
PHYSICAL REVIEW C 108, 024301 (2023)

Beyond-mean-field description of octupolarity in dysprosium isotopes with the Gogny-D1M energy
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The emergence and stability of (static) octupole deformation effects in Dy isotopes from drip line to drip
line (72 � N � 142) are analyzed in this paper using mean-field and beyond-mean-field techniques often used
for this purpose. We find static octupole deformations at the Hartree-Fock-Bogoliubov (HFB) level with the
Gogny-D1M force for N ≈ 134 isotopes, while nuclei with N ≈ 88 exhibit reflection-symmetric ground states.
It is shown that, given the softness found in the mean-field and parity-projected potential energy surfaces along
the octupole direction, neither of these two levels of approximation is sufficient to extract conclusions about the
(permanent and/or vibrational) nature of octupole dynamic in Dy isotopes. From the analysis of the collective
wave functions as well as the excitation energies of the first negative-parity states and B(E3) strengths, obtained
within the framework of a two-dimensional symmetry-conserving generator coordinate method (2D-GCM), it
is concluded that the increased octupole collectivity in Dy isotopes with N ≈ 88 and N ≈ 134 is a vibrational-
like effect that is not directly related to permanent mean-field octupole deformation in the considered nuclei.
A pronounced suppression of the B(E1) strengths is predicted for isotopes with N ≈ 82 and N ≈ 126. The
comparison of results obtained with other parametrizations shows the robustness of the predicted trends with
respect to the underlying Gogny energy density functional.
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I. INTRODUCTION

The majority of the spherical and/or quadrupole-deformed
nuclear ground states are reflection symmetric. However, due
to the mean-field spontaneous symmetry breaking mechanism
[1] reflection-asymmetric ground states tend to be favored
energetically in certain regions of the nuclear chart [2]. Those
regions are usually associated with the neutron/proton num-
bers N/Z = 34, 56, 88, and 134 where the coupling between
intruder (N + 1, l + 3, j + 3) and normal-parity (N, l, j)
states is more effective in developing octupole deformed
ground states. Octupole-related features have been studied
around the already mentioned neutron/proton numbers; how-
ever, the search for new islands of reflection-asymmetric
shapes, all over the nuclear chart, still represents one of the
frontiers in nuclear structure physics nowadays. Within this
context, a better understanding of the permanent and/or vi-
brational nature of octupole dynamic in atomic nuclei still
represents a major challenge that cannot be resolved with
plain mean field calculations.

Octupolarity along the Dy isotopic chain has been the
subject of experimental studies. For example, bands associ-
ated with parity doublets have been studied in 157Dy using
the JUROGAM II array [3]. A rotational band, built on an
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octupole vibration, has been identified in 152Dy [4]. The E1
transitions between opposite parity bands have been studied in
154Dy [5]. Negative parity bands have also been investigated in
both 156Dy and 162Dy [6,7]. The experimental findings [3–7]
raise questions about the impact of octupole correlations in
the structural evolution along the Dy isotopic chain as well
as on the (permanent and/or vibrational) nature of octupole
deformation effects in those isotopes. Recently, relativistic
mean-field calculations have been carried out for Dy nuclei
[8]. On the basis of plain mean-field results, it has been
concluded that N ≈ 88 and N ≈ 134 Dy isotopes exhibit
permanent octupole deformation. The conclusion extends to
isotopes where the octupole minima found in the calcula-
tions are very shallow and the corresponding potential energy
surfaces exhibit a rather soft behavior along the octupole
direction. The conclusions of Ref. [8] are at variance with
previous macroscopic-microscopic (mac-mic) results [9] as
well as with the ones extracted from this microscopic study, in
which the relevance of beyond-mean-field octupole dynamics
in Dy isotopes is considered with the Gogny energy density
functional (EDF) [10], using the models already introduced
in Refs. [11–14] and used to describe octupole dynamics in
other regions of the nuclear chart. In particular, we address
in the present study the stability of (static) mean-field oc-
tupole deformation effects once beyond-mean-field symmetry
restoration and/or configuration mixing (dynamical) effects
are taken into account. To this end, calculations have been
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carried out along the Dy isotopic chain from proton to neutron
drip line (72 � N � 142).

A lot of effort has been devoted to better understand ba-
sic fingerprints of octupole correlations (see, for example,
Refs. [15–25] and references therein). Previous experiments
have found evidence for octupole deformed ground states in
144,146Ba [21,22] and 222,224Ra [24,25]. The measured low-
lying states in 224,226Rn suggest that those isotopes should be
characterized as octupole vibrations [26]. Furthermore, finger-
prints of octupole correlations have also been found in the case
of 228Ra and 228Th [24,27]. Here, one should keep in mind
that renewed interest in octupole correlations also comes from
the need to improve the description of fission paths in heavy
and superheavy nuclei. In particular octupole correlations are
well known to affect the outer sectors of the fission paths in
those nuclei (see, for example, Refs. [28–31] and references
therein). Octupole deformation is also one of the collective
coordinates at play in the case of cluster radioactivity [32].

A wide range of models have been employed to study
octupole dynamics. For example, octupole shapes have been
considered within the mac-mic framework [9,33–37] as well
as within the mapped interacting boson model (IBM) [38–45].
Octupole correlations have also been the subject of intense
microscopic scrutiny, both at the mean-field level and beyond,
using nonrelativistic and relativistic approximations [46–65].

In the case of the Gogny energy density functional (EDF)
[10], the models of Refs. [11–14] have already been em-
ployed to study the quadrupole-octupole coupling in regions
of the nuclear chart such as the Sm and Gd isotopes with
84 � N � 92 [11], actinide nuclei with neutron number
N ≈ 134 [12], Rn, Ra, and Th isotopes [13], as well as
neutron-rich actinides and superheavy nuclei [14]. First, the
quadrupole Q20 and octupole Q30 deformation parameters
have been considered simultaneously within the constrained
Hartree-Fock-Bogoliubov (HFB) framework [1] to build the
corresponding (Q20, Q30) mean-field potential energy sur-
faces (MFPESs). Second, the changes induced in the MFPESs
by the restoration of the reflection symmetry have been
considered by projecting the (Q20, Q30)-constrained intrinsic
HFB states onto a good parity. Third, the quadrupole-
octupole coupling has been taken into account using a
two-dimensional symmetry-conserving generator coordinate
method (2D-GCM) ansatz [11–14].

The key lesson extracted from the studies mentioned above
[11–14] is that, for the considered nuclei, 2D-GCM zero-point
quantum fluctuations are essential to obtain a systematic of
the B(E1) and B(E3) strengths as well as of the excitation
energies of the lowest negative-parity states that accounts rea-
sonably well for the available experimental data. Moreover, it
has also been shown that such 2D-GCM quantum fluctuations
can lead to an enhanced octupolarity as well as to a weaker
dependence of the correlation energies with neutron number.
In this respect, we also refer the reader to previous large scale
surveys, using the octupole degree of freedom as a single
generating coordinate [64,65].

The main aim of this paper is to address, the stability of
mean-field octupole deformation effects as well as the impact
of beyond-mean-field (dynamical) correlations in dripline-to-
dripline calculations for Dy isotopes. Our results reexamine

the conclusions of relativistic mean-field [8] studies around
both N = 88 and N = 134 pointing to permanent octupole
deformation effects in those regions. In order to disentangle
the role of static octupole deformation, we first obtained a
set of (Q20, Q30)-constrained Gogny-HFB wave functions for
the even-even isotopes 138–208Dy. The energies corresponding
to each of these mean-field states are then used to build the
MFPESs as functions of the quadrupole Q20 and octupole Q30

deformations. Note that the considered range of neutron num-
bers, i.e., 72 � N � 142, includes the octupole magic number
N = 88 and extends up to a very neutron-rich sector to also
include the octupole magic number N = 134. Therefore, the
Gogny-HFB calculations allow us to examine the emergence
and evolution of static ground state reflection-asymmetric
shapes along the Dy isotopic chain and, in particular, to
compare with mac-mic [9] and relativistic mean-field [8] pre-
dictions around both N = 88 and N = 134.

As will be shown later on in the paper, for the studied
isotopes, the MFPESs often are rather soft along the Q30

direction and/or the mean-field octupole correlation energies
ECORR,HFB [see Eq. (8)] are rather small. Moreover, in some
cases the MFPESs exhibit a transitional behavior along the
Q20 direction. Taking into account the experience obtained
in previous works [11–14] on the role of dynamical corre-
lations in such scenarios and the mean-field results already
mentioned, we then studied the impact of beyond-mean-field
zero-point quantum fluctuations in 138–208Dy. To this end,
we have resorted to both parity symmetry restoration and
symmetry-conserving 2D-GCM quadrupole-octupole config-
uration mixing [11–14].

The results discussed in this paper, at the three lev-
els of approximation employed, have been obtained with
the parametrization D1M [66] of the Gogny EDF. The
parametrization D1M has already been shown to provide a
reasonable description of octupole-related features in previous
studies [11–14]. However, in some instances, we will also
discuss results obtained with the parametrizations D1S [10]
and D1M∗ [67] in order to illustrate the robustness of the
predictions with respect to the underlying Gogny EDF.

The paper is organized as follows. The HFB and beyond-
mean-field approximations employed in this study are briefly
outlined in Secs. II A and II B. The results obtained with
the corresponding approach will be discussed in each sec-
tion. The HFB results will be discussed in Sec. II A, while
dynamical beyond-mean-field correlations are considered in
Sec. II B. In particular, parity symmetry restoration is con-
sidered in Sec. II B 1, while symmetry-conserving 2D-GCM
quadrupole-octupole configuration mixing is discussed in
Sec. II B 2. In this Sec. II B 2, the excitation energies of the
lowest negative-parity states as well as B(E1) and B(E3)
strengths obtained for 138–208Dy will be discussed and com-
pared with the available experimental data [68]. Furthermore,
we will also illustrate the robustness of the 2D-GCM pre-
dictions with respect to the underlying Gogny-EDF. Finally,
Sec. III is devoted to the concluding remarks.

II. RESULTS

In this work we study the emergence and stability of
octupole deformation effects in the isotopic chain 138–208Dy
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from a microscopic point of view using the density-dependent
Gogny-D1M EDF. To this end, the HFB approach [1], with
constrains on the axially symmetry quadrupole Q̂20 and oc-
tupole Q̂30 operators, is employed as a first step. On the
other hand dynamical beyond-mean-field correlations are con-
sidered via parity projection of the intrinsic HFB states
and/or symmetry-conserving 2D-GCM quadrupole-octupole
configuration mixing. In this section, we briefly outline these
approaches [11–14] and discuss the results obtained with each
of them.

A. Hartree-Fock-Bogoliubov

We first performed (Q20, Q30)-constrained Gogny-D1M
HFB calculations for 138–208Dy. In the calculations the HFB
equation was solved with constraints on the axially symmetric
quadrupole

Q̂20 = 1
2 (x2 + y2) (1)

and octupole

Q̂30 = z2 − 3
2 (x2 + y2)z (2)

operators, using an approximate second-order gradient
method [69]. A constraint on the operator Q̂10 was also used to
fix the center of mass at the origin [11]. The HFB quasiparticle
operators [1] were expanded in a (deformed) axially symmet-
ric harmonic oscillator (HO) basis containing 15 major shells.
Axial symmetry was kept as a self-consistent symmetry in
order to alleviate the computational effort.

For each of the intrinsic states |�(Q20, Q30)〉 obtained in
the constrained Gogny-HFB calculations, the quadrupole Q20

and octupole Q30 deformations are defined as the mean values

Q20 = 〈�(Q20, Q30)|Q̂20|�(Q20, Q30)〉 (3)

and

Q30 = 〈�(Q20, Q30)|Q̂30|�(Q20, Q30)〉. (4)

The corresponding deformation parameters βλ (λ = 2, 3) are
then defined as

βλ =
√

4π (2λ + 1)

3Rλ
0A

Qλ0 (5)

with R0 = 1.2A1/3 and A the mass number. For example, for
A = 150 a quadrupole deformation Q20 = 5b is equivalent to
β2 = 0.217, whereas for A = 200 an octupole deformation
Q30 = 2.5b3/2 is equivalent to β3 = 0.113.

The Gogny-HFB MFPESs are depicted in Fig. 1 for a
selected set of Dy isotopes, as illustrative examples. Those
MFPESs are nothing else than the HFB energies

EHFB(Q20, Q30) = 〈�(Q20, Q30)|Ĥ |�(Q20, Q30)〉
〈�(Q20, Q30)|�(Q20, Q30)〉 (6)

corresponding to each of the intrinsic states |�(Q20, Q30)〉.
The HFB energies (6) are invariant under the exchange of
Q30 into −Q30 to be associated to the parity symmetry of the
interaction,

EHFB(Q20, Q30) = EHFB(Q20,−Q30). (7)
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FIG. 1. MFPESs computed with the Gogny-D1M EDF for a
selected set of Dy isotopes. Dark blue contour lines extend from
0.25 MeV up to 1 MeV above the ground state energy in steps of
0.25 MeV in the ascending sequence of full, long-dashed, medium-
dashed, and short-dashed lines. Dark green contour lines extend
from 1.5 MeV up to 3 MeV above the ground state in steps of 0.5
MeV with the same sequence of full, long-dashed, medium-dashed,
and short-dashed lines as before. From there on, orange dotted
contour lines are drawn in steps of 1 MeV. The color code spans
a range of 10 MeV with red corresponding to the lowest energy
and blue corresponding to an energy 10 MeV above. The intrinsic
HFB energies are symmetric under the exchange Q30 → −Q30. For
A = 150 a quadrupole deformation Q20 = 5b is equivalent to β2 =
0.217, whereas for A = 200 an octupole deformation Q30 = 2.5 b3/2

is equivalent to β3 = 0.113. For more details, see the main text.

As a consequence of this invariance, only the energies cor-
responding to Q30 � 0 values are included in Fig. 1. In the
calculations, the Q20 grid −25b � Q20 � 35b (with a step
δQ20 = 1b) and the Q30 grid 0b3/2 � Q30 � 10b3/2 (with a
step δQ30 = 0.25b3/2) were employed.

The ground state quadrupole deformations are plotted, as
functions of the neutron number N , in panel (a) of Fig. 2
for 138–208Dy. The corresponding β2 deformation parameters
are depicted in panel (b) of the same figure. Along the Q20

direction there is a shape/phase transition from a prolate
(138,140Dy) to an oblate (142,144Dy) ground state, followed by
spherical ground states in 146–150Dy, reflecting the proximity
to the neutron shell closure N = 82. With increasing neutron
number, the ground state quadrupole deformations increase,
reaching values of Q20 = (8–9)b for 92 � N � 112. This is,
once more, followed by shape/phase transitions to oblate
ground states in 182–188Dy and then to spherical ground states
in 190–196Dy, associated with the proximity to the neutron shell

024301-3



RODRÍGUEZ-GUZMÁN AND ROBLEDO PHYSICAL REVIEW C 108, 024301 (2023)

72 80 88 96 104 112 120 128 136 144
N

-8

-4

0

4

8

12

Q
20

 (
b)

 

(a)

D1M

 

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

β 2
  

(b)

 

0

0.4

0.8

1.2

1.6

2

2.4

2.8

Q
30

 (
b3/

2 )

(c)

128 132 136 140 144
 

0

0.05

0.1

0.15

0.2

β 3
(d)

FIG. 2. The mean field ground state quadrupole (octupole) defor-
mations are plotted, as functions of the neutron number N , in panel
(a) [(c)] for 138−208Dy. The corresponding quadrupole (octupole)
deformation parameters β2 (β3) are also depicted in panel (b) [(d)].
Results have been obtained with the Gogny-D1M EDF.

closure N = 126. For larger neutron numbers, the ground
state quadrupole deformations exhibit a pronounced increase,
reaching the value Q20 = 12b for 208Dy.

For the considered Dy isotopes, the ground state
quadrupole deformations are within the range −6b � Q20 �
12b (−0.19 � β2 � 0.34). The results obtained with Gogny-
D1M, as well as the ones obtained with the D1S and
D1M∗ parametrizations, for the ground state quadrupole
deformations agree well with previous mac-mic [9] and
reflection-asymmetric relativistic mean-field [8] results. Note
that, for some of the considered isotopes, the MFPESs de-
picted in Fig. 1 exhibit transitional features along the Q20

direction.
As can be seen from Fig. 1 and from panels (c) and (d) of

Fig. 2, static Gogny-D1M ground state octupole deformations
are only predicted for 198–202Dy, i.e., for very neutron-rich
isotopes around N = 134. In this case, the ground state oc-
tupole deformations are within the range 2.25b3/2 � Q30 �
2.75b3/2 (0.10 � β3 � 0.12). Octupole-deformed neutron-
rich nuclei have already been predicted in this [8,9] and other
regions of the nuclear chart [14,36,50,61–63]. The soft be-
havior of the Gogny-D1M MFPESs along the Q30 direction,
as one approaches the neutron number N = 134, becomes

apparent from Fig. 1. Nevertheless, even in the case of nu-
clei with octupole deformed mean-field ground states (i.e.,
198–202Dy), the HFB energy gained by breaking reflection
symmetry,

ECORR,HFB = EHFB,Q30=0 − EHFB,GS, (8)

and defined as the difference between the HFB energy cor-
responding to the absolute minimum obtained in reflection-
symmetric calculations and the energy corresponding to the
absolute minimum of the (Q20, Q30) MFPES, is rather small
(188, 266, and 70 keV for 198–202Dy, respectively).

The MFPESs shown in Fig. 1 also become softer along the
octupole direction as one approaches 154Dy, i.e., the neutron
octupole magic number N = 88. In our calculations as well
as in previous mac-mic ones [9], there is no static octupole
deformation in this region. This is at variance with recent rel-
ativistic mean-field results [8] that predict octupole-deformed
Dy isotopes with N ≈ 88. However, for both N ≈ 88 and N ≈
134 Dy isotopes, the softness displayed by the Gogny-D1M
MFPESs along the Q30 direction (see also Fig. 4 of Ref. [8])
points towards the key role of dynamical beyond-mean-field
correlations, i.e., symmetry restoration and/or quadrupole-
octupole configuration mixing in the properties of the ground
state and collective negative parity states in the studied nuclei.
At this level, and at variance with Ref. [8], we conclude that
the plain mean-field framework is not sufficient to extract
conclusions about permanent octupole deformation effects in
the considered nuclei. Therefore, we turn our attention to
beyond-mean-field correlations in the next Sec. II B.

B. Dynamical beyond-mean-field correlations

In this section, we turn our attention to the impact of
beyond-mean-field correlations in different low energy prop-
erties of the Dy isotopes considered. First, parity projection
(after variation) calculations are discussed in Sec. II B 1. As
shown, not only the MFPESs in Fig. 1, but also the par-
ity projected potential energy surfaces obtained for some
of the considered nuclei, exhibit a rather soft behavior
along the octupole direction with a pronounced competition
between reflection-symmetric and reflection-asymmetric con-
figurations. As a result, not only symmetry restoration but also
fluctuations in the collective coordinates should be considered
for the studied nuclei. This is done in Sec. II B 2 within the
framework of the symmetry-conserving 2D-GCM framework
[11–14]. Since the octupole is the softest mode, the spatial
reflection symmetry is the most important invariance to be
restored. The simultaneous restoration of other symmetries,
such as the rotational and particle number symmetries [22,23],
is out of the scope of the present survey for technical reasons
such as the large number of HO shells used and/or the number
of degrees of freedom required in the 2D-GCM ansatz.

1. Parity symmetry restoration

Once the intrinsic HFB states |�(Q20, Q30)〉, discussed
in the previous Sec. II A, are obtained the spatial reflection
symmetry in each of those states is restored by means of parity
projection after variation. In what follows, and for the sake of
simplicity, we will use the notation Q = (Q20, Q30) for the
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FIG. 3. Positive parity (π = +1) PPPESs computed with the
Gogny-D1M EDF for a selected set of Dy isotopes. See nthe caption
of Fig. 1 for the contour-line patterns and color scale.

pair of quadrupole and octupole deformation parameters that
label each of the intrinsic HFB states, i.e., |�(Q20, Q30)〉 =
|�(Q)〉. The projected states read

|�π (Q)〉 = P̂π |�(Q)〉 = 1
2 (1 + π�̂)|�(Q)〉, (9)

where the projection operator P̂π is written in terms of the de-
sired parity quantum number π = ±1 and the parity operator
�̂.

In the case of the density dependent Gogny-EDF, the pro-
jected energies

Eπ (Q) = 〈�(Q)|ĤPπ |�(Q)〉
〈�(Q)|Pπ |�(Q)〉 (10)

associated with the parity-projected states |�π (Q)〉 (9) have
been computed using a mixed-density prescription in the
density-dependent term of the EDF to avoid the pathologies
found in the restoration of spatial symmetries [70–74]. We
have also introduced first-order corrections in Eq. (10) to
account for the fact that the parity-projected mean value of
proton and neutron numbers usually differs from the nucleus’s
proton and neutron numbers [11,12,14]. The π = +1 and
π = −1 parity-projected potential energy surfaces (PPPESs),
depicted in Figs. 3 and 4 for a selected set of Dy isotopes
as illustrative examples, are nothing else than the energies
Eπ (Q), as functions of the quadrupole Q20 and octupole Q30

deformations of the intrinsic states. As in previous studies, in
Fig. 4 we have omitted the Q30 = 0 line as the evaluation of
Eπ=−1 requires the nontrivial task of resolving numerically a
zero over zero indeterminacy. Fortunately, the negative parity
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FIG. 4. Negative parity (π = −1) PPPESs computed with the
Gogny-D1M EDF for a selected set of Dy isotopes. See the caption
of Fig. 1 for the contour-line patterns and color scale.

projected energy increases rapidly as the Q30 = 0 line is ap-
proached (see Fig. 5) and its limiting value [53] is high enough
to not play a significant role in the discussion of the π = −1
PPPESs [11].

The comparison between the PPPESs and the MFPESs
in Fig. 1, reveals that the quadrupole deformations corre-
sponding to their absolute minima are close to each other.
Moreover, from the comparison between the MFPESs and
π = +1 PPPESs one realizes that, in spite of the changes
in topography along the Q30 direction, the latter are also
rather octupole soft and/or display a pronounced competi-
tion between reflection-symmetric and reflection-asymmetric
configurations. This is illustrated in panels (a) and (b) of
Fig. 5, where the π = +1 parity-projected energies obtained
for 154Dy and 202Dy are plotted, as functions of Q30, for
fixed values of the quadrupole moment. At the HFB level,
the ground state of 154Dy is reflection symmetric whereas the
one of 202Dy shows a nonzero octupole moment. However,
for both isotopes the π = +1 parity-projected curves in Fig. 5
display a minimum with a pocket around Q30 = 1b3/2. In
both cases, such an octupole-deformed minimum is less than
1.3 MeV deeper than the reflection-symmetric configuration,
indicating that, in addition to parity symmetry restoration,
fluctuations in the collective coordinates (in particular, the
octupole coordinate which represents the softest mode) should
be taken into account for the studied nuclei. On the other hand,
the π = −1 PPPESs shown in Fig. 4 [see also panels (a) and
(b) of Fig. 5] exhibit in all the cases absolute minima with
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FIG. 5. The π = +1 (red) and π = −1 (blue) parity-projected
energies are depicted as functions of the octupole moment Q30 for
fixed values of the quadrupole moment Q20 in the nuclei 154Dy and
202Dy. The corresponding HFB energies (black) are also included in
the plots. Results were obtained with the Gogny-D1M EDF.

octupole deformations larger than the ones in the MFPESs and
π = +1 PPPESs.

2. Symmetry-conserving 2D-GCM quadrupole-octupole
configuration mixing

The results discussed in Secs. II A and II B 1 indicate
that not only parity symmetry restoration but also symmetry-
projected quadrupole-octupole configuration mixing is re-
quired to disentangle the stability of octupole deformation
effects in the studied Dy isotopes. To this end, we consider
the following 2D-GCM superposition of HFB states |�(Q)〉:

∣∣�π
σ

〉 =
∫
D

dQ f π
σ (Q)|�(Q)〉, (11)

where both positive and negative octupole moments are in-
cluded in the integration domain D. The 2D-GCM ansatz
|�π

σ 〉 accounts for both reflection symmetry restoration and

(Q20, Q30) fluctuations [11–14]. In Eq. (11) π = ±1 repre-
sents the parity quantum number, while the index σ numbers
the different GCM solutions.

The amplitudes f π
σ (Q) should be determined dynamically

via the solution of the corresponding Griffin-Hill-Wheeler
(GHW) equation [1,11,12,14], written in terms of nondi-
agonal norm N (Q, Q′) = 〈�(Q)|�(Q′)〉 and Hamiltonian
H(Q, Q′) = 〈�(Q)|Ĥ |�(Q′)〉 overlaps. In the evaluation of
the Hamiltonian overlap one has to pay special attention
to avoid the use of nonequivalent bases in the left and
right HFB states [75]. In our case, this is accomplished by
using the same oscillator lengths for all HFB states con-
sidered in the GCM mixing [76,77]. For the evaluation of
the density-dependent contribution of the Gogny-EDF to the
Hamiltonian overlap we considered a mixed-density prescrip-
tion in the density-dependent term of the EDF [11,12,14,74].
Finally, perturbative first-order corrections in the mean value
of both proton and neutron numbers have been considered
[11,12,14,74].

The solution of the GHW equation provides the dynamical
amplitudes f π

σ (Q). Nevertheless, in the case of a nonorthogo-
nal basis of HFB states |�(Q)〉, i.e., 〈�(Q)|�(Q′)〉 	= δ(Q −
Q′), such amplitudes f π

σ (Q) cannot be assigned a quantum
mechanical probabilistic interpretation [1]. One then intro-
duces the collective wave functions [1,11,74]

Gπ
σ (Q) =

∫
dQ′N 1

2 (Q, Q′) f π
σ (Q′) (12)

written in terms of the amplitudes f π
σ (Q), Eq. (11), and the

operational square root N 1
2 (Q, Q′) of the norm overlap kernel

[1,74].
The reduced transition probabilities B(E1, 1− → 0+) and

B(E3, 3− → 0+) were computed using the rotational model
approximation for K = 0 bands

B(Eλ, λ− → 0+) = e2

4π

∣∣〈�π=−1
σ

∣∣Ôλ

∣∣�π=+1
σ=1

〉∣∣2
, (13)

where σ corresponds to the first 2D-GCM excited negative-
parity state. The electromagnetic transition operators Ô1 and
Ô3 represent the dipole moment operator and the proton
component Q̂30,prot of the octupole operator, respectively. The
overlaps 〈�π

σ |Ôλ|�π ′
σ ′ 〉 have been evaluated using the expres-

sions given in Ref. [11].
The collective wave functions (12) corresponding to the

ground and lowest negative-parity states of the nuclei 198Dy,
202Dy, and 206Dy are depicted in Fig. 6, as illustrative ex-
amples. Similar results were obtained for other Dy isotopes.
Note that at the HFB level 198Dy and 202Dy (206Dy) exhibit
reflection-asymmetric (reflection-symmetric) ground states.

The values obtained for the average quadrupole moments

(Q̄20)πσ = 〈
�π

σ

∣∣Q̂20

∣∣�π
σ

〉
, (14)

corresponding to the 2D-GCM ground states (Q̄20)π=+1
σ=1 ,

display a pattern similar to the one obtained at the mean-
field level [see panel (a) of Fig. 2]. The pattern followed
by (Q̄20)π=+1

σ=1 , as well as the one followed by the average
quadrupole moments corresponding to the first negative-parity
states (Q̄20)π=−1

σ , clearly reflect the impact of the neutron
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FIG. 6. Collective wave functions (12) corresponding to the ground (bottom panels) and lowest negative-parity (top panels) states of the
nuclei 198Dy, 202Dy, and 206Dy. The succession of solid, long-dashed, and short-dashed contour lines starts at 90% of the maximum value up
to 10% of it. The two dotted-line contours correspond to the tail of the amplitude (5% and 1% of the maximum value). The color scale ranges
from red (maximum value) to green (zero). Results have been obtained with the Gogny-D1M EDF. For more details, see the main text.

shell closures N = 82 and N = 126 in the evolution of the
quadrupole properties along the considered isotopic chain.

The ground state collective wave functions Gπ=+1
σ=1 (Q),

shown in the bottom panels of Fig. 6 for the N ≈ 134 isotopes
198Dy, 202Dy, and 206Dy exhibit a large spreading along the
Q30 direction. This is also the case for the Gπ=+1

σ=1 (Q) am-
plitudes corresponding to N ≈ 88 Dy isotopes. This reflects
the octupole-soft character of the Gogny-D1M 2D-GCM
ground states in the case of N ≈ 88 and N ≈ 134 Dy iso-
topes. However, for all the nuclei studied in this paper, the
Gπ=+1

σ=1 (Q) amplitudes exhibit peaks around Q30 = 0 pointing
to an octupole-vibrational character.

In order to access dynamical octupole deformation ef-
fects at a more quantitative level, we computed the average
octupole moment [11,12,14]

(Q̄30)πσ = 4
∫
D

dQdQ′Gπ ∗
σ (Q)Q30(Q, Q′)Gπ

σ (Q′) (15)

and obtained that, for all the considered nuclei, the ground
state (Q̄30)π=+1

σ=1 values are within the range 0.25b3/2 �
(Q̄30)π=+1

σ=1 � 0.93b3/2. On the one hand, this indicates an en-
hanced octupolarity in their ground states via dynamical zero-
point 2D-GCM quantum fluctuations. On the other hand, even
the largest (Q̄30)π=+1

σ=1 values obtained for N ≈ 134 isotopes
are less than half of the (static) HFB ground state octupole
deformations. Thus, to a large extent, even the static oc-
tupole deformation effects predicted at the Gogny-HFB level
around N = 134 are washed out once symmetry-conserving
quadrupole-octupole configuration mixing is taken into
account.

The previous results point towards octupole-vibrational
features in the Dy chain, and raise questions about the con-
clusions extracted in Ref. [8] from the results of a plain

mean-field calculation. In this reference the existence of per-
manent octupole deformations in N = 88 and N = 134 Dy
isotopes is concluded. Let us stress that results (not shown)
similar to the ones already discussed have also been obtained
in the present study with other parametrizations of the Gogny
EDF, such as D1S [10] and D1M∗ [67] (see also the discussion
below).

The collective wave functions Gπ=−1
σ (Q) corresponding to

the lowest negative-parity states of the nuclei 198Dy, 202Dy,
and 206Dy, shown in the top panels of Fig. 6 are odd under the
exchange Q30 → −Q30. They reach a zero value at Q30 = 0
as well as a maximum and a minimum, one for a positive
octupole deformation and the other at the corresponding neg-
ative value. As a result, the amplitudes Gπ=−1

σ (Q) in Fig. 6
always display a maximum or a minimum for Q30 	= 0. For
each of the studied isotopes, the (Q̄30)π=−1

σ= value is close to
the octupole deformation corresponding to the minimum of
the π = −1 PPPESs (see Fig. 4).

The 2D-GCM excitation energies 
Eneg-par of the first
negative-parity states as well as the reduced transitions prob-
abilities B(E1) and B(E3) obtained for the considered Dy
isotopes, are plotted in panels (a)–(c) of Fig. 7, as functions
of the neutron number. Additional results for the parametriza-
tions D1S and D1M∗ are also included in the figure. As can
be seen, with minor exceptions, the results obtained with dif-
ferent parametrizations are rather similar. This points towards
the robustness of the predicted trends with respect to the
underlying Gogny-EDF.

As functions of the neutron number, the 2D-GCM energies

Eneg-par display two pronounced minima, one at N = 88
and the other at N = 134. These Gogny 2D-GCM results
indicate that, at a dynamical beyond-mean-field level, both
N = 88 and N = 134 represent (on average) octupole magic
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FIG. 7. The 2D-GCM excitation energies of the first negative-parity states [panel (a)], the reduced transitions probabilities B(E1) [panel
(b)] and B(E3) [panel (c)] are plotted for 138–208Dy as functions of the neutron number. Results were obtained with the parametrizations D1M,
D1S, and D1M∗ of the Gogny-EDF. Experimental data were taken from Ref. [68]. For more details, see the main text.

numbers along the studied isotopic chain. We stress that no
static octupole deformation is obtained for N ≈ 88 isotopes
at the mean-field level. Moreover, the ground state collective
wave functions for those isotopes are peaked around Q30 = 0.
These results suggest that, in the case of Dy isotopes, the
octupole collectivity around N = 88 is more vibrational-like
in character than suggested in Ref. [8] on the base of plain
mean-field calculations. Static octupole deformations have
been obtained at the Gogny-HFB level for N ≈ 134 isotopes.
However, as already mentioned, their ground state collective
wave functions are also peaked around Q30 = 0, while the
corresponding mean-field deformation effects are reduced to
more than half once 2D-GCM zero-point fluctuations are in-
cluded. This suggests that the prominent minimum observed
in panel (a) of the figure at N = 134 should also be associ-
ated with a vibrational character of the excitation instead of
permanent octupole deformation effects. Regarding the com-
parison with the still scarce data [68], the predicted 
Eneg-par

values reproduce reasonably well the experimental trend in the
immediate neighborhood of N = 88, while they overestimate
considerably the available experimental values as one moves
away from this neutron number.

The B(E1) strengths shown in panel (b) of the same fig-
ure exhibit two minima, one at N ≈ 82 and the other at N ≈
126. From a dynamical point of view, it is precisely around
these neutron numbers where the overlap 〈�π=−1

σ |Ô1|�π=+1
σ=1 〉

(with Ô1 being the dipole moment operator) reaches its min-
imum. Here, one should keep in mind that the behavior of
the B(E1) strengths is not directly related to the one observed
in the 
Eneg-par energies and/or the B(E3) reduced transition
probabilities (see below). In fact, via the strong dependence
of the dipole moment on the underlying single-particle struc-
ture, the B(E1) values might display strong suppression for
some specific neutron numbers [11–14,53], specially around
neutron shell closures.

The trend observed in the predicted B(E3) values cor-
relates well with the one in the 
Eneg-par energies, i.e., as
functions of the neutron number the B(E3) strengths exhibit
two pronounced maxima at N = 88 and N = 134 where the


Eneg-par energies display two pronounced minima. The com-
parison with the available experimental data [68] reveals that,
in spite of the quantitative differences, the predicted E3 trend
reproduces the increased octupole collectivity around N = 88
as well as its sudden decrease with increasing neutron number.
We stress that the E3 collectivity around N = 88 and N = 134
is not the result of permanent mean-field octupolarity around
those neutron numbers, as concluded in Ref. [8], but directly
reflects the key role played by dynamical fluctuations. In
fact, via the structure of the corresponding collective wave
functions, the 2D-GCM overlap 〈�π=−1

σ |Ô3|�π=+1
σ=1 〉 (with Ô3

being the proton component of the octupole operator) reflects
the difference |(Q̄30)π=+1

σ=1 − (Q̄30)π=−1
σ | between the dynam-

ical ground (Q̄30)π=+1
σ=1 and first negative-parity (Q̄30)π=−1

σ

state deformations, i.e., the larger (smaller) the difference,
the smaller (larger) the overlap 〈�π=−1

σ |Ô3|�π=+1
σ=1 〉. It is

precisely the more pronounced (dynamical) enhancement of
ground state octupolarity [i.e., larger (Q̄30)π=+1

σ=1 values] ob-
tained as one approaches both N = 88 and N = 134 that leads
to a reduction of the difference |(Q̄30)π=+1

σ=1 − (Q̄30)π=−1
σ | and,

therefore, to larger B(E3) strengths as compared with the ones
obtained as we move away from these two neutron octupole
magic numbers.

III. SUMMARY AND CONCLUSIONS

In this paper we have carried out calculations, at both the
mean-field level and beyond, to address the emergence and
stability of (static) mean-field octupole deformation effects in
Dy isotopes from drip line to drip line. To this end, we have
resorted to the models already employed in Refs. [11–14] in
other regions of the nuclear chart.

Contrary to recent reflection-asymmetric relativistic mean
field results [8] but in agreement with previous mac-
mic [9] results, at the Gogny-HFB level static octupole
deformations have been found only for N ≈ 134 iso-
topes, while nuclei with N ≈ 88 exhibit reflection-symmetric
ground states. Moreover, even in the case of nuclei with
octupole deformed Gogny-D1M mean-field ground states
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(i.e., 198–202Dy), the HFB octupole correlation energies Eq. (8)
are always smaller than 300 keV. This, as well as the oc-
tupole softness of the corresponding MFPESs, indicate that
the plain mean-field framework is not sufficient to extract con-
clusions about permanent octupole deformation effects in Dy
isotopes.

The results obtained in this paper, together with previous
studies of the octupole dynamics in other regions of the nu-
clear chart [11–14,64,65], represent a warning to the use of the
mean-field approach to extract conclusions on the permanent
and/or vibrational nature of octupolarity in atomic nuclei
with shallow octupole minima and/or octupole-soft MFPESs.
Furthermore, it has been shown that the octupole-softness
found in the MFPESs, especially around the neutron numbers
N = 88 and N = 134, also extends to the parity-projected
potential energy surfaces, pointing towards the key role of
2D-GCM symmetry-conserving configuration mixing in the
studied nuclei.

At the 2D-GCM level, zero-point quantum fluctuations
associated with the restoration of reflection symmetry and
fluctuations in the collective (Q20, Q30) coordinates, lead to an
enhanced octupolarity for all the considered isotopes, albeit
with dynamical deformations less than half of the largest
values obtained at the mean-field level. Therefore, to a large
extent, the (static) mean-field octupole deformation effects
are washed out in Dy nuclei once 2D-GCM fluctuations are
taken into account. Our analysis of the 2D-GCM collective

wave functions as well as the trends of the predicted 
Eneg-par

excitation energies and B(E3) strengths, corroborate an in-
creased octupole collectivity in Dy isotopes with N ≈ 88 and
N ≈ 134. However, we stress that such increased octupolarity
is a (dynamical) vibrational-like effect that is not directly
related to permanent mean-field octupole deformation in the
considered nuclei.

The predicted 
Eneg-par values reproduce reasonably well
the available experimental data in the immediate neighbor-
hood of N = 88, while in the B(E3) case the calculations
account qualitatively for the increased octupole collectivity
around N = 88 as well as its sudden decrease with increas-
ing neutron number. The predicted B(E1) reduced transition
probabilities display strong suppression around N ≈ 82 and
N ≈ 126. Furthermore, the D1S, D1M∗, and D1M parameter
sets provide rather similar results, pointing towards the ro-
bustness of the predicted trends with respect to the underlying
Gogny EDF.

ACKNOWLEDGMENTS

The work of R.R.-G. was supported within the framework
of the (distinguished researcher) María Zambrano Program,
Ministry of Universities and Seville University, Spain. The
work of L.M.R. was supported by Spanish Agencia Estatal de
Investigacion (AEI) of the Ministry of Science and Innovation
under Grant No. PID2021-127890NB-I00.

[1] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 1980).

[2] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349
(1996).

[3] S. N. T. Majola et al., Phys. Rev. C 100, 034322 (2019).
[4] T. Lauritsen, R. V. F. Janssens, M. P. Carpenter, P. Fallon et al.,

Phys. Rev. Lett. 89, 282501 (2002).
[5] G. L. Zimba, J. F. Sharpey-Schafer, P. Jones, S. P. Bvumbi

et al., Phys. Rev. C 94, 054303 (2016).
[6] D. J. Hartley et al., Phys. Rev. C 95, 014321 (2017).
[7] A. Aprahamian, X. Wu, S. R. Lesher, D. D. Warner et al., Nucl.

Phys. A 764, 42 (2006).
[8] Yu.-T. Qiu, X.-W. Wang, and J.-Y. Guo, Phys. Rev. C 106,

034301 (2022).
[9] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data

Nucl. Data Tables 109–110, 1 (2016).
[10] J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A 428, 23

(1984).
[11] R. Rodríguez-Guzmán, L. M. Robledo, and P. Sarriguren, Phys.

Rev. C 86, 034336 (2012).
[12] R. Rodríguez-Guzmán, Y. M. Humadi, and L. M. Robledo,

J. Phys. G: Nucl. Part. Phys. 48, 015103 (2021).
[13] L. M. Robledo and P. A. Butler, Phys. Rev. C 88, 051302(R)

(2013).
[14] R. Rodríguez-Guzmán and L. M. Robledo, Phys. Rev. C 103,

044301 (2021).
[15] I. Ahmad and P. A. Butler, Ann. Rev. Nucl. Part. Sci. 43, 71

(1993).
[16] P. A. Butler, J. Phys. G 43, 073002 (2016).
[17] P. A. Butler and L. Willmann, Nucl. Phys. News 25, 12 (2015).

[18] S. K. Tandel, M. Hemalatha, A. Y. Deo, S. B. Patel, R. Palit, T.
Trivedi, J. Sethi, S. Saha, D. C. Biswas, and S. Mukhopadhyay,
Phys. Rev. C 87, 034319 (2013).

[19] H. J. Li, S. J. Zhu, J. H. Hamilton, E. H. Wang, A. V. Ramayya,
Y. J. Chen, J. K. Hwang, J. Ranger, S. H. Liu, Z. G. Xiao, Y.
Huang, Z. Zhang, Y. X. Luo, J. O. Rasmussen, I. Y. Lee, G. M.
Ter-Akopian, Y. T. Oganessian, and W. C. Ma, Phys. Rev. C 90,
047303 (2014).

[20] I. Ahmad, R. R. Chasman, J. P. Greene, F. G. Kondev, and S.
Zhu, Phys. Rev. C 92, 024313 (2015).

[21] B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, D. Cline, A. B.
Hayes et al., Phys. Rev. Lett. 116, 112503 (2016).

[22] B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, R. N. Bernard,
L. M. Robledo et al., Phys. Rev. Lett. 118, 152504 (2017).

[23] R. N. Bernard, L. M. Robledo, and T. R. Rodriguez, Phys. Rev.
C 93, 061302(R) (2016).

[24] P. A. Butler, L. P. Gaffney, P. Spagnoletti, K. Abrahams,
M. Bowry, J. Cederkall et al., Phys. Rev. Lett. 124, 042503
(2020).

[25] L. P. Gaffney et al., Nature (London) 497, 199 (2013).
[26] P. A. Butler et al., Nat. Commun. 10, 2473 (2019).
[27] M. M. R. Chishti, D. OD’onnell, G. Battaglia, M. Bowry, D. A.

Jaroszynski, B. S. N. Singh, M. Scheck, P. Spagnoletti, and J. F.
Smith, Nat. Phys. 16, 853 (2020).

[28] R. Rodríguez-Guzmán and L. M. Robledo, Phys. Rev. C 89,
054310 (2014).

[29] R. Rodríguez-Guzmán and L. M. Robledo, Eur. Phys. J. A 53,
245 (2017).

[30] R. Rodríguez-Guzmán, Y. M. Humadi, and L. M. Robledo, Eur.
Phys. J. A 56, 43 (2020).

024301-9

https://doi.org/10.1103/RevModPhys.68.349
https://doi.org/10.1103/PhysRevC.100.034322
https://doi.org/10.1103/PhysRevLett.89.282501
https://doi.org/10.1103/PhysRevC.94.054303
https://doi.org/10.1103/PhysRevC.95.014321
https://doi.org/10.1016/j.nuclphysa.2005.09.020
https://doi.org/10.1103/PhysRevC.106.034301
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1103/PhysRevC.86.034336
https://doi.org/10.1088/1361-6471/abb000
https://doi.org/10.1103/PhysRevC.88.051302
https://doi.org/10.1103/PhysRevC.103.044301
https://doi.org/10.1146/annurev.ns.43.120193.000443
https://doi.org/10.1088/0954-3899/43/7/073002
https://doi.org/10.1080/10619127.2014.972170
https://doi.org/10.1103/PhysRevC.87.034319
https://doi.org/10.1103/PhysRevC.90.047303
https://doi.org/10.1103/PhysRevC.92.024313
https://doi.org/10.1103/PhysRevLett.116.112503
https://doi.org/10.1103/PhysRevLett.118.152504
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevLett.124.042503
https://doi.org/10.1038/nature12073
https://doi.org/10.1038/s41467-019-10494-5
https://doi.org/10.1038/s41567-020-0899-4
https://doi.org/10.1103/PhysRevC.89.054310
https://doi.org/10.1140/epja/i2017-12444-9
https://doi.org/10.1140/epja/s10050-020-00051-w


RODRÍGUEZ-GUZMÁN AND ROBLEDO PHYSICAL REVIEW C 108, 024301 (2023)

[31] N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301
(2016).

[32] M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).
[33] P. Möller and J. R. Nix, Nucl. Phys. A 361, 117 (1981).
[34] A. Gyurkovich, A. Sobiczewski, B. Nerlo-Pomorska, and K.

Pomorski, Phys. Lett. B 105, 95 (1981).
[35] W. Nazarewicz, P. Olanders, I. Ragnarsson, J. Dudek, G.

Leander, P. Möller, and E. Ruchowska, Nucl. Phys. A 429, 269
(1984).

[36] P. Möller, J. Nix, W. D. Meyers, and W. Swiatecki, At. Data
Nucl. Data Tables 59, 185 (1995).

[37] P. Möller, R. Bengtson, B. G. Carlsson, P. Olivius, T. Ichikawa,
H. Sagawa, and A. Iwamoto, At. Data Nucl. Data Tables 94,
758 (2008).

[38] K. Nomura, D. Vretenar, T. Niksic, and B.-N. Lu, Phys. Rev. C
89, 024312 (2014).

[39] K. Nomura, T. Niksic, and D. Vretenar, Phys. Rev. C 97,
024317 (2018).

[40] K. Nomura, D. Vretenar, and B.-N. Lu, Phys. Rev. C 88,
021303(R) (2013).

[41] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.
Rev. C 92, 014312 (2015).

[42] K. Nomura, R. Rodríguez-Guzmán, Y. M. Humadi, L. M.
Robledo, and J. E. García-Ramos, Phys. Rev. C 102, 064326
(2020).

[43] K. Nomura, R. Rodríguez-Guzmán, L. M. Robledo, and J. E.
García-Ramos, Phys. Rev. C 103, 044311 (2021).

[44] K. Nomura, R. Rodríguez-Guzmán, L. M. Robledo, J. E.
García-Ramos, and N. C. Hernández, Phys. Rev. C 104, 044324
(2021).

[45] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.
Rev. C 104, 054320 (2021).

[46] S. Marcos, H. Flocard, and P. H. Heenen, Nucl. Phys. A 410,
125 (1983).

[47] P. Bonche, P.-H. Heenen, H. Flocard, and D. Vautherin, Phys.
Lett. B 175, 387 (1986).

[48] P. Bonche, S. J. Krieger, M. S. Weiss, J. Dobaczewski, H.
Flocard, and P.-H. Heenen, Phys. Rev. Lett. 66, 876 (1991).

[49] P.-H. Heenen, J. Skalski, P. Bonche, and H. Flocard, Phys. Rev.
C 50, 802 (1994).

[50] J. Erler, K. Langanke, H. P. Loens, G. Martínez-Pinedo, and
P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).

[51] L. M. Robledo, J. L. Egido, J. F. Berger, and M. Girod, Phys.
Lett. B 187, 223 (1987).

[52] L. M. Robledo, J. L. Egido, B. Nerlo-Pomorska, and K.
Pomorski, Phys. Lett. B 201, 409 (1988).

[53] J. L. Egido and L. M. Robledo, Nucl. Phys. A 518, 475 (1990);
524, 65 (1991); 545, 589 (1992).

[54] E. Garrote, J. L. Egido, and L. M. Robledo, Phys. Rev. Lett. 80,
4398 (1998); Nucl. Phys. A 654, 723c (1999).

[55] L. M. Robledo, M. Baldo, P. Schuck, and X. Viñas, Phys. Rev.
C 81, 034315 (2010).

[56] W. H. Long, J. Meng, N. Van Giai, and S. G. Zhou, Phys. Rev.
C 69, 034319 (2004).

[57] Z. P. Li, B. Y. Song, J. M. Yao, D. Vretenar, and J. Meng, Phys.
Lett. B 726, 866 (2013).

[58] L. M. Robledo and R. Rodríguez-Guzmán, J. Phys. G: Nucl.
Part. Phys. 39, 105103 (2012).

[59] S. Ebata and T. Nakatsukasa, Phys. Scr. 92, 064005 (2017).
[60] S. Y. Xia, H. Tao, Y. Lu, Z. P. Li, T. Niksic, and D. Vretenar,

Phys. Rev. C 96, 054303 (2017).
[61] S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93,

044304 (2016).
[62] S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C 96, 024301

(2017).
[63] Y. Cao, S. E. Agbemava, A. V. Afanasjev, W. Nazarewicz, and

E. Olsen, Phys. Rev. C 102, 024311 (2020).
[64] L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 054302

(2011).
[65] L. M. Robledo, J. Phys. G: Nucl. Part. Phys. 42, 055109

(2015).
[66] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett.

102, 242501 (2009).
[67] C. Gonzalez-Boquera, M. Centelles, X. Vinas, and L. M.

Robledo, Phys. Lett. B 779, 195 (2018).
[68] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 80, 35

(2002).
[69] L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 014312

(2011).
[70] R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo,

Nucl. Phys. A 709, 201 (2002)
[71] J. L Egido and L. M. Robledo, in Extended Density Functionals

in Nuclear Structure Physics, Lecture Notes in Physics Vol. 641
(Springer, Berlin, 2004), p. 269.

[72] L. M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007).
[73] L. M. Robledo, J. Phys. G: Nucl. Part. Phys. 37, 064020

(2010).
[74] J. A. Sheikh, J. Dobaczewski, P. Ring, L. M. Robledo, and C.

Yannouleas, J. Phys. G: Nucl. Part. Phys. 48, 123001 (2021).
[75] L. M. Robledo, Phys. Rev. C 50, 2874 (1994).
[76] L. M. Robledo, Phys. Rev. C 105, L021307 (2022).
[77] L. M. Robledo, Phys. Rev. C 105, 044317 (2022).

024301-10

https://doi.org/10.1088/0034-4885/79/11/116301
https://doi.org/10.1103/PhysRevC.84.044608
https://doi.org/10.1016/0375-9474(81)90473-5
https://doi.org/10.1016/0370-2693(81)90997-7
https://doi.org/10.1016/0375-9474(84)90208-2
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/j.adt.2008.05.002
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.97.024317
https://doi.org/10.1103/PhysRevC.88.021303
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.102.064326
https://doi.org/10.1103/PhysRevC.103.044311
https://doi.org/10.1103/PhysRevC.104.044324
https://doi.org/10.1103/PhysRevC.104.054320
https://doi.org/10.1016/0375-9474(83)90405-0
https://doi.org/10.1016/0370-2693(86)90609-X
https://doi.org/10.1103/PhysRevLett.66.876
https://doi.org/10.1103/PhysRevC.50.802
https://doi.org/10.1103/PhysRevC.85.025802
https://doi.org/10.1016/0370-2693(87)91085-9
https://doi.org/10.1016/0370-2693(88)90592-8
https://doi.org/10.1016/0375-9474(90)90141-8
https://doi.org/10.1016/0375-9474(91)90016-Y
https://doi.org/10.1016/0375-9474(92)90294-T
https://doi.org/10.1103/PhysRevLett.80.4398
https://doi.org/10.1016/S0375-9474(00)88535-8
https://doi.org/10.1103/PhysRevC.81.034315
https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1016/j.physletb.2013.09.035
https://doi.org/10.1088/0954-3899/39/10/105103
https://doi.org/10.1088/1402-4896/aa6c4c
https://doi.org/10.1103/PhysRevC.96.054303
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.96.024301
https://doi.org/10.1103/PhysRevC.102.024311
https://doi.org/10.1103/PhysRevC.84.054302
https://doi.org/10.1088/0954-3899/42/5/055109
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1016/j.physletb.2018.02.005
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1103/PhysRevC.84.014312
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1142/S0218301307005776
https://doi.org/10.1088/0954-3899/37/6/064020
https://doi.org/10.1088/1361-6471/ac288a
https://doi.org/10.1103/PhysRevC.50.2874
https://doi.org/10.1103/PhysRevC.105.L021307
https://doi.org/10.1103/PhysRevC.105.044317

