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Background: This paper presents the extended-soft-core (ESC) potentials ESC16 for baryon-baryon (BB)
channels with total strangeness S = −3 and −4. For these channels no experimental scattering data exist,
apart from very recently measured preliminary correlations. Also, there is no information from hypernuclei
or hyperonic matter.
Purpose: The aim is to calculate the predictions of the ESC16 model for the S = −3 and S = −4 BB channels.
Methods: The potential models for S = −3 and −4 are based on SU(3) extensions of potential models for the
S = 0 and −1 and S = −2 sectors, which are fitted to experimental data. Flavor SU(3) symmetry is broken
“kinematically” by the masses of the baryons and the mesons. The fit to the S = 0 and −1 sectors provides
the necessary constraints to fix all free parameters, i.e., baryon-baryon-meson couplings and cutoff masses.
The S = −2 systems are constrained by the �B�� value from the Nagara event and the requirement of U� ≈
−10 MeV.
Results: Various properties of the potentials are illustrated by giving results for scattering lengths, bound states,
and phase parameters.
Conclusions: No ��, ��, and �� bound states are predicted by the ESC16 model.
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I. INTRODUCTION

In this paper we present the results of the extended-soft-
core (ESC) model ESC16 for channels with total strangeness
S = −3 and −4. This is a further SU(3) generalization of the
ESC16 models on NN [1], Y N [2], and YY [3] for baryon-
baryon channels, which are henceforth referred to as paper
I, paper II, and paper III, respectively. A similar approach
has been performed in Ref. [4], where the Nijmegen soft-
core one-boson-exchange (OBE) interactions NSC97a-f for
baryon-baryon (BB) systems for S = −2, −3, and −4 were
presented.

This paper forms the completion of the study of baryon-
baryon interactions with the ESC interactions, comprising all
{8} ⊗ {8} channels, i.e., all strangeness S = 0, −1, −2, −3,
and −4 channels. The basis of this work is broken SU(3)
symmetry and the NN , Y N , and YY data. In this paper we
show the S = −3 and −4 results for the ESC16 model, which
can be considered being typical for this approach to the BB
interactions. (For results and review of former versions ESC04
and ESC08 as well as applications to hypernuclei for S = 0,
−1, and −2, see Ref. [5].)

The OBE model NSC97 [4] and the ESC models are the
first models for which the S < −2 interactions contain no
free parameters. Compared to NSC97 the overall descrip-
tion of the BB interaction in the ESC models is clearly

*t.rijken@science.ru.nl

an improvement. In the ESC models the S = 0, −1, and
−2 interactions are fitted very successfully to the two-body
scattering data. For S = −2 there is a difficulty with (i)
the �− p correlations found in the ALICE experiment at
CERN [6–8] and (ii) the J-PARC/E05 data on 12

� Be [9]. This
hints at an incompleteness of the BB interactions in ESC04,
ESC08, and ESC16. To account for this in the ESC16�(A,
B) versions, SU(3)-symmetric contact terms have been
added.

After the Nijmegen work [4], all BB channels have been
studied also in the framework of the resonating-group method
(RGM) using the SU(6) quark model [10]. Furthermore in the
past years there have are also been studies of the S = −3 and
−4 systems using BB interactions from lattice QCD (LQCD)
[11,12], and recently also results for S = −3 and −4 have
been given from BB interactions from chiral-effective-field
theory [13].

For the S = −3 and −4 channels virtually no experimental
scattering information is available, except preliminary �−�−
and �−� correlation data [14]. Also the information from
hypernuclei is nonexistent. For S = −2 there are data on
�� hypernuclei, which became very much improved by the
observation of the Nagara event [15]. This event indicates that
the �� interaction is rather weak, in contrast to the estimates
based on the older experimental observations [16,17]. This
has always been a characteristic feature of the Nijmegen soft-
core models. The ESC16 model describes all experimental
information on the S = 0, −1, and −2 systems, two-body
scattering, and hypernuclei very satisfactorily. An exception
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is the (weakly) repulsive �-nucleus interaction, which is at-
tractive experimentally. This is repaired with ESC16�(A, B).

Recently more � hypernuclei have been studied and ob-
served [18–20], also indicating that the �-nucleus interaction
is attractive and the �N-�� coupling is weak [21].

Also, the ESC models are rather in accordance with QCD
(see Refs. [1–3,22,23] for an exposition of the arguments).
Therefore, the predictions for the S = −3 and −4 channels
can be expected to be realistic.

The study of strangeness-rich systems in astrophysics is
an important topic in the past 60 years with many contri-
butions. We refer to the (general) review papers [24,25] for
references. In particular, the �-hyperon puzzle in neutron star
matter [26] is reviewed in Ref. [25]. Strangeness-rich systems
can be exotic multiquark systems consisting of up (u), down
(d), and strange (s) quarks, like the elusive H dibaryon, a
six-quark uuddss system predicted by Jaffe [27]. But they
can also simply be bound states of nucleons (N), hyperons
(Y = � and �), and cascades (�). To get a better handle on
the latter possibility, we are in need of potential models that
describe all possible interactions between nucleons, hyperons,
and cascades.

In the virtual absence of experimental information for
S = −3 and −4, we assume that the potentials obey (broken)
flavor SU(3) symmetry. As in papers I–III, the S = −3 and −4
potentials are parametrized in terms of meson-baryon-baryon
and meson-pair-baryon-baryon couplings and Gaussian form
factors. This enables us to include in the interaction one-
boson exchange (OBE), two-pseudoscalar exchange (TME),
and meson-pair exchange (MPE), without any new parame-
ters. All parameters have been fixed by a simultaneous fit to
the NN and Y N data, scattering and hypernuclear, see papers
I and II. Each NN ⊕ Y N model leads to a YY model in a well-
defined way. SU(3) symmetry allows us to define all coupling
constants needed to describe the multistrange interactions in
the baryon-baryon channels occurring in {8} ⊗ {8}. In all ESC
models it is assumed that the coupling constants, apart from
meson mixing, are SU(3) symmetric. The success of the ESC
models suggests that for the coupling constants deviations
from SU(3) symmetry are small.

In paper III, new phenomenological Gaussian SU(3)-
symmetric two-body BB potentials are introduced in addition
to the meson and meson-pair exchanges to investigate the pos-
sible incompleteness of the ESC interactions considered thus
far in the ESC models. The motivation for this are the recent
S = −2 hypernuclei experimental observations [9,28,29] and
G-matrix calculations [30]. Also, ESC16 fails to describe the
�− p correlations found in the ALICE experiment at CERN
[6,8]. Then, fitting to the NN ⊕ Y N ⊕ YY data resulted in
good BB well depths. In this paper we include the S = −3
and −4 results for ESC16 and the effective range parameters
for the two variants ESC16�(A) and ESC16�(B) [3].

Most of the details on the SU(3) description are well
known, and, in particular, for baryon-baryon scattering they
can be found in papers I–III and, e.g., Refs. [31,32]. So, here
we restrict ourselves to a minimal exposition of these matters,
necessary for the readability of this paper.

The contents of this paper are as follows. In Sec. II the
S = −3 and −4 thresholds are displayed and the multichannel
description is reviewed. Furthermore, for completeness we
repeat the SU(3)-symmetric interaction Lagrangian describ-
ing the interaction vertices between mesons and members
of the JP = (1/2)+ baryon octet, and we define their cou-
pling constants. We then identify the various channels that
occur in the S = −3 and −4 baryon-baryon systems. We
describe the R-conjugation operation, which is useful for the
comparison of the (��,��) and (�N, �N ) potentials. In
Sec. III the numerical values of the used baryon masses and
of the thresholds’ momenta are listed. In Sec. IV the meson-
and meson-pair baryon-baryon couplings are addressed. In
Sec. V the results for the multichannel effective-range param-
eters, partial-wave phase shifts, and inelasticity parameters are
given, and possible bound states are considered. In Sec. VI the
paper is concluded with a short discussion and summary.

In Appendix A the SU(3) irreps and baryon-baryon isospin
states are displayed. In Appendix B, tables with the OBE
meson coupling constants are given, and in Appendix C
the meson-pair coupling MPEs for the models ESC16 and
ESC16�(A, B) are given. In Appendix D tables with the
coupled-channel phase parameters are shown for model
ESC16.

II. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Multichannel formalism

For the kinematics and the definition of the amplitudes, we
refer to paper II of this series. Similar material can be found
in Ref. [32]. Also, in paper I the derivation of the Lippmann-
Schwinger equation in the context of the relativistic two-body
equation is described.

On the physical particle basis, there are four charge
channels:

q = +1: �+�0 → �+�0,

q = 0 : (��0, �0�0, �+�−)

→ (��0, �0�0, �+�−); �0�0 → �0�0,

q = −1: (��−, �0�−, �−�0)

→ (��−, �0�−, �−�0); �0�− → �0�−,

q = −2: �−�− → �−�−; �−�− → �−�−. (2.1)

We note here that in strong interactions S is conserved and
hence in the q = −1 and −2 channels there is no coupling of
the �� channels in Eq. (2.1) with the others.

Like in Refs. [31,32] and in papers I–III, the potentials are
calculated on the isospin basis. For S = −3 and −4 hyperon-
hyperon systems there are three isospin channels:

Y = −1, S = −3, I = 1/2: (��,�� → ��,��),

Y = −1, S = −3, I = 3/2: (�� → ��),

Y = −2, S = −4, I = 0, 1: (�� → ��). (2.2)
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FIG. 1. Thresholds in YY channels for S = −3 and −4. The laboratory momenta p�, p� , and p� are given in MeV/c2.

The relation between the charge (Q), isospin (I), and hy-
percharge (Y ) is given by the Gell-Mann-Nishijima relation
Q = Y/2 + I3, where in terms of the baryon number (B) and
strangeness (S) the hypercharge Y = B + S.

The two-particle thresholds in the YY channels for S =
−3 and −4 are shown in Fig. 1. For �� at the �� and
��∗ thresholds, the (average) p� laboratory momenta are
indicated. Similarly for ��, the p� at the ��∗ threshold
are indicated. For the �� at the ��� threshold, the p� is
shown. Here, only the JP = 1/2+ octet and JP = 3/2+ de-
cuplet baryons are considered.

For the kinematics of the reactions and the various thresh-
olds, see Ref. [31]. In this work we do not solve the
Lippmann-Schwinger equation, but rather the multichan-
nel Schrödinger equation in configuration space, completely
analogous to Ref. [32]. The multichannel Schrödinger equa-
tion for the configuration-space potential is derived from the
Lippmann-Schwinger equation through the standard Fourier
transform, and the equation for the radial wave function is

found to be of the form [32]

u′′
l, j + (

p2
i δi, j − Ai, j

)
ul, j − Bi, ju

′
l, j = 0, (2.3)

where Ai, j contains the potential, nonlocal contributions and
the centrifugal barrier, while Bi, j is only present when nonlo-
cal contributions are included. The solution in the presence of
open and closed channels is given, for example, in Ref. [33].
The inclusion of the Coulomb interaction in the configuration-
space equation is well known and included in the evaluation
of the scattering matrix. The Coulomb interaction is present
only in the channels �+�− and �−�−.

Obviously, the potentials on the particle basis for the Y =
−2 channels are given by the I = 0 and I = 1�� potentials
on the isospin basis. For Y = −1 channels the potentials are
related to the potentials on the isospin basis by an isospin
rotation. Ordering the channels in the q = 0 sector according
to increasing rest mass (��0, �0�0, �+�−), one obtains in
channel space the potential matrix Vab(I ) ≡ Va,�;b,�(I ), with
a, b ≡ �,�,

V (q = 0, Y = −1) =

⎛
⎜⎜⎜⎜⎝

V��

(
1
2

) −
√

1
3V��

√
2
3V��

−
√

1
3V��

1
3

[
V��

(
1
2

) + 2V��

(
3
2

)] √
2

3

[−V��

(
1
2

) + V��

(
3
2

)]
√

2
3V��

√
2

3

[−V��

(
1
2

) + V��

(
3
2

)]
1
3

[
2V��

(
1
2

) + V��

(
3
2

)]

⎞
⎟⎟⎟⎟⎠, (2.4)

and for q = −1 we have now the ordering (��−, �−�0, �0�−), and we get the following for the potential matrix:

V (q = −1, Y = −1) =

⎛
⎜⎜⎜⎜⎝

V��

(
1
2

) −
√

2
3V��

√
1
3V��

−
√

2
3V��

1
3

[
2V��

(
1
2

) + V��

(
3
2

)] √
2

3

[−V��

(
1
2

) + V��

(
3
2

)]
√

1
3V��

√
2

3

[−V��

(
1
2

) + V��

(
3
2

)]
1
3

[
V��

(
1
2

) + 2V��

(
3
2

)]

⎞
⎟⎟⎟⎟⎠. (2.5)
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TABLE I. SU(3) content of the different interaction channels. S
is the total strangeness and I is the isospin. The upper half refers to
the space-spin symmetric states 3S1, 1P1, 3D, . . ., while the lower half
refers to the space-spin antisymmetric states 1S0, 3P, 1D2, ...

Space-spin symmetric states
S I Channels SU(3) irreps

0 0 NN {10∗}
–1 1/2 �N , �N {10∗}, {8}a

3/2 �N {10}
–2 0 �N {8}a

1 �N , �� {10}, {10∗}, {8}a

�� {10}, {10∗}
–3 1/2 ��, �� {10}, {8}a

3/2 �� {10∗}
–4 0 �� {10}

Space-spin antisymmetric states
S I Channels SU(3) irreps

0 1 NN {27}
–1 1/2 �N , �N {27}, {8}s

3/2 �N {27}
–2 0 ��, �N , �� {27}, {8}s, {1}

1 �N , �� {27}, {8}s

2 �� {27}
–3 1/2 ��, �� {27}, {8}s

3/2 �� {27}
–4 1 �� {27}

The connection between the BB isospin states and the
SU(3) irreps is given in Table I, and in the figures of Ap-
pendix A, the NN , Y N , and YY data are given for the irreps
{8}, {27}, {10∗}, {10}, and {1}.

The momentum space and configuration space potentials
for the ESC16 model have been described in papers I and II
for baryon-baryon in general. Therefore, they apply also to
hyperon-hyperon and we can refer for that part of the poten-
tial to these papers. Also in the ESC model, the potentials
are of such a form that they are exactly equivalent in both
momentum space and configuration space. The treatment of
the mass differences among the baryons is handled exactly as
is done in Refs. [31,32]. Also, exchange potentials related to
the strange-meson exchange K , K∗, etc., can be found in these
references.

The baryon mass differences in the intermediate states for
TME and MPE potentials have been neglected for YN and
YY scattering. This, although possible in principle, becomes
rather laborious and is not expected to change the characteris-
tics of the baryon-baryon potentials.

B. SU(3) Symmetry and R conjugation

The SU(3)-invariant interaction Hamiltonian for the
baryon-baryon (BB) pseudoscalar (P) meson interaction reads
[34]

HI = gP,8

√
2{αP[B̄BP]F + (1 − αP )[B̄BP]D} + gP,1[B̄BP]S.

(2.6)

TABLE II. SU(3) contents of the various potentials on the isospin
basis.

Space-spin antisymmetric states 1S0,
3P, 1D2, . . .

�� → �� Y = −2, I = 1 V�� (I = 1) = V27

�� → �� V��(I = 1
2 ) = (9V27 + V8s )/10

�� → �� Y = −1, I = 1
2 V��(I = 1

2 ) = (−3V27 + 3V8s )/10
�� → �� V�� (I = 1

2 ) = (V27 + 9V8s )/10
�� → �� Y = −1, I = 3

2 V�� (I = 3
2 ) = V27

Space-spin symmetric states 3S1,
1P1,

3D, . . .

�� → �� Y = −2, I = 0 V�� (I = 0) = V10

�� → �� V��(I = 1
2 ) = (V10 + V8a )/2

�� → �� Y = −1, I = 1
2 V��(I = 1

2 ) = (V10 − V8a )/2

�� → �� V�� (I = 1
2 ) = (V10 + V8a )/2

�� → �� Y = −1, I = 3
2 V�� (I = 3

2 ) = V10�

Here, the baryons are the members of the JP = 1
2

+
baryon

octet

B =

⎛
⎜⎜⎝

�0√
2

+ �√
6

�+ p

�− − �0√
2

+ �√
6

n

−�− �0 − 2�√
6

⎞
⎟⎟⎠. (2.7)

The meson nonet 3 × 3 matrix P can be written as

P = P{1} + P{8}, (2.8)

where the singlet 3 × 3 matrix P{1} has the elements η0/
√

3δα
β ,

and the octet matrix P{8} is given by

P{8} =

⎛
⎜⎜⎝

π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K0 − 2η8√
6

⎞
⎟⎟⎠. (2.9)

Similarly, the interaction with the vector JPC = 1−−, with
scalar JPC = 0++, and with axial vectors JPC = 1++ and
JPC = 1+− mesons. With the SU(2) isosinglet �, isodoublets

N =
(

p
n

)
, � =

(
�0

�−

)
, and

K =
(

K+

K0

)
, Kc =

(
K0

−K−

)
, (2.10)

and isovectors (�+, �0, �−) and (π+, π0, π−), the SU(3)-
invariant interaction Hamiltonian (2.6) can be written in
the isospin basis (see, e.g., Refs. [3,34]), formula (2.9).
All coupling constants can be expressed in terms of only
four parameters. The explicit expressions can be found in
Refs. [31,34]. For example, in the case of the pseudoscalar
mesons the parameters are (i) the octet coupling gNNπ , the
F/(F + D) ratio αP, the singlet coupling gη0 , and the η8 − η0

mixing angle θP. In Table II, the relation between the poten-
tials on the isospin basis is given [see Eqs. (2.4) and (2.5) and
the SU(3) irreps]. Here V�� = V��,��, V�� = V��,��, etc.

In paper III we have introduced as an extension of the
ESC16 model, the ESC16� models A and B with additional
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TABLE III. ESC16�(A): Coupling constants’ SU(3)-symmetric
Gaussian potentials.

{μ} {27} {8s} {1} {8a} {10∗} {10}
A{μ} –0.109 –0.219 –1.568 –3.322 –0.635 –0.635
B{μ} 0.156 –0.356 0.459 3.594 0.123 0.123

SU(3)-symmetric central and spin-spin Gaussian-contact BB
s-channel potentials

Wμ,c(r) = Aμ fW (r), Wμ,σ (r) = Bμ fW (r)σ1 · σ2,

where fW (r) = mW exp(−m2
W r2), mW = 300 MeV. The s-

channel coefficients Aμ and Bμ for ESC16�(A) are derived
from Tables XVIII and XIX in paper III and are given in
Table III. Here, we have chosen to exhibit the s-channel con-
tact potentials rather than the t- and u-channel ones in paper
III. The largest contact potentials occur in the {8a} and {1}
irreps. The s-channel coefficients for model ESC16�(B) with
R symmetry [35] for the Gaussian contact BB potentials are
given in Table IV.

For model ESC16�(A) the entries for the irreps {10} and
{10∗} in Table III are the same. The reason is that we neglect
the {8s} ↔ {8a} transitions in the contact potentials. These
lead to spin singlet-triplet transitions 1P1 ↔ 3P1, etc., which
are small and do not occur in s waves. So, de facto the contact
potentials have R symmetry.

To compare the SU(3) structure for the BB states, Gell-
Mann’s R conjugation [35,36] is useful. R conjugation is
the inversion operation on the baryon and pseudoscalar octet
states

p ↔ �−, n ↔ �0, � ↔ �, �0 ↔ �0, (2.11)

K+ ↔ K−, K0 ↔ K̄0, η ↔ η, π0 ↔ π0. (2.12)

For the BB states one has

Rψ27(Y, I, I3) = ψ27(−Y, I,−I3),

Rψ10(Y, I, I3) = ψ10� (−Y, I,−I3),

Rψ8s (Y, I, I3) = ψ8s (−Y, I,−I3),

Rψ8a (Y, I, I3) = −ψ8a (−Y, I,−I3),

Rψ1(Y, I, I3) = ψ1(−Y, I,−I3). (2.13)

Therefore, in comparing the SU(3) structure of the (�N, �N )
potentials with the (��,��) potentials, the irreps {10} and
{10�} are interchanged, and similarly for the NN potentials
and the �� potentials. The entries of Table II, apart from
using SU(3) Clebsch-Gordan coefficients, can be derived from
Table I in Ref. [2] using R conjugation.

TABLE IV. ESC16�(B): Coupling constants’ SU(3)-symmetric
Gaussian potentials.

{μ} {27} {8s} {1} {8a} {10∗} {10}
A{μ} –0.118 0.071 –0.874 –3.003 –1.635 –1.635
B{μ} 0.261 –0.851 0.084 3.268 –0.302 –0.302

TABLE V. Isospin factors for the various meson exchanges in
the different channels with total strangeness and isospin. Pf is the
flavor-exchange operator. Nonexisting channels are marked by a long
dash.

S = −3 I = 1/2 I = 3/2

(��|η, η′|��) 1 —
(��|η, η′|��) 1 1
(��|π |��) −2 1
(��|π |��)

√
3 —

(��|K|��) Pf —
(��|K|��) −Pf 2Pf

(��|K|��) Pf

√
3 —

S = −4 I = 0 I = 1

(��|η, η′|��) 1
2 (1 − Pf ) 1

2 (1 + Pf )

(��|π |��) − 3
2 (1 − Pf ) 1

2 (1 + Pf )

The R conjugation is not an SU(3) transformation,
and also it is not a symmetry of the strong interactions.
The latter would mean no {8s} ↔ {8a} transitions, because
〈{8a}|V |{8s}〉 = 〈{8a}|R−1V R|{8s}〉 = −〈{8a}|V |{8s}〉 = 0.
This would imply that the transitions 1P1 ↔3 P1 are forbidden,
and so there would be no antisymmetric spin-orbit forces.
However, for the vector exchange and the axial-vector ex-
change with different F/(F + D) ratios for the direct and
derivative couplings the antisymmetric spin-orbit potentials
are nonzero, while having SU(3) symmetry. The extra restric-
tion from R-conjugation symmetry with respect to SU(3) is
that V{10} = V{10∗}. Then, the central, spin-spin, tensor, spin-
orbit, and quadratic spin-orbit potentials have R symmetry
for exact SU(3) symmetry. In the ESC models, V10 ≈ V10∗

(see Ref. [3]), and the singlet-triplet transitions are small. So,
we conclude that R conjugation is an approximate symmetry
in the ESC models and is broken “kinematically,” similar to
SU(3).

C. Solving the multichannel Schrödinger equation

The method of evaluation of the ESC16 models for the S =
−3 and −4 channels follows closely that for the S = 0, −1,
and −2 channels. For details, see paper III [3], Secs. II and
III. The main features are the following.

(i) The multichannel Schrödinger equation is solved for
the physical particle channels. The S = −3 and −4
BB channels can be classified according to their total
charge Q; these are given in Eq. (2.1).

(ii) Average baryon and meson masses are used in the
potentials; i.e., isospin is treated as a good quantum
number. The only breaking of isospin symmetry oc-
curs via the inclusion of the Coulomb interaction.

(iii) The isospin matrix elements for the various OBE
potentials are given in Table V, where we use the
pseudoscalar mesons as a specific example. The
flavor-exchange operator Pf is +1 for a flavor sym-
metric state and −1 for a flavor antisymmetric state.
Since two-baryon states are totally antisymmetric,

024003-5



NAGELS, RIJKEN, AND YAMAMOTO PHYSICAL REVIEW C 108, 024003 (2023)

TABLE VI. Baryon masses in MeV/c2.

Baryon Mass

Nucleon p 938.2796
n 939.5731

Hyperon � 1115.60
�+ 1189.37
�0 1192.46
�− 1197.436

Cascade �0 1314.90
�− 1321.32

Pf = −PxPσ . Therefore, the exchange operator Pf

has the value Pf = +1 for even-L singlet and odd-L
triplet partial waves and Pf = −1 for odd-L singlet
and even-L triplet partial waves. For total strangeness
S = −3, the final-state interchanged diagram only oc-
curs when the exchanged meson carries strangeness
(K , K∗, κ , K∗∗).

(iv) For a proper derivation of the exchange operator Pf

and the exchange forces, see Ref. [3], Sec. III.

III. MULTICHANNEL THRESHOLDS S = −3 CHANNELS

As seen from Eq. (2.1) the S = −3 two-baryon channels
consist of two separate coupled-channel systems separated
by the charge. The thresholds are due to the baryon mass
differences. The used baryon masses are the same as those
in Refs. [1–3] and are given in Table VI. The laboratory
momenta, starting from the baryons at the lowest threshold,
are shown in Fig. 1. Taking the charge dependence of the
masses into account gives a splitting of the thresholds, e.g.,

for (��−, �−�0, �0�−),

pth
�(��− → �−�0) = 578.9 MeV/c,

pth
�(��− → �0�−) = 584.8 MeV/c, (3.1)

for (��0, �0�0, �+�−),

pth
�(��0 → �0�0) = 572.2 MeV/c,

pth
�(��0 → �+�−) = 585.5 MeV/c. (3.2)

The meson masses are the same as those in Refs. [1–3], as
well as the cutoff masses. The threshold differences lead to
effective masses for the meson with nonzero strangeness (see
Refs. [3,4,37] for details and references). For S = −3 chan-
nels these masses are for the pseudoscalar meson mK = 453.4
MeV and the vector meson mK∗ = 869.1 MeV. These effects
are not included for the scalar and axial mesons.

A further subdivision is according to the total isospin. The
different thresholds have been discussed in detail in Ref. [4],
and we show them here in Fig. 1 for the purpose of general
orientation. Their presence turns the Lippmann-Schwinger
and Schrödinger equations into a coupled-channel matrix
equation, where the different channels open up at different
energies. In general one has a combination of “open” and
“closed” channels. For a discussion of the solution of such
a mixed system, we refer the reader to Ref. [37].

IV. ESC MODEL PARAMETERS

Complete sets of meson coupling constants for ESC16 and
ESC16� are given in Appendix B, Tables VII, and VIII, re-
spectively. The corresponding meson-pair couplings are given
in Appendix C, Tables IX, and X, respectively. For other
model parameters, such as Gaussian cutoff’s, meson mixing
angles, etc., see Refs. [1–3].

V. RESULTS

The main purpose of this paper is to present the properties
of the ESC16 and ESC16� potentials for the S = −3 and −4
sectors. We found that the results for S = −3 and −4 for the
different models are not significantly different. We show the
detailed results for ESC16, which are sufficient to represent
the possible kinds of results.

In the following we present the model predictions for scat-
tering lengths, bound states, and cross sections.

A. Effective-range parameters

The (multichannel) effective-range expansion (see
Ref. [33]) reads

pL+1/2(K̄J )−1 pL+1/2 − A−1 + 1
2

(
p2 − p2

0

)1/2
R

(
p2 − p2

0

)1/2
,

where K̄J is the mutilated KJ matrix with the 3D1 channels
being cut out, A−1 is the inverse scattering-length matrix, R
is the effective-range matrix, and pL+1/2 and (p2 − p2

0)1/2 are
the diagonal matrices with elements pL+1/2

i and (p2
i − p2

0i )
1/2.

Here, p0i denotes the momentum at the ��0 threshold (see
below).

Next, we give the low-energy parameters, i.e., scattering
lengths and effective ranges, for the following models.

B. S = −4 results

The following S = −4 low-energy parameters of ESC16
were obtained, where the C denotes Coulomb included:

aC
��

(
1S0

) = −1.81 fm, rC
��

(
1S0

) = 3.89 fm,

a��

(1S0
) = −1.90 fm, r��

(1S0
) = 4.28 fm,

a��

(
3S1

) = +0.52 fm, r��

(
3S1

) = 2.74 fm.

For ESC16�(A), we obtained

a��

(
1S0

) = −1.69 fm, r��

(
1S0

) = 4.71 fm,

a��

(
3S1

) = +0.48 fm, r��

(
3S1

) = 3.41 fm.

For ESC16�(B), we obtained

a��

(
1S0

) = −1.86 fm, r��

(
1S0

) = 4.45 fm,

a��

(
3S1

) = +0.49 fm, r��

(
3S1

) = 3.16 fm.

C. S = −3 and I = 3/2 results

For ESC16, we obtained

a��0

(1S0
) = −1.71 fm, r��0

(1S0
) = 3.71 fm,

a��0

(
3S1

) = −0.85 fm, r��0

(
3S1

) = 8.02 fm.
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For ESC16�(A), we obtained

a��

(
1S0

) = −1.41 fm, r��

(
1S0

) = 4.29 fm,

a��

(
3S1

) = −1.31 fm, r��

(
3S1

) = 5.47 fm.

For ESC16�(B), we obtained

a��

(1S0
) = −1.64 fm, r��

(1S0
) = 4.00 fm,

a��

(
3S1

) = −1.90 fm, r��

(
3S1

) = 4.20 fm.

D. S = −3 and I = 1/2 results

For ESC16, we obtained

a��0

(
1S0

) = −0.56 fm, r��0

(
1S0

) = 8.32 fm,

a��0

(
3S1

) = +0.40 fm, r��0

(
3S1

) = 2.52 fm.

Around the ��0 threshold, for I = 1/2 states, we obtained
the following:

��0(1S0
)
: A−1 =

(
31.537 −29.454

−29.454 34.928

)
,

R =
(

89.479 19.524
19.524 −160.211

)
,

��0(3S1
)
: A−1 =

⎛
⎝1.708 2.377 0.662

2.377 62.133 −16.828
0.662 −16.828 2.377

⎞
⎠,

R =
⎛
⎝−0.208 13.675 −3.522

13.675 −472.466 98.143
−3.522 98.143 −15.637

⎞
⎠.

For ESC16�(A), we obtained

a��0

(
1S0

) = −1.147 fm, r��0

(
1S0

) = 4.849 fm,

a��0

(
3S1

) = +0.088 fm, r��0

(
3S1

) = 76.227 fm.

Around the ��0 threshold, for I = 1/2 states, we obtained

��0
(

1S0
)
: A−1 =

(
6.641 2.230
2.230 −1.110

)
,

R =
(−18.459 10.465

10.465 2.826

)
,

��0
(

3S1
)
: A−1 =

⎛
⎝ 2.750 6.882 −0.150

6.882 −89.577 2.952
−0.150 2.952 −0.267

⎞
⎠,

R =
⎛
⎝−0.410 17.883 −2.294

17.883 −312.978 45.798
−2.294 45.798 −3.493

⎞
⎠.

For ESC16�(B), we obtained

a��0

(1S0
) = −1.382 fm, r��0

(1S0
) = 4.342 fm,

a��0

(
3S1

) = +0.002 fm, r��0

(
3S1

) = 1.079 ∗ 102 fm.

Around the ��0 threshold, for I = 1/2 states, we obtained

��0
(

1S0
)
: A−1 =

(
8.826 1.680
1.680 −0.569

)
,

R =
(−14.077 9.210

9.210 2.375

)
,

��0
(

3S1
)
: A−1 =

⎛
⎝ 3.018 6.448 −0.004

6.448 −61.994 0.131
−0.004 0.131 0.210

⎞
⎠,

R =
⎛
⎝ 0.648 5.124 −0.729

5.124 −232.352 34.303
−0.729 34.303 −2.321

⎞
⎠.

E. Bound states in S waves

The scattering lengths and effective ranges in both models
show no sign of a bound state. In particular, this is the case for
��(1S0), which shows a weaker attraction than in pp(1S0),
and similarly for ��(3S1). The effective range formula for the
pole position of a possible bound state in momentum space is

κ± = (1 ±
√

1 − 2r/a)/r, B± = −κ2
±/(2mred ),

where the momentum is p± = iκ±. The pole closest to the
lowest threshold is given by κ−, and (usually) κ+ is outside the
region of the approximate validity of the effective-range for-
mula, which for ��(1S0) gives κ− < 0, meaning an antibound
state, and κ+ is too large for the effective range expansion to
be valid. In the case of ��(3S1) the root is imaginary, and so
there is no bound state. (Apparently there is enough SU(3)
symmetry breaking and R symmetry breaking to prevent a
deuteronlike bound state in this channel.) Similar analysis
shows that also in the other channels bound states do not
occur.

A discussion of the possible bound states, using the SU(3)
content of the different S = 0, −1, and −2 channels is given in
Ref. [31]. In contrast to the NSC97 models, we find no S < 0
bound states in the ESC16 models.

F. Partial-wave-phase parameters

For the BB channels below the inelastic threshold we
use for the parametrization of the amplitudes the standard
nuclear-bar phase shifts [38]. The information on the elastic
amplitudes above thresholds is most conveniently given using
the BKS phases [39–42]. For uncoupled partial waves, the
elastic BB S-matrix element is parametrized as

S = ηe2iδ, η = cos(2ρ). (5.1)

For coupled partial waves the elastic BB amplitudes are 2 × 2
matrices. The BKS S-matrix parametrization reads

S = eiδeiεNeiεeiδ, (5.2)

where

δ =
(

δα 0
0 δβ

)
, ε =

(
0 ε

ε 0

)
, (5.3)
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FIG. 2. ESC16 �0�0(1S0, I = 1) and �0�−(3S1, I = 0) phases.

and N is a real, symmetric matrix parametrized as

N =
(

η11 η12

η12 η22

)
. (5.4)

In Fig. 2 the S = −4 ESC16 nuclear-bar phases for
�0�0(1S0, I = 1) and �0�−(3S1, I = 0) are shown. Figure 3
shows the ��0(1S0) and ��−(3S1 − 3D1) phase parameters.
Figures 4 and 5 show for ESC16 the �0�0(I = 1/2) BKS

FIG. 3. ESC16 �� I = 1/2 phases.
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FIG. 4. ESC16 I = 1/2 1S0(�0�0 ) phases and η inelasticities.

phase shift and inelasticity parameters for 1S0 and 3S1, re-
spectively. Similarly, Fig. 6 shows the �+�0(I = 3/2) phase
shifts.

The �−�−, �0�−, and �0�0 nuclear-bar phase shifts for
I = 1 and I = 0 as a function of the momentum and energy

are given in the tables in Appendix D for ESC16, as well as the
results for the BKS parameters ��0, ��(I = 1/2), ��0(I =
1/2), and �+�0(I = 3/2). The inelasticity parameters ρ and
η11, η12, and η22 contain the information to construct the δ, ε,
N , and S matrices.

FIG. 5. ESC16 I = 1/2 3C1(�0�0 ) phases and η inelasticities.
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FIG. 6. ESC16 I = 3/2 �+�0 phases.

The ��(1S0, I = 1) phase shift is in agreement with
LQCD (see Ref. [12], Fig. 2). For example, at plab =
200 MeV/c, which means Tcm = 3.8 MeV, ESC16 has
δ(1S0, I = 1) = 23.71◦ (see Table XI), and ESC16�(A) has
δ(1S0, I = 1) = 21.45◦, both of which match with the LQCD
result.

Notice that the ��(3S1, I = 0) phase shows repulsion,
except for very low energies. This means that the potential
has a weak long-range attractive tail from one-pion-exchange.
Qualitatively, this also agrees with the LQCD result.

VI. DISCUSSION AND SUMMARY

An important result is that in the ESC16 models there is
no bound state in the �0�0(I = 1, 1S0) channel, which is in
the SU(3) irrep {27}. Since pp(1S0) and nn(1S0) are in the
same irrep and quite attractive it might be expected naively
that because of the larger � mass a bound state might oc-
cur. Similarly, in the past sometimes it was speculated that a
bound state could appear in �+ p. Apparently the breaking of
SU(3) symmetry, due to using the physical meson and baryon
masses, prevents such bound states.

It is seen from Fig. 2 and Table XII that �0�0(1S0) indi-
cates an attractive interaction but this is weaker than in the
case of, e.g., �+ p. Also the preliminary data of the STAR
Collaboration [14] indicate that the �� interaction in 1S0 is
much weaker than that in pp.

To illustrate the basic properties of the potentials for S =
−3 and −4 we have presented results for scattering lengths

and phase shifts in the tables. From these, the differential and
total cross sections can be calculated easily. The results for
the S = −3 and −4 channels of ESC16 and ESC16�(A, B)
are qualitatively similar. From Table I it is seen that the same
SU(3) irreps occur in these channels as for S = 0 and −1,
where experimental data determine the interactions to a great
extent.

Summarizing, the ESC16 and ESC16�(A, B) models pro-
vide an SU(3)-based unified realistic description of all BB
interactions, using single (OBE) and double (TME, MPE)
meson-exchange potentials with Gaussian form factors. Here,
the baryons are the SU(3) octet ground states with JP = 1/2+.
The baryon-meson coupling constants can be systematically
related to the quark-antiquark pair creation process with 3P0

dominance. Using (heavy) meson dominance this can be ex-
tended to the baryon-meson-pair couplings as well. The ESC
potentials have been applied to calculate the properties of
nuclei, hypernuclei, including double-� and more exotic YY
hypernuclei. Also, the interactions can be explored to study
multiply strange systems and strange nuclear matter.

Application of the ESC interactions to the study of all
{8} ⊗ {8} two-baryon correlations measured in heavy-ion col-
lision experiments is a future project, with the prospect of
further insight into the low- and intermediate-energy baryon-
baryon interactions.
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APPENDIX A: SU(3) irreps AND BARYON-BARYON ISOSPIN STATES

The BB irreps are diplayed in Figs. 7 and 8 showing the two-baryon content and the hypercharge Y = N + S of the SU(2)
isospin multiplets.

FIG. 7. Baryon-baryon {8} and {27} states.

FIG. 8. Baryon-baryon antidecuplet {10∗} and {10} states.
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APPENDIX B: MESON COUPLING CONSTANTS

In Tables VII and VIII the rationalized NNM, YY M, and Y NM OBE couplings are given for models ESC16 and ESC16∗,
respectively. This is for pseudoscalar, vector, scalar, and axial-vector mesons.

TABLE VII. Coupling constants for model ESC16, divided by
√

4π . M refers to the meson. The coupling constants are listed in the order
pseudoscalar, vector (g and f ), axial vector A (g and f ), scalar, axial vector B, and diffractive.

M NNM ��M ��M ��M M �NM ��M �NM ��M

f π 0.2684 0.1955 0.1968 –0.0725 K –0.2681 0.0713 0.0725 –0.2684
g ρ 0.5793 1.1586 0.0000 0.5793 K∗ –1.0034 1.0034 –0.5793 –0.5793
f 3.7791 3.5185 2.3323 –0.2606 –4.2132 1.8810 0.2606 –3.7791
g a1 –0.8172 –0.6260 –0.5822 0.1912 K1A 0.8333 –0.2511 –0.1912 0.8172
f –1.6521 –1.2656 –1.1770 0.3865 1.6846 –0.5076 –0.3865 1.6521
g a0 0.5393 1.0786 0.0000 0.5393 κ –0.9341 0.9341 –0.5393 –0.5393
f b1 –2.2598 –1.8078 –1.5656 0.4520 K1B 2.3484 –0.7828 –0.4520 2.2598

M NNM ��M ��M ��M M NNM ��M ��M ��M

f η 0.1368 –0.1259 0.2599 –0.1958 η′ 0.3181 0.3711 0.2933 0.3852
g ω 3.1148 2.4820 2.4820 1.8492 φ –1.2384 –2.0171 –2.0171 –2.7958
f –0.5710 –3.2282 –0.2863 –4.4144 2.8878 –0.3819 3.2380 –1.8416
g f ′

1 –0.7596 –0.1213 –1.0133 0.0710 f1 0.5147 1.0503 0.3019 1.2117
f –4.4179 –3.1274 –4.9307 –2.7386 4.4754 5.5582 4.0450 5.8844
g ε 2.9773 2.3284 2.3284 1.6795 f0 –1.5766 –2.2485 –2.2485 –2.9205
f h′

1 –1.2386 0.1171 –1.6905 0.5690 h1 –0.0830 1.8346 –0.7222 2.4738
g P 2.7191 2.7191 2.7191 2.7197
g O 4.1637 4.1637 4.1637 4.1637
f –3.8859 –3.8859 –3.8859 –3.8859

TABLE VIII. Coupling constants for model ESC16�(A), divided by
√

4π . M refers to the meson. The coupling constants are listed in the
order pseudoscalar, vector (g and f ), axial vector A (g and f ), scalar, axial vector B, and diffractive.

M NNM ��M ��M ��M M �NM ��M �NM ��M

f π 0.2680 0.1978 0.1952 –0.0701 K –0.2689 0.0737 0.0701 –0.2680
g ρ 0.5821 1.1641 0.0000 0.5821 K∗ –1.0082 1.0082 –0.5821 –0.5821
f 3.7601 3.8215 2.1355 0.0614 –4.3773 2.2418 –0.0614 –3.7601
g a1 –0.8526 –0.6681 –0.5988 0.1845 K1A 0.8780 –0.2792 –0.1845 0.8526
f –3.1888 –2.4987 –2.2395 0.6902 3.2837 –1.0441 –0.6902 3.1888
g a0 0.4905 0.8043 0.1019 0.3139 κ –0.7575 0.6456 –0.3139 –0.4905
f b1 –2.4303 –1.9442 –1.6837 0.4861 K1B 2.5256 –0.8419 –0.4861 2.4303

M NNM ��M ��M ��M M NNM ��M ��M ��M

f η 0.1394 –0.1243 0.2584 –0.1966 η′ 0.3181 0.3712 0.2941 0.3858
g ω 3.0977 2.4618 2.4618 1.8260 φ –1.2183 –2.0007 –2.0007 –2.7831
f –0.5473 –3.3080 –0.6144 –4.7218 3.3335 –0.0634 3.2510 –1.8032
g f ′

1 –0.7254 –0.0528 –0.9702 0.1611 f1 0.4301 0.9945 0.2247 1.1739
f –4.8976 –2.3822 –5.8134 –1.5824 4.2124 6.3231 3.4440 6.9942
g ε 3.1268 2.6704 2.7949 2.2762 f0 –1.5956 –2.1876 –2.0261 –2.6989
f h′

1 –1.2386 0.2194 –1.7246 0.7054 h1 –0.1553 1.9069 –0.8428 2.5944
g P 2.8256 2.8256 2.8256 2.8256
g O 4.1637 4.1637 4.1637 4.1637
f –3.8859 –3.8859 –3.8859 –3.8859
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APPENDIX C: MESON-PAIR COUPLING CONSTANTS

In Tables IX and X the rationalized NNMp, YY Mp, and Y NMp couplings are given for models ESC16 and ESC16∗,
respectively. This is for scalar, vector, and axial-vector meson pairs Mp.

TABLE IX. Pair coupling constants for model ESC16, divided by
√

4π . I (Mp) refers to the isospin of the pair Mp with quantum numbers JPC.

Pair JPC Type I (Mp) NNMp ��Mp ��Mp ��Mp I (Mp) �NMp ��Mp �NMp ��Mp

πη 0++ g 1 –0.6881 –1.3763 0.0000 –0.6881 1/2 1.1919 –1.1919 0.6881 0.6881
0 –1.1919 0.0000 0.0000 1.1919

ππ 1−− g 1 0.2514 0.5028 0.0000 0.2514 1/2 –0.4354 0.4354 –0.2514 –0.2514
0 0.4354 0.0000 0.0000 –0.4354

ππ 1−− f 1 –1.7729 –1.4183 –1.2283 0.3546 1/2 1.8425 –0.6142 –0.3546 1.7729
0 –0.6142 1.2283 –1.2283 1.8425

πρ 1++ g 1 5.6913 4.5530 3.9431 –1.1383 1/2 –5.9147 1.9715 1.1383 –5.6913
0 1.9715 –3.9431 3.9431 –5.9146

πσ 1++ g 1 –0.3892 –0.3114 –0.2697 0.0778 1/2 0.4045 –0.1348 –0.0778 0.3892
0 –0.1348 0.2697 –0.2697 0.4045

πω 1+− g 1 –0.3281 –0.2624 –0.2273 0.0656 1/2 0.3409 –0.1136 –0.0656 0.3281
0 –0.1136 0.2273 –0.2273 0.3409

TABLE X. Pair coupling constants for model ESC16�(A), divided by
√

4π . I (Mp) refers to the isospin of the pair Mp with quantum
numbers JPC.

Pair JPC Type I (Mp) NNMp ��Mp ��Mp ��Mp I (Mp) �NMp ��Mp �NMp ��Mp

πη 0++ g 1 –0.2683 –0.5365 0.0000 –0.2683 1/2 0.4646 –0.4646 0.2683 0.2683
0 –0.4646 0.0000 0.0000 0.4646

ππ 1−− g 1 0.2514 0.4071 0.0553 0.1557 1/2 –0.3802 0.3249 –0.1557 –0.2514
0 0.3249 –0.0553 0.0553 –0.3802

ππ 1−− f 1 –1.7729 –1.3973 –1.2404 0.3756 1/2 1.8303 –0.5899 –0.3756 1.7729
0 –0.5899 1.2404 –1.2404 1.8303

πρ 1++ g 1 5.8748 1.7084 5.7973 –4.1665 1/2 –4.3782 –1.4192 4.1665 –5.8748
0 –1.4192 –5.7973 5.7973 –4.3782

πσ 1++ g 1 –0.3835 –0.1115 –0.3784 0.2720 1/2 0.2858 0.0926 –0.2720 0.3835
0 0.0926 0.3784 –0.3784 0.2858

πω 1+− g 1 –0.4364 –0.3491 –0.3023 0.0873 1/2 0.4535 –0.1512 –0.0873 0.4364
0 –0.1512 0.3023 –0.3023 0.4535
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APPENDIX D: ESC16 BKS PHASE PARAMETERS

The ESC16 �−�− and �−�0 nuclear-bar phase shifts as a function of energy are given in Table XII. The �� BKS phase
shifts and inelasticities are given in Tables XIII and XIV, respectively. Table XV shows the �0�0 phase parameters, and
Table XVI shows the I = 3/2 �+�0 phases. Notice that the 3S1 phase shows repulsion, except for very low energies. This
means that the potential has a weak long-range attractive tail.

TABLE XI. ESC16 nuclear-bar �−�−(I = 1, 1S0 ) and �0�−(I = 0, 3S1) phases in degrees.

p�: 10 50 100 200 300 400 500 600

Tlab: 0.038 0.95 3.77 15.05 36.63 59.22 91.94 129.85

1S0 0.04 7.01 17.27 23.71 19.43 11.69 3.05 −5.60
3S1 −0.75 −3.77 −7.72 −16.27 −25.36 −34.40 −42.86 −50.43
ε1 0.00 0.03 0.19 0.68 1.02 1.14 1.10 0.94
3P0 0.00 0.02 0.21 0.96 1.09 −0.53 −3.96 −8.63
1P1 0.00 0.02 0.24 1.64 3.76 15.21 5.13 3.51
3P1 −0.00 −0.00 −0.02 0.03 0.06 −0.51 −1.94 −4.11
3P2 0.00 0.01 0.10 0.68 1.31 1.14 −0.11 −2.20
ε2 −0.00 −0.00 −0.01 −0.07 −0.23 −0.47 −0.76 −1.07
3D1 −0.00 −0.00 −0.01 −0.13 −0.36 −0.80 −1.77 −3.543
1D2 0.00 0.00 0.01 0.16 0.74 1.95 3.66 5.49
3D2 0.00 0.00 0.03 0.31 0.93 1.66 2.16 2.18
3D3 0.00 0.00 0.00 0.04 0.20 0.40 0.37 −0.12

TABLE XII. ESC16 nuclear-bar �−�0 phases in degrees.

p�: 50 100 200 300 400 500 600 700 800 900

Tlab: 0.95 3.80 15.12 33.79 59.50 91.86 130.42 174.72 224.24 278.51

1S0 12.65 20.69 23.73 18.44 10.44 1.77 −6.84 −15.11 −22.94 −30.28
3S1 −3.77 −7.72 −16.27 −25.36 −34.39 −42.85 −50.42 −56.98 −62.54 −67.19
ε1 0.03 0.19 0.68 1.02 1.14 1.10 0.94 0.70 0.40 0.05
3P0 0.04 0.25 0.99 0.99 −0.78 −4.32 −9.06 −14.41 −19.95 −25.41
1P1 0.04 0.31 1.78 3.88 5.23 5.03 3.31 0.45 −3.18 −7.29
3P1 −0.01 −0.02 0.03 0.03 −0.61 −2.10 −4.30 −6.933 −9.75 −12.57
3P2 0.02 0.13 0.73 1.32 1.09 −0.23 −2.35 −4.90 −7.61 −10.33
ε2 −0.00 −0.01 −0.08 −0.24 −0.48 −0.77 −1.07 −1.36 −1.60 −1.81
3D1 −0.00 −0.01 −0.13 −0.36 −0.80 −1.77 −3.54 −6.14 −9.42 −13.19
1D2 0.00 0.01 0.16 0.74 1.94 3.65 5.48 6.98 7.82 7.86
3D2 0.00 0.03 0.31 0.93 1.66 2.16 2.18 1.64 0.61 −0.77
3D3 0.00 0.00 0.04 0.20 0.40 0.37 −0.12 −1.11 −2.50 −4.12
ε3 0.00 0.00 0.04 0.15 0.29 0.40 0.48 0.52 0.53 0.51
3F2 0.00 0.00 0.01 0.07 0.21 0.42 0.55 0.43 −0.11 −1.16
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TABLE XIII. I = 1/2: ESC16 nuclear-bar ��0 phases in degrees.

p�: 10 50 150 250 350 450 550 650

Tlab: 0.038 0.95 8.53 23.56 45.79 74.88 110.40 151.90

1S0 0.74 3.58 8.41 8.873 5.93 1.04 −4.82 −10.97
3S1 −0.53 −2.65 −8.02 −13.50 −18.94 −24.09 −28.78 −32.73
ε1 −0.00 −0.00 −0.12 −0.50 −1.26 −2.47 −4.20 −6.76
3P0 −0.00 −0.00 −0.06 −0.42 −1.42 −3.20 −5.64 −8.52
1P1 0.00 0.00 0.09 0.24 0.18 −0.32 −1.34 −2.80
3P1 −0.00 −0.00 −0.10 −0.47 −1.35 −2.79 −4.70 −6.85
3P2 0.00 0.00 −0.01 −0.15 −0.64 −1.59 −2.98 −4.68
ε2 −0.00 −0.00 −0.00 −0.01 −0.03 −0.06 −0.08 −0.09
3D1 0.00 0.00 0.01 0.09 0.36 0.96 2.05 4.15
1D2 0.00 0.00 0.01 0.10 0.41 1.04 1.99 3.20
3D2 −0.00 −0.00 −0.00 −0.00 −0.03 −0.14 −0.42 −0.87
3D3 −0.00 −0.00 −0.00 −0.01 −0.09 −0.35 −0.91 −1.80

TABLE XIV. ESC16 1S0,
3S1 − 3D1(�� → ��, I = 1/2) BKS-phase parameters in degrees as a function of the laboratory momentum

p� in MeV. The �0�0 and �+�− thresholds are at p� = 689.97 MeV and p� = 706.47 MeV, respectively.

p� δ(1S0 ) ρ(1S0) δ(3S1) ε1 δ(3D1) η11 η12 η22

10 0.74 1.00 –0.53 –0.00 0.00 1.00 0.00 1.00
50 3.58 1.00 –2.65 –0.00 0.00 1.00 0.00 1.00
100 6.52 1.00 –5.31 –0.04 0.00 1.00 0.00 1.00
150 8.41 1.00 –8.02 –0.12 0.01 1.00 0.00 1.00
200 9.16 1.00 –10.75 –0.27 0.03 1.00 0.00 1.00
250 8.87 1.00 –13.50 –0.50 0.09 1.00 0.00 1.00
300 7.72 1.00 –16.24 –0.83 0.19 1.00 0.00 1.00
350 5.93 1.00 –18.94 –1.26 0.36 1.00 0.00 1.00
400 3.65 1.00 –21.56 –1.80 0.61 1.00 0.00 1.00
450 1.04 1.00 –24.09 –2.47 0.96 1.00 0.00 1.00
500 −1.82 1.00 –26.51 –3.26 1.43 1.00 0.00 1.00
550 −4.82 1.00 –28.78 –4.20 2.05 1.00 0.00 1.00
600 −7.90 1.00 –30.89 –5.32 2.90 1.00 0.00 1.00
650 −10.97 1.00 –32.73 –6.76 4.15 1.00 0.00 1.00
700 −13.80 0.990 –34.47 1.20 5.99 0.92 0.31 0.91
750 −17.14 0.972 –38.66 3.64 4.65 0.88 0.30 0.84
850 −23.997 0.956 –45.41 5.34 3.07 0.87 0.28 0.81
950 −30.624 0.945 –51.22 6.21 1.93 0.87 0.28 0.73
1050 −36.967 0.936 –56.42 6.69 0.70 0.87 0.28 0.71
1150 −42.966 0.928 –61.15 6.91 –0.70 0.88 0.28 0.68
1250 −41.319 0.921 –65.53 6.93 –2.26 0.89 0.29 0.66
1350 −35.927 0.915 –69.50 6.81 –4.06 0.89 0.29 0.64
1450 −30.988 0.908 –73.07 6.59 –5.96 0.90 0.29 0.64
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TABLE XV. ESC16 1S0,
3S1 − 3D1(�0�0 → �0�0, I = 1/2) BKS-phase parameters in degrees as a function of the laboratory momentum

p� in MeV. The �+�− threshold at p� = 138.15 MeV.

p� δ(1S0 ) ρ(1S0) δ(3S1) ε1 δ(3D1) η11 η12 η22

10 –0.18 1.00 0.44 0.00 0.00 0.99 0.00 1.00
50 –0.85 1.00 2.19 0.01 0.00 0.96 0.00 1.00
100 –1.11 0.99 4.46 0.04 0.01 0.94 0.01 1.00
150 –2.38 0.83 8.14 –0.09 0.09 0.87 0.00 1.00
200 –3.65 0.67 7.38 –0.42 0.19 0.78 0.01 1.00
250 –10.02 0.59 6.01 –0.63 0.33 0.75 0.03 0.99
300 –16.30 0.55 4.24 –0.75 0.49 0.73 0.04 0.98
350 –22.32 0.52 2.12 –0.77 0.67 0.72 0.05 0.97
400 –28.05 0.50 –0.30 –0.69 0.86 0.71 0.07 0.96
450 –33.45 0.49 –2.99 –0.51 1.03 0.70 0.08 0.95
500 –38.52 0.48 –5.93 –0.27 1.20 0.69 0.09 0.93
550 –43.27 0.48 –9.07 0.04 1.34 0.68 0.09 0.91
600 –42.29 0.48 –12.37 0.37 1.46 0.68 0.10 0.89
650 –38.16 0.48 –15.81 0.72 1.56 0.67 0.10 0.87
700 –34.30 0.49 –19.32 1.04 1.64 0.67 0.10 0.85
750 –30.72 0.50 –22.85 1.34 1.68 0.67 0.10 0.83
850 –24.23 0.52 –29.86 1.78 1.63 0.67 0.09 0.80
950 –18.55 0.55 –36.59 2.05 1.28 0.68 0.08 0.76
1050 –13.51 0.58 –42.90 2.21 0.52 0.69 0.07 0.74
1150 –9.84 0.61 –48.69 2.30 –0.72 0.70 0.06 0.72
1250 –5.02 0.64 –53.98 2.39 –2.41 0.71 0.06 0.70
1350 –1.31 0.67 –58.93 2.51 –4.32 0.72 0.05 0.70
1450 1.94 0.70 –63.54 2.62 –6.62 0.74 0.04 0.69

TABLE XVI. I = 3/2: ESC16 nuclear-bar �+�0 phases in degrees.

p�+ : 50 150 250 350 450 550 650 750 850 950

Tlab: 1.05 9.42 25.99 50.43 82.28 121.01 166.03 216.72 272.51 332.83

1S0 12.15 22.97 19.53 10.95 1.04 −8.89 −18.41 −27.33 −35.62 −43.27
3S1 6.08 11.86 9.42 2.98 −4.90 −13.09 −21.11 −28.73 −35.86 −42.47
ε1 0.09 1.38 3.59 5.99 8.21 10.13 11.75 13.10 14.23 15.16
3P0 −0.07 −0.97 −2.63 −5.43 −9.75 −15.24 −21.33 −27.53 −33.52 −39.11
1P1 −0.07 −1.32 −4.55 −9.70 −16.21 −23.39 −30.68 −37.72 −44.28 −50.21
3P1 0.03 0.41 0.06 −1.69 −4.59 −8.15 −11.96 −15.78 −19.45 −22.90
3P2 0.01 0.04 −0.23 −1.31 −3.38 −6.19 −9.37 −12.67 −15.93 −19.08
ε2 0.00 0.07 0.20 0.20 0.06 −0.08 −0.15 −0.10 0.05 0.26
3D1 −0.00 −0.04 −0.20 −0.45 −0.81 −1.37 −2.22 −3.39 −5.29 −7.67
1D2 −0.00 −0.01 0.25 1.33 3.29 5.65 7.65 8.75 8.73 7.62
3D2 0.00 0.17 1.07 3.21 6.63 10.63 14.17 16.54 17.55 17.34
3D3 0.00 0.02 0.18 0.62 1.26 1.82 1.99 1.58 0.53 −1.11
ε3 0.00 0.01 0.11 0.32 0.69 1.23 1.90 2.65 3.44 4.27
3G3 −0.00 −0.00 −0.01 −0.03 −0.05 −0.03 0.08 0.31 0.72 1.35
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