inversely proportional to the average moment of inertia.
In addition, we report the experimental energies of the yrast
band, which are in close agreement with the calculations.

Specifically, calculated excitation energies for 48Cr repli-
cate the well-known crossing of two rotational bands: the
lower band that starts at the ground state, and the upper
band that exhibits strong rigid rotor behavior with a shal-
lower slope, suggesting doubling of the moment of inertia
[Fig. 2(a)]. The upper band first appears as an excited state
at J = 8, and becomes the yrast band at J = 10. This crossing
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FIG. 2. Excitation energy EX vs angular momentum J [scaled by
J (J + 1) to illuminate rotational bands] for (a) 48Cr calculated with
the SA-SM with the GXPF1 interaction, and (b) 20Ne calculated with
the SA-NCSM with the NNLOopt chiral potential for h̄� = 15 MeV
in Nmax = 8. The yrast energies are compared to experiment. States
are organized in bands according to the dominant SU(3) basis states.
Linear regression (dotted line) for each band shows an effective rigid
rotor behavior; the linear regression for the lowest four states in 20Ne
is also shown (dashed line).

marks the backbend of 48Cr as seen in the dramatic shift in
moment of inertia [Fig. 1(a)]. Similarly for 20Ne [Fig. 2(b)],
the yrast band displays strong rigid rotor behavior from J = 0
to J = 6. We note that in Fig. 2(b), the linear regression of
the first four states only (dashed line) has a steeper slope than
the one up to J = 8 (dotted line). Hence, the energy of the
lowest 8+ state is lower compared to the rigid rotor prediction,
producing an apparent backbend.

Remarkably, microscopic calculations of the moment of
inertia show no anomalous increase for both nuclei (Fig. 3).
We calculate microscopic moments of inertia using Eqs. (6)
and (C6) by taking into account the position of each particle
and with a proper treatment of the center of mass. Micro-
scopic moments of inertia of the yrast band have a magnitude
similar to the ones deduced from the experimental energy
spectra near and below the backbend, but remain practically
unchanged after the backbend. This is also confirmed by the
ab initio wave functions in 20Ne (2Iz/h̄2 ≈ 3.6 MeV−1) that
do not predict large moment of inertia for 8+

1 in contrast
to the rotor-model results. We note that the SA-SM results
suggest an increase in 2Iz/h̄2, which however is only 4% for

the upper band compared to the lower band in 48Cr, and the
SA-NCSM calculates only 6% for J = 8 in 20Ne (see the inset
of Fig. 3). The outcome of Fig. 3 suggests that the microscopic
spatial distribution remains practically the same across the
states, while the use of the energy spectrum under the rotor-
model assumption is likely insufficient to describe moments
of inertia, especially since energies can be affected by many
other factors (e.g., level repulsion, mixing, spin degrees of
freedom, etc.). To explain these findings, we next examine the
intrinsic structure of the yrast states in 20Ne and 48Cr.

B. Intrinsic deformation and spin of nuclear states

The symmetry-adapted basis naturally provides decompo-
sition into (λ μ) configurations that inform about the intrinsic
deformation. From (λ μ) we can calculate C2 eigenvalues
Eq. (4) as well as C3 Eq. (5), along with the shape param-
eters, β and γ (14). For 48Cr, this expands the C2 analysis
of Ref. [17] and allows us to gain insight into the type of
deformation, namely, prolate, oblate or triaxial. Furthermore,
we discuss features important to understand the backbending
phenomenon by examining 20Ne ab initio wave functions.

1. Intrinsic structure of 48Cr

Based on the SU(3) content, we group states in 48Cr into
two rotational bands. Confirming the results of Ref. [17], the
ground state band appears as the yrast band of 48Cr from J =
0 to J = 8 and continues through J = 12 [Fig. 4(a)]. Here,
we show that the GXPF1 renders this band as strongly prolate
(see the filled red bars at large C2 values in Fig. 4a). We recall
that large C2 values correspond to large deformation

√
C2 ∼

β according to Eq. (4). At J � 10 near the “backbend”, we
find an increased mixing of oblate and triaxial deformations,
likely due to the crossing of the upper rotational band (upper
sub-band).

Although the upper sub-band still contains large deforma-
tions as seen in the C2 decomposition in Fig. 4, many of
these are oblate with C2 values equal to dominant prolate
deformations but with opposite C3 values (see Fig. 5 for the
difference between the lower and upper sub-bands at J = 8).
Without knowing C3, the upper band would have been as-
sociated with a still overall deformed shape, as suggested in
Ref. [17]. The C3 decomposition can explain this unexpected
result, namely, that the yrast band makes a rapid transition
at the “backbend” to a strong mixing of prolate and oblate
deformations, which on average appears near spherical, but
without intrinsic sphericity.

To quantify these results, we use that the intrinsic state
is a distribution of intrinsic quadrupole shapes [48], as dis-
cussed above, and for each shape, we calculate β according
to Eq. (14) and our convention Eq. (7), namely, with positive
β for prolate and triaxial (λ � μ), and negative β for oblate
deformation (λ < μ). An estimate for the overall deforma-
tion can be thus provided by an average βavg across all the
shapes given their probability amplitudes cJ

N (λμ). The lower
sub-band is found to have practically the same βavg for all its
states, namely, βavg ∼ 0.12 and a very large 〈C3〉 ∼ 550–690.
For each of these states, the largest deformation is β ∼ 0.2,
which is expected to double to β ∼ 0.4 in a complete model
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FIG. 3. Moment of inertia 2I/h̄2 vs angular momentum J for the yrast bands of (a) 48Cr and (b) 20Ne (Ix ∼ Iy for SA-SM and hence,
not shown). Microscopic moments of inertia use Eq. (13) and are calculated in the SA-(NC)SM framework using Eq. (C6) (“SA-SM” and
“SA-NCSM”), whereas the rotor-model moments of inertia use Eq. (2) and experimental energies. Insets: the same without the rotor-model
deduced values, showing the slight variations in moments of inertia.

space (see Refs. [48,58] and their discussion on the effect
of multishell coupling). Note that, e.g., for 0+

1 , the single
(16 4) configuration with the largest C2 is the most dom-
inant and its contribution is expected to increase in larger
model spaces, while the peak in Fig. 4(a) (see 0+

1 ) occurs
at comparatively smaller C2 and corresponds to 65 different
(14 2) configurations of various spin values. The dominant
configurations in the lower sub-band correspond to largely
prolate intrinsic deformation, as also observed in Fig. 5(b)
for 8+

1 . This prominent prolate structure is in a close agree-
ment with the results reported, e.g., in Refs. [59,60] for the
ground state, up to effective charges (and similarly for 20Ne
discussed below). Whereas for the upper sub-band, we find
relatively smaller values for βavg ∼ 0.07 and 〈C3〉 ∼ 100–170
(see Fig. 5(b) for 8+

4 that reveals almost equal contributions
of prolate-like and oblate-like configurations). This suggests
that the upper sub-band possesses deformed intrinsic states of
prolate and oblate deformation, which on average appear near
spherical.

The SA basis also provides information about the intrinsic
spin. As shown in Ref. [17], the S = 2 contribution doubles af-
ter the “backbend”. Our findings show that the contribution of
the S = 2 prolate deformations practically remains the same
[Fig. 4(c)]. Notably, this increase in the S = 2 contribution
is a result of the new oblate/triaxial configurations. Overall,
there is an equal mixing of prolate and oblate deformations
across different S values in the upper sub-band.

2. Intrinsic structure of 20Ne

As discussed above, the ab initio SA-NCSM results for
20Ne showed no increase in moment of inertia from J = 0 to
the “backbend” at J = 8 [Fig. 3(b)], which is also supported
by the (λ μ) and spin decomposition as shown in Fig. 6(a).
Indeed, the lowest five states belong to a single rotational
band and are all prolate. The dominant deformation for this

rotational band is (8 0) S = 0, accounting for 50% to 60% of
the wave function, as has been found in previous studies (e.g.,
see [18,61,62]).

Without a change in nuclear structure and microscopic
moment of inertia, what produces the apparent anomaly in en-
ergies seen in Fig. 1 for 20Ne? Previous studies of Ne isotopes
have pointed to rotational alignment as the particles in the sd
shell align their angular momenta along the rotational axis at
the backbend, resulting in an oblate nucleus rotating around its
symmetry axis [4,63,64]. This mechanism is identical to that
commonly used to explain backbending in heavy nuclei [1].
However, this conflicts with the ab initio 20Ne wave functions
that reveal highly prolate deformation across J = 0–8. With
no change in intrinsic structure or angular momentum, the
cause of the energy shift at the “backbend” in 20Ne cannot
be found looking at the yrast band in isolation as in 48Cr.

Here, the SA-SM results provide a hint [Fig. 6(b)]. Differ-
ent from the ab initio SA-NCSM, the effective SA-SM does
not show a constant (8 0) deformation, but instead displays
this deformation diminishing toward the “backbend”, while
the (6 1) S = 1 and (4 2) S = 2 configurations increasingly
mix. Indeed, the smaller fraction of (8 0) for the 8+

1 state in
20Ne is in line with being dominated by (d5/2)4 in the valence-
shell model [65], and therefore not very surprising. Further, at
J = 8 the (6 1) S = 1 deformation slightly dominates over
the (8 0) S = 0. It is interesting to point out that in the SA-
SM, there are only three unique intrinsic deformations in the
valence shell for 8+

1 , whereas in the SA-NCSM for 11 shells,
there are 116 unique intrinsic deformations. Mixing very sim-
ilar to the one found with the SA-SM is observed in the
no-core shell-model results of Ref. [62] with a different chiral
potential, larger h̄� and smaller model spaces compared to
the results presented in Fig. 6(a). We note that our SA-NCSM
model space includes all the configurations used in Ref. [62]
for 20Ne; in addition, we include many other deformations in
higher shells without restricting to the (8 0), (6 1), and (4 2)
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FIG. 4. Decomposition of states in 48Cr with GXPF1 across
deformation β (x axis), or equivalently C2 = 3

2C2 (with the most
deformed configurations having the largest C2) and triaxiality γ

(stacked bars: filled red for prolate, unfilled for oblate, and diagonally
striped for triaxial deformation). (a) Lower sub-band. (b) Upper
sub-band starting at J = 8. (c) Spin decomposition of the yrast states
(circles for spin zero, squares for spin one, and triangles for spin two)
for prolate (solid) and oblate/triaxial (dashed) deformations.

shapes. Indeed, we find that large model spaces are necessary
to develop large deformation (equilibrium shapes and their
vibrations), such as the highly prolate (8 0) deformation in
20Ne, and to reduce mixing [18]. This is further confirmed by
the SA-NCSM results in Fig. 6(a).

The SA-SM large mixing is reminiscent of the lower
rotational band of 48Cr which increasingly mixes with the
dominant shapes of the upper rotational band around the

FIG. 5. Comparison of the lower and upper sub-bands of 48Cr
at J = 8. Wave function decomposition across (a) SU(3) C3 (with
C3 > 0 for prolate, C3 = 0 for triaxial, and C3 < 0 for oblate de-
formation), and (b) across β and γ , using the domain of β � 0
(no effective charges are used). In (b), the area of each circle is
proportional to probability and the origin corresponds to the spherical
(λ μ) = (0 0).

FIG. 6. SU(3) C2 eigenvalue (C2 = 3
2C2) and spin decomposition

for the yrast band states of 20Ne. (Left) SA-NCSM with the NNLOopt

chiral potential, Nmax = 8, and h̄� = 15 MeV. (Right) SA-SM with
the USDA effective interaction.
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FIG. 7. SU(3) C2 eigenvalue (C2 = 3
2C2) and spin decomposition

of the upper rotational band states of 20Ne calculated in the SA-
NCSM with the NNLOopt chiral potential, Nmax = 8, and h̄� = 15
MeV. Insets: Spatial distribution of particles within the dominant
SU(3) configurations (excluding mirror p ↔ n configurations). Each
level corresponds to specific single-particle excitations in the sd shell
and can have maximum of four particles [two protons (red) and two
neutrons (blue), with spin up (↑) and down (↓)]. For comparison, the
most dominant (8 0) of the yrast band is also shown.

“backbend”. With this resemblance, we can expect another
distinct rotational band lying above the yrast band of 20Ne.

Indeed, in the SA-NCSM framework, we find that
the the second excited state of J = 8 (8+

2 ) is dominated
by the two deformations (4 2) S = 2 and (6 1) S = 1 (Fig. 7),
the same deformations we see increasingly mixing in the SA-
SM results of Fig. 6. We identify this 8+

2 state as belonging to
a rotational band that extends to J = 0 as shown in Fig. 2(b).

From this upper sub-band, we make two primary obser-
vations. First, the excited states of this band are either the
third or fourth excited state at each value of J . That is, until
the “backbend” at J = 8, where the 8+

2 lies directly above
the yrast band. Second, approaching the “backbend”, we find
that (6 1) S = 1 and (4 2) S = 2 configurations increasingly
dominate. (6 1) S = 1 is also the most dominant S = 1 con-
figuration in the lower sub-band [Fig. 6(a)]. For the dominant
intrinsic deformation (4 2), the S = 2 configuration starts to
dominate over the S = 0 configuration at J = 6.

These two dominant deformations are the lowest spatial
excitations, with (4 2) S = 2 representing a proton-proton
and neutron-neutron spin-alignment in the sd shell, and with
(6 1) S = 1 representing a proton-proton (or neutron-neutron)
spin-alignment (Fig. 7, insets4). In other words, we find
spin-alignment in the upper rotational band just as it be-
gins to interfere with the yrast band. We also note that (4 2)

4The single-particle HO basis can be specified by |nznxny〉, the
HO quanta in the three Cartesian directions, z, x, and y, with nx +
ny + nz = n (n = 0, 1, 2, . . . for s, p, sd ,...shells). For a given HO
major shell, the complete shell-model space is then specified by all
distinguishable distributions of nz, nx , and ny (see, e.g., [18]). For
example, for n = 2, there are six different distributions, (nz, nx, ny ) =
(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), and (0,0,2) (the first
two configurations are depicted as levels in the insets of Fig. 7).

remains the most dominant configuration throughout the up-
per sub-band, thereby yielding practically unchanged moment
of inertia (spatial degrees of freedom), but its spin structure
changes from S = 0 at low J to S = 2 for high J .

The outcome of this study suggests that for 20Ne, as well
as for the heavier 48Cr, spin-aligned configurations at high
J interfere with more deformed S = 0 configurations. This
affects the energy of the states, but with only very little effect
on the total moment of inertia and nuclear spatial distribu-
tion, in contrast to what the energy spectra in Fig. 2 suggest.
This further corroborates the outcome of Ref. [66], where
the details of a potential in addition to the rotational energy
of a rigid rotor have been found important to reproduce the
experimental energies of the 166Er ground state rotational
band.

IV. CONCLUSIONS

While energy spectra from both the SA-SM and SA-NCSM
replicate the backbending from experimental energies under
the rigid-rotor assumption, our microscopic calculations of
moment of inertia do not predict a dramatic change in moment
of inertia along the yrast bands of 20Ne and 48Cr. Instead,
these results suggest that band crossing and spin alignment
may significantly affect the energies but only marginally affect
intrinsic deformation along the yrast band.

For 48Cr with the GXPF1 effective interaction, we recon-
cile contradicting predictions of the intrinsic structure after
the “backbend”. Namely, an almost equal mixing of prolate
and oblate intrinsic deformations leads to a nucleus appearing
near spherical on average. However, the overall change in
deformation from a strongly prolate low-J structure to this
mixture of deformed states leads to only a 4% increase in the
microscopic moment of inertia.

In 20Ne, the traditional rigid rotor “backbend” is repro-
duced based on energy levels, however, without any change
in intrinsic structure along the yrast band and in the micro-
scopic moment of inertia. We instead find evidence that a
spin-aligned upper rotational band mixing with the ground
state band leads to a divergence from rigid rotor behavior
and has an effect on the excitation energy not on the spatial
distribution.

These outcomes do not support rigid shape change as a sole
mechanism for the “backbend” of 48Cr as in [8,9,63], while
emphasizing the role of band crossing and spin alignment.

Our comparison of the SA-SM and SA-NCSM results in
20Ne points to the need to further explore 48Cr in larger model
spaces that are computationally intensive. Primarily, they sug-
gest that the large mixing of deformed states we see in 48Cr
with GXPF1 may decrease if the condition of the valence shell
is relaxed and excitations to higher shells are included, such
as in the SA-NCSM. This is clearly seen in the 8+ yrast state
in 20Ne, where the valence-shell calculations result in a strong
mixing in deformation and spin. In contrast, the larger model
space in the SA-NCSM allows for the most deformed shape
to develop and become dominant. Since ab initio SA-NCSM
calculations are feasible in the region of 48Cr, future work to
study 48Cr from first principles will provide further insight.
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APPENDIX A: TRANSFORMATION TO SU(3)

For completeness, we present the interaction matrix ele-
ments used in the SA-SM. In order to introduce a core in
the SA-NCSM, we transform the single-particle energies to
the SU(3) basis. After expanding the elements in terms of
Clebsch-Gordan coefficients, we reduce them to a sum over
the orbital and total angular momentum quantum numbers,
� and j. For example, one-body SU(3) matrix elements are
calculated as

εn(λμ)κ (LS)J=0M=0 = (−1)L
√

2L + 1
∑
� j

(−1)1/2+ jεn� j

× (2 j + 1)C(λμ)κL
(n0)�,(0n)�,

×
{

1/2 � j
� 1/2 L

}
, (A1)

where εnl j are single-particle energies and C(λμ)κL
(n0)�,(0n)� are

SU(3) reduced Clebsch-Gordan coefficients (with outer mul-
tiplicity ρ = 1). A similar transformation yields the two-body
matrix elements [42].

APPENDIX B: MICROSCOPIC MOMENTS OF INERTIA

For λ � μ, the translationally invariant z component of the
moment of inertia Iz is calculated for a given nuclear state
|Jπ 〉 as

Iz = m

〈
J|

A∑
i=1

(
x2

i + y2
i

)|J
〉

= m

〈
A∑

i=1

(
r2

i − z2
i

)〉
, (B1)

where ri is the coordinate of the ith particle relative to the
center of mass (for simplicity of notations, we will omit the
state parity π and use expectation values 〈...〉).

The SA-SM and SA-NCSM use laboratory-frame co-
ordinates, and we will first derive IL

z for the laboratory

frame (L). We will show the steps to remove the center-of-
mass contribution in the next section.

In terms of the symplectic Sp(3, R) generators [18] and the

oscillator length b =
√

h̄
m�

, the operators needed to calculate

IL
z are given as

1

b2

A∑
i=1

(
r L

i

)2 =
√

3

2

(
A(20)

0 + B(02)
0

) + H (00)

=
∑

α=x,y,z

(Aαα + Bαα + Cαα ), (B2a)

where r L
i is the coordinate of the ith particle in the laboratory

frame. The operators A raise a particle two shells up, B are
the conjugate lowering operators, and C are the generators of
U(3), including the scalar H (00) that counts the total number
of HO quanta. In the zth direction, we have

1

b2

∑
i

(
z L

i

)2 = Azz + Bzz + Czz. (B3)

Therefore,

IL
z = m

〈 ∑
i

[(
r L

i

)2 − (
z L

i

)2]〉

= mb2〈Axx + Bxx + Cxx + Ayy + Byy + Cyy〉.

Using Czz = N̂z and
∑

α Cαα = N̂ , where N̂ (N̂z) is the
operator of the total number of HO quanta (in the z direction),
we get

IL
z = mb2〈Axx + Ayy + Bxx + Byy〉 + mb2〈N̂ − N̂z〉

= mb2〈N̂ − N̂z〉, (B5)

in the laboratory frame. In the last step we use 〈Axx〉 =
〈Ayy〉 = 〈Bxx〉 = 〈Byy〉 = 0 for valence-shell calculations and
〈Axx〉 � 0, 〈Ayy〉 � 0, 〈Bxx〉 � 0, 〈Byy〉 � 0 for multishell
calculations. These approximations follow from empirical ob-
servations; namely, ab initio calculations show that excitations
are favored first in the z direction, and then in the x direction,
making zz and zx the dominant excitations (e.g., see [18]). Al-
most no excitations occur in the xx or yy directions, allowing
us to drop these terms.

APPENDIX C: REMOVAL OF THE CENTER-OF-MASS
CONTRIBUTION FOR Iz

Because we use laboratory coordinates in our calculations,
we must remove the spurious center-of-mass contribution for
Iz. That is, we need to calculate observables using intrinsic
coordinates, ri = r L

i − R, where R = 1
A

∑
i r L

i is the center-
of-mass coordinate. Therefore, for the z component of the
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moment of inertia of Eq. (B1), for λ � μ, we calculate

〈 ∑
i

r 2
i −

∑
i

z 2
i

〉

=
〈 ∑

i

(
r L

i − R
)2 −

∑
i

(
z L

i − Rz
)2

〉

=
〈 ∑

i

(
r L

i

)2 − AR2 −
∑

i

(
z L

i

)2 + AR2
z

〉

=
〈 ∑

i

[(
r L

i

)2 − (
z L

i

)2]〉 − A
〈
R2 − R2

z

〉
. (C1)

The first term is given by Eq. (B5). We now turn to calculating
the second term related to the center-of-mass (c.m.).

In the SA-NCSM eigenfunctions, the c.m. is ex-
actly separated from intrinsic degrees of freedom: |ψ〉 =
|φCM

N=0,L=0,M=0〉 |ψint 〉 , where

φc.m.
000 (R) = 〈

R
∣∣φc.m.

000

〉 = e−R2/2b2
c.m.

π1/4b3/2
c.m.

Y00(R̂) (C2)

is the lowest HO center-of-mass wave function, and bc.m. =
b/

√
A. The c.m. operators in the second term of Eq. (C1)

only act on this c.m. wave function, so it suffices to calcu-
late

∫ |φc.m.
000 (R)|2R4dR and

∫ |φc.m.
000 (R)|2R2

z R2dR, which yield

3b2/2A and b2/2A, respectively. Then,〈 ∑
i

(
r 2

i − z 2
i

)〉 = b2〈N̂ − N̂z〉 − 3b2

2
+ b2

2

= b2〈N̂ − N̂z − 1〉, (C3)

and Iz is corrected by only a constant

Iz = mb2〈N̂ − N̂z − 1〉. (C4)

Remarkably, Iz is diagonal in the SU(3) basis with
N̂ |N (λ μ)〉 = N |N (λ μ)〉 and N̂z |N (λ μ)〉 = Nz |N (λ μ)〉
with Nz = 1

3 (2λ + μ + N ). Hence, the translationally
invariant Iz can be straightforwardly calculated for nuclear
wave functions |Jπ 〉 in the SU(3) basis (3) with probability
amplitudes (cJ

N (λμ) )
2,

Iz = mb2
∑

N (λμ)

(
cJ

N (λ μ)

)2
(N − Nz − 1), (C5)

and in general, for the λ � μ and λ < μ cases

2I3

h̄2 = 4

3h̄�

∑
N (λμ)

(
cJ

N (λ μ)

)2
(

N − 3

2
− ε

2

)
,

2I1

h̄2 = 4

3h̄�

∑
N (λμ)

(
cJ

N (λ μ)

)2
(

N − 3

2
+ ε

4
− 3

2
M	

)
,

2I2

h̄2 = 4

3h̄�

∑
N (λμ)

(
cJ

N (λ μ)

)2
(

N − 3

2
+ ε

4
+ 3

2
M	

)
, (C6)

where ε and M	 are defined through λ and μ in Eq. (7).
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