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Origin of octupole deformation softness in atomic nuclei
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Recent high-energy heavy-ion collision experiments have revealed that some atomic nuclei exhibit unusual
softness and significant shape fluctuations. In this work, we use the fully self-consistent mean-field theory to
identify all even-even nuclei that are unstable or soft against octupole deformation. All exceptional cases of
enhanced octupole transition strengths in stable even-even nuclei throughout the nuclide chart are resolved and
the origin is found in basic shell structure. The presence of atomic nuclei exhibiting significant softness to
quadrupole-octupole deformation is suggested. These results represent a significant advance in our understanding
of the underlying mechanisms of nuclear octupole deformation and have implications for further experimental
and theoretical studies.
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I. INTRODUCTION

The impact of nuclear deformation on the elliptic and
triangular flow measured in relativistic heavy-ion collisions
was emphasized and formalized in Refs. [1,2]. Subsequently,
the analyses published in Refs. [3,4] of the STAR Collabo-
ration data [5] provided direct evidence of strong octupole
correlation in 96Zr in heavy-ion collisions at very high
energy. Whether the deformation values reported in low-
energy literature are consistent with these new data at high
energy.

The existence of low-lying octupole (3−) vibrations in
atomic nuclei, at excitation energies of only a few MeV, was
recognized early in Ref. [6]. They are now among the best-
established collective states in nuclear physics and have been
observed in almost all even-even stable nuclei throughout the
nuclide chart. A review of octupole collectivity can be found
in Ref. [7], while Ref. [8] offers a review of nuclear reflection
asymmetry in general. Experimental information on the first
3− states of even-even nuclides is compiled in Refs. [9,10].
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Maximal strength values for the transition from the ground
state to the first 3− state were observed at neutron numbers
N = 34, 56, 88, and 134 and proton numbers Z = 30, 40, 62,
and 88 in Ref. [11]. Additionally, the numbers 40, 64, 88, and
134 were proposed in Ref. [12]. The terms “octupole-driving
particle numbers” [13] and “octupole-magic numbers” [8]
have been used to refer to them.

As already indicated by the theoretical interpretation in
Ref. [6], low-lying 3− collectivity in atomic nuclei is driven
by the presence of pairs of single-particle states with op-
posite parity, whose momenta differ by 3, in the vicinity
of and on both sides of the Fermi energy. The presence of
such pairs with energy differences much lower than the char-
acteristic shell energy of 1h̄ω becomes possible thanks to
spin-orbit splitting. Enhanced collectivity at lower energies
can be expected when the energy difference between such
states becomes especially small as a result of the interplay of
the spin-orbit coupling strength and the other nuclear interac-
tion terms. Such is the case, for example, of the 2d5/2-1h11/2

neutron particle-hole pair in 96Zr. Octupole-magic numbers
can be explained in such a way.

Global theoretical analyses of these excitations in even-
even nuclei were given in Refs. [14–17]. It has been suggested
that in order to understand and make reliable predictions
about octupole states, one has to go beyond the mean-field
approach [15,18–22]. However, several questions remain open
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even then. Over time, the exceptional character of some oc-
tupole transitions has been revealed experimentally without
a satisfactory explanation. The nucleus 96Zr with N = 56 is
quite irregular and the various theoretical attempts to study
its octupole excitation are inconsistent with one another. As
recently discussed in Ref. [23], a variety of theoretical models
have been applied to this problem, leading to different results
and interpretations as to the origin of the observed transition
strength. Very recently, Ref. [24] reported the enhancement in
the light atomic nucleus 72Se.

The irregular behavior of the energy of the low-lying 3− in
96Zr was first found and discussed in Ref. [25]. Examining the
single-particle spectrum from a mean-field theory perspective,
one observed that the 2d5/2-neutron state is close to being fully
occupied, and close by lies the unoccupied opposite-parity
1h11/2 state. The excitation of each neutron from 2d5/2 to
1h11/2, therefore, may form the low-lying 3− state. In contrast,
96Ru has only 2 neutrons at the 2d5/2 state and therefore fewer
particle-hole states to form the low-lying 3− state, resulting
in less collectivity compared to 96Zr. The presence of this
particle-hole pair enhances collectivity and pushes the 3− state
to lower energy.

As a collective vibration, the octupole vibration can
be studied within the self-consistent mean-field approach,
specifically, the self-consistent random-phase approximation
(RPA), which is derived as the linearized limit of the time-
dependent Hartree-Fock (HF) method [26]. This was the
approach followed early in Ref. [27], where the importance
of self-consistency was emphasized. Self-consistent RPA is
a unique tool not only for accurately describing collective
vibrations and connecting their properties to an underlying
energy density functional or effective interaction but also for
diagnosing instabilities and broken symmetries: For example,
if the self-consistent RPA equations are solved by assum-
ing a spherical ground state, then the presence of imaginary
solutions in, e.g., the quadrupole or octupole channel will
indicate that the ground state is, in fact, predicted quadrupole
deformed (elongation or compression along the x, y, or z axis)
or octupole deformed (asymmetry along two of the axes),
respectively [28–30]. The spherical ground state is said to
“collapse” [25]. Similarly, softness towards shape fluctuations
can be expected when there are collective vibrations at very
low energy. General arguments with rigorous mathematical
treatment on the stability of RPA solutions were presented
in Ref. [31]. In addition, as discussed in Ref. [32], the sta-
bility of the RPA is equivalent to the stability condition in
the discussion of the Jahn-Teller effect which is an important
mechanism of spontaneous symmetry breaking in different
fields.

Despite the highly complex phenomena associated with
nuclear deformation, we are able to point out the origin of
octupole deformation softness in atomic nuclei. The self-
consistent mean-field (or RPA) framework is employed here
as a diagnostic method to indicate the instability or softness
of specific even-even nuclei against variations in the octupole
collective variable throughout the nuclide chart. Atomic nu-
clei which exhibit an extremely high degree of softness
to quadrupole and octupole deformation simultaneously are
revealed.

II. METHOD

The self-consistent mean-field theory is a powerful tool
for studying the properties of atomic nuclei, such as their
shapes, energies, and excitation spectra [26,33,34]. The the-
oretical foundation of the mean field is provided by the HF
theory using the Skyrme interaction, which is one of the most
commonly used types of effective interaction. RPA is used
within the framework of the self-consistent mean-field theory
to describe collective motion in atomic nuclei and especially
harmonic vibrations. Therefore, this framework is highly suit-
able for the study of the first 3− octupole state which is
low lying and strongly collective. Self-consistency is ensured
when the RPA particle-hole interaction is derived from the
same effective interaction used for obtaining the HF ground
state. Note that previous research on the 3− octupole state
using the Green’s function RPA framework [35] was presented
in Ref. [25], but without full self-consistency.

Computational codes exist for solving the HF and RPA
equations and they may include a pairing interaction for
describing open-shell nuclei. The publicly available compu-
tational code described in Ref. [36] allows both theorists and
experimentalists to perform computations on a wide range
of nuclear excitations using fully self-consistent Skyrme HF-
RPA, assuming spherical symmetry. All relevant terms of
the residual particle-hole interaction are incorporated into the
calculation, including the Coulomb and spin-orbit terms, the
latter being especially relevant for the octupole vibration, as
already discussed. With pairing correlation included, HF is
extended to HF-Bardeen-Cooper-Schrieffer (BCS) and RPA
to Quasiparticle RPA (QRPA) accordingly [37] with the self-
consistency maintained. We use the above approaches in the
present study, i.e., self-consistent RPA and QRPA. The se-
lected Skyrme forces in the present work are SkM* [38],
SLy4, SLy5 [39], and, for comparison, the SIII [40], which
was one of the first Skyrme parametrizations.

The reduced transition strength from the correlated RPA
ground state |0̃〉 to the first excited state Jπ

1 with the total
momentum J and the natural parity π is

B(Eλ) = ∣∣〈Jπ
1

∣∣|F̂λ||0̃〉∣∣2
, (1)

where λ is the multipolarity of the transition, which is 2 or
3 for the quadrupole or octupole transition, respectively. For
even-even nuclei in the study, |0̃〉 is 0+, and therefore J = λ.
The electric isoscalar octupole operator is

F̂λM (r) = e
A∑

i

rλ
i YλM (r̂i)

1

2
[1 − τz(i)], (2)

where e is the electron charge and τz(i) = −1, 1 for proton
and neutron, respectively. All the transition strengths are pre-
sented in Weisskopf units (W.u.).

The degree of stability or softness of the atomic nucleus
against density fluctuations, including deformations, is ex-
pressed via the polarizability αλ, which is obtained from the
inverse energy-weighted sum rule of the response function
[25,34]. In the RPA, it is calculated from the m−1(λ) moment

αλ = 2m−1(λ)/A, (3)
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FIG. 1. E (3−
1 ) and E (2+

1 ) obtained from the SLy5 HFBCS-
QRPA as a function of proton number and neutron number.

with

m−1(λ) =
∑

n

∣∣〈Jπ
n

∣∣|F̂λ||0̃〉∣∣2
E

(
Jπ

n

)−1
. (4)

The larger αλ (W.u./MeV) is, the less stable the system is
against deformations. For example, α3 is around 1 W.u./MeV
in the case of 208Pb, which is stiff to octupole deformation.

The experimental values are taken from the NuDat
database [41] for the energies and from Table VII of Ref. [10]
for B(E3). A higher value of the strength in W.u. indicates
a greater degree of collectivity in the state. In the case of
octupole transition strength, 1 W.u. = 0.0594 A2 e2 fm6.

Note that the method can be applied for the diagnos-
tic of quadrupole, octupole, and hexadecapole deformation.
Here we focus on diagnosing the octupole softness in atomic
nuclei. Quadrupole and triaxial deformation are already
known to develop in many mid-shell regions of the nuclide
chart [42,43]. The systematics of the first 2+ excitation in
spherical nuclei with the Skyrme QRPA was discussed in
Ref. [44]. We will discuss the quadrupole state in the con-
text of quadrupole-octupole softness which is also a type of
reflection-asymmetric softness.

III. RESULT AND DISCUSSION

We have performed calculations for all stable even-even
atomic nuclei with experimental data available and we show
our results in Figs. 1 and 2. A general observation is that
there are several regions of quadrupole collapse which is
in line with the presence of deformed nuclei in those re-
gions [43,45]. Octupole collapse is rarely mentioned in the
past. For some atomic nuclei, both quadrupole and octupole
cases lead to collapse. These nuclei would be candidates for
quadrupole-octupole softness. We stress that this work is not
about reproducing as well as possible the experimental data
for the entire nuclear chart. Instead, we point out the mecha-
nism for octupole deformation softness in atomic nuclei.

FIG. 2. The “collapses” in the lanthanides and actinides regions
based on our diagnostic results using SLy5 QRPA calculation. Cyan:
quadrupole collapse; blue: quadrupole and octupole collapse.

First, we discuss the difference between 96Zr and 96Ru with
respect to the octupole excitation. The recent STAR measure-
ment [5] showed a significant difference between 96Zr + 96Zr
and 96Ru + 96Ru collisions that were explained using a trans-
port simulation as large octupole deformation of 96Zr and
large quadrupole deformation of 96Ru [3]. Our results for
96Zr and 96Ru with different Skyrme forces are presented in
Table I. We show that a small variation in neutron number can
lead to a significant disparity in octupole deformation.

The results of 96Ru with different Skyrme forces are not
dramatically different from the experimental result and from
each other and can be considered well understood. The 96Ru
nucleus has a small octupole polarizability, α3 ≈ 1 W.u./MeV
as we find, making it hard to become octupole deformed in,
for example, isobaric heavy-ion collisions. However, note that
the result of quadrupole diagnostic for 96Ru shows the “col-
lapse” to the quadrupole operator, which means 96Ru is either
quadrupole-deformed or soft to quadrupole deformation as is
indeed revealed in the relativistic heavy-ion collisions [3]. In
reality, the experimental data of 96Ru show that the B(E2)
is small and the ratio R4/2 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 →
0+

1 ) is close to 2 rather than 3.3 which implies 96Ru is not
quadrupole-deformed nuclei in the ground state. The analysis
of relativistic heavy-ion collision data in Ref. [3] and our
calculation, therefore, suggest that 96Ru is soft to quadrupole
deformation.

TABLE I. The HFBCS-QRPA results for 96Zr are irregular in
contrast to the results of 96Ru. The values of E (3−

1 ), B(E3), and α3

are in MeV, W.u., and W.u./MeV, respectively.

96Zr 96Ru

Force E (3−
1 ) B(E3) α3 E (3−

1 ) B(E3) α3

SIII Collapse 2.198 26.0 1.5
SkM* Collapse 3.015 20.7 1.0
SLy4 0.758 123.7 20.3 3.820 24.1 0.8
SLy5 1.592 56.1 4.5 3.685 23.3 0.9
Exp. 1.897 53 ± 6 2.650 –
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In contrast, the results in Table I of 96Zr are irregu-
lar. In Ref. [25], the energy of the 3−

1 state of 96Zr was
found to depend very strongly on the single-particle spec-
trum obtained self-consistently in the framework. When the
gap between occupied and unoccupied single-particle ener-
gies of opposite parity is abnormally small, the excitation
energy of the 3−

1 state gets dramatically low. For example,
the gap between 2d5/2 state and 1h11/2 state given by the
calculation with SIII force is so small that the first 3− state
“collapses.” The (Q)RPA calculation is extremely sensitive to
this gap. Other earlier (and not self-consistent) (Q)RPA cal-
culations for 96Zr in Refs. [46–49] with different 2d5/2-1h11/2

gaps, therefore, gave results that are inconsistent with each
other.

When the energy of the 3−
1 is imaginary in the calculation,

we indicate in Table I that there is “collapse.” As we assumed
a spherically symmetric ground state, the interpretation is that
the respective effective interactions predict that the ground
state is octupole deformed. In reality, 96Zr has the 3−

1 state at
1.9 MeV but our results with the different Skyrme interactions
suggest that this nucleus is soft against octupole deformation
and a small change in the calculation input can even lead to
octupole instability. The SLy5 QRPA calculation reproduces
both the excitation energy and transition strength correctly.
The octupole collectivity of 96Zr is 53 W.u., and the octupole
polarizability α3 is 4.5 W.u./MeV. The large enhancement of
octupole collectivity of 96Zr observed in reactions is under-
stood and reproduced by our calculation within the QRPA
framework. Note that in Ref. [23], the reevaluated value of
B(E3) for 96Zr based on consistent results from six indepen-
dent measurements is 42 ± 3 W.u. and the Monte Carlo shell
model calculation gave the value of 46.6 W.u.. There it was
emphasized that the proton contribution is not negligible. We
should clarify that, although the instability is driven by the
neutron shell structure, both protons and neutrons participate
in a collective excitation such as the 3−

1 state. Note that QRPA
would give us no B(E3) if only neutrons were contributing.

In addition, our results for 96Mo, which is the isobar nu-
cleus in between 96Zr and 96Ru, are E (3−

1 ) = 2.63 MeV and
B(E3) = 34.8 W.u. with the SLy5 force. The experimental
values from Ref. [10] are E (3−

1 ) = 2.23 MeV and B(E3) =
24(3) W.u.. Another QRPA calculation with the finite rank
separable approximation in Ref. [50] predicted that E (3−

1 ) =
2.95 MeV and B(E3) = 34 W.u..

The octupole deformation softness is not unique to 96Zr as
there are other nuclei with similar characteristics. In the case
of 96Zr, the pair with strong octupole coupling is 2d5/2-1h11/2.
The single-particle spectrum, other single-particle pairs that
could drive octupole softness are 2p3/2-1g9/2, 2 f7/2-1i13/2, and
2g9/2-1 j15/2. They correspond to the octupole-magic nuclei
which are around 34, 56, 88, and 134 (for the neutron). In ad-
dition, other pairs such as 2s1/2-1 f7/2 are also valid. Therefore,
we suggest that the smallest octupole-magic number is actu-
ally 16. Table II shows the results for selected nuclei with the
number of neutrons or/and protons around octupole-magic
numbers. Results without pairing (RPA) are also displayed
in order to demonstrate that pairing keeps the nucleus less
deformed and is essential to reproduce experimental data.

TABLE II. The results for selected nuclei with the number of
neutrons or protons are around 16, 34, 56, 88, and 134 (neutron
only). Enhanced octupole transitions are found from light to heavy
octupole-magic nuclei, while “collapse” may be obtained. The val-
ues of E (3−

1 ), B(E3), and α3 are in MeV, W.u., and W.u./MeV,
respectively.

RPA QRPA

Nuclei Force E (3−
1 ) B(E3) α3 E (3−

1 ) B(E3) α3

32
16S16 SkM* 5.515 16.5 1.0 5.492 16.6 1.0

SLy4 6.095 19.4 1.0 6.077 19.5 1.1
SLy5 6.216 19.9 1.0 6.197 20.1 1.1
Exp. 5.006 30 ± 5

64
30Zn34 SkM* 1.959 5.8 1.4 3.315 18.5 1.4

SLy4 3.381 13.3 1.2 4.243 24.7 1.2
SLy5 3.431 13.6 1.2 4.265 24.8 1.2
Exp. 2.999 20 ± 3

72
34Se38 SkM* 0.974 61.7 7.9 0.958 91.5 11.9

SLy4 2.001 47.0 3.1 2.305 52.3 3.0
SLy5 1.862 46.6 3.4 2.312 50.0 2.9
Exp. 2.406 32 ± 11

98
40Zr58 SkM* Collapse Collapse

SLy4 Collapse Collapse
SLy5 Collapse 1.199 74.1 8.1
Exp. 1.806 –

146
56Ba90 SkM* Collapse Collapse

SLy4 Collapse 1.604 42.8 3.2
SLy5 Collapse 1.444 48.7 3.8
Exp. 0.821 48+21

−29
152
62Sm90 SkM* Collapse Collapse

SLy4 Collapse Collapse
SLy5 Collapse Collapse
Exp. 1.041 14.2

226
88Ra138 SkM* Collapse Collapse

SLy4 Collapse 0.966 74.7 5.4
SLy5 Collapse 1.162 61.4 3.7
Exp. 0.322 54 ± 3

240
94Pu146 SkM* Collapse Collapse

SLy4 Collapse Collapse
SLy5 Collapse Collapse
Exp. 0.649 17.1

However, the presence of pairing does not alter the basic
physics we discuss.

Tables I and II show that the results for octupole-magic
nuclei are extremely sensitive to the choice of Skyrme force.
While SLy4 and SLy5 functionals give very similar results
in many nuclear structure studies, they are distinguished in
the case of octupole deformation softness. The difference
between them is in the terms which depend on the spin-orbit
densities [39]. The spin-orbit interaction plays a key point
in the single-particle spectrum which, as we saw, largely
determines the octupole-magic numbers. A small change in
the spin-orbit component makes a significant change in the
calculated 3−

1 octupole state.
The result of the calculation with the SLy5 is interpreted

as follows. First, experimental low-lying octupole states in
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atomic nuclei without strong octupole correlation are reason-
ably reproduced by the spherical QRPA framework, but for
soft-octupole deformed nuclei like 96,98Zr, different Skyrme
forces yield varying results. The high sensitivity to the input
and the occasional collapse means that the spherical QRPA
calculations can diagnose nuclei soft to octupole deformation.
Second, the assumption of a spherical shape remains reason-
able for 96,98Zr. Using SLy5 force, one can construct a stable
ground state and reproduce experimental data well. However,
when considering atomic nuclei that display extreme softness
to octupole deformation, the spherical QRPA calculation ex-
hibits a “collapse,” as observed in cases like 152Sm and 240Pu
(Table II). These are candidates for nuclei with the octupole
shape in the intrinsic frame. Ubiquitous quadrupole-deformed
nuclei throughout the nuclide chart complicate the situation
as discussed in Refs. [51–53]. Nevertheless, the spherical
QRPA calculation can still diagnose nuclei soft to octupole
deformation. Atomic nuclei shown in Table II are discussed
in the following.

The nucleus 32S is a double-octupole magic nucleus (N =
Z = 16). The fully occupied 2s1/2 state is strongly coupled
with the unoccupied 1 f7/2 state. The value of E (3−

1 ) is not
imaginary for such light nuclei, but there is the enhancement
of octupole collectivity. The experimental value of B(E3) for
32S is 30 W.u. according to Ref. [10] making it the strongest
known B(E3)/A value. The most recent value is 16 ± 3 W.u.
in the evaluation of Ref. [54] (p. 2265). Our result is 20 W.u.
with the SLy5 force.

Reference [24] reported a recent experiment that showed
a notably higher octupole strength of approximately 32 W.u.
for 72Se. The origin of enhanced octupole strength is well
explained in our discussion. The positive-parity 1g9/2 state
comes close to the negative-parity 2p3/2 and 1 f5/2 states. It
triggers the enhancement of the octupole transition strengths
in atomic nuclei with the number of protons or neutrons equal
to 32–38. Note that many nuclei in this region are known to
be quadrupole deformed. While a spherical calculation can
reveal the enhancement of the octupole transition, it cannot
precisely reproduce experimental values for all nuclei in the
quadrupole-deformation region. Some reasonable results for
64Zn, 72Se, and 98Zr are shown in Table II. Note that in 84

34Se50,
the effect of octupole deformation softness is surpassed by the
stiffness of the closed-shell structure as N = 50 (see Fig. 1).

The results for 146Ba, 152Sm, 226Ra, and 240Pu are pre-
sented in Table II as examples for nuclei with both Z and N
being around octupole-magic numbers, Z ≈ 56 and N ≈ 88
or Z ≈ 88 and N ≈ 134 (double-octupole magicity). These
nuclei have been the subject of numerous studies [13,19,55–
63]. Our results in Fig. 2 provide an overall picture of these
regions.

The double-octupole magicity may lead to an octupole
shape in the intrinsic frame as has been suggested before in the

lanthanide (Z = 57–71) and actinide (Z = 89–103) region.
For example, Ref. [64] found 28 atomic nuclei that have
this property. We remark that in our calculations with the
SLy5 force, the “collapse” related to octupole deformation oc-
curs in the following even-even nuclei 152−156Sm, 152−160Gd,
156−170Dy, 162−170Er, and 166−172Yb in the lanthanides, and
234,238,240U, 236−244Pu, 246,248Cm, 248−252Cf, and 256Fm in the
actinides. The result indicates nuclei with strong octupole cor-
relation or extremely soft against the octupole deformation.
The strong octupole correlation in 240Pu and 238U were shown
in experiments in Refs. [65,66]. Note that the experimental
data suggest no static octupole deformation for the ground
states of these two nuclei.

Combined with our diagnostics for the first 2+
1 quadrupole

excitation (see Figs. 1 and 2), the simultaneous “collapse” for
quadrupole and octupole deformation is also found for 38 nu-
clei. In Fig. 2, they are shown as blue squares. These 38 nuclei
are, therefore, candidates for quadrupole-octupole-deformed
nuclei which can enhance some unusual phenomena, such as
observations of violation of fundamental symmetries (invari-
ance with respect to coordinate inversion and time reversal)
[67,68].

IV. CONCLUSION AND OUTLOOK

We have utilized a simple method based on the fully self-
consistent mean-field (RPA) framework to diagnose octupole
softness in atomic nuclei. We have highlighted the role of
spin-orbit splitting. Whether the evolution of shell structure
towards the boundary of nuclear stability (the drip line) results
in new octupole magic numbers and reflection asymmetry
in exotic nuclei. Experimental information on the strong oc-
tupole correlation in atomic nuclei could be used to constrain
the spin-orbit splitting, and in general, the energy density
functionals. A modern approach that considers the interaction
between quadrupole and octupole modes beyond RPA is nec-
essary for quantitative investigations into unusual phenomena,
such as violations of fundamental symmetries. Maintaining
self-consistency throughout the analysis is crucial.
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[46] H. Mach, S. Ćwiok, W. Nazarewicz, B. Fogelberg, M.
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