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Magnetic moments of A = 3 nuclei obtained from chiral effective field theory operators
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Chiral effective field theory (χEFT) provides a framework for obtaining internucleon interactions in a
systematically improvable fashion from first principles, while also providing for the derivation of consistent
electroweak current operators. In this work, we apply consistently derived interactions and currents towards
calculating the magnetic dipole moments of the A = 3 systems 3H and 3He. We focus here on LENPIC
interactions obtained using semilocal coordinate-space (SCS) regularization. Starting from the momentum-space
representation of the LENPIC χEFT vector current, we derive the SCS-regularized magnetic dipole operator up
through next-to-next-to-leading order (N2LO). We then carry out no-core shell-model calculations for 3H and
3He systems using the SCS LENPIC interaction at N2LO in χEFT and evaluate the magnetic dipole moments
obtained using the consistently derived one-nucleon and two-nucleon electromagnetic currents. As anticipated by
prior results with χEFT currents, the current corrections through N2LO provide improved, but not yet complete,
agreement with experiment for the 3H and 3He magnetic dipole moments.
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I. INTRODUCTION

Chiral effective field theory (χEFT) is a systematically
improvable approach to obtain internucleon interactions and
corresponding electroweak current operators from first princi-
ples [1–4]. Multiple implementations of χEFT have emerged
that differ in the choice of the subnuclear degrees of freedom,
power counting scheme, and choice of regulators. This has led
to several internucleon interactions that accurately describe
nucleon-nucleon scattering data and the deuteron bound state.
Under each such implementation of χEFT, corresponding
electroweak current operators may be derived, subject to var-
ious challenges in obtaining consistency [5].

The present work is focused on the next stage in the pro-
cess, where we apply consistently derived interactions and
currents towards calculating nuclear physics observables. His-
torically, corrections to the naive electroweak operators were
obtained phenomenologically from meson-exchange theory
[6,7]. The program of developing electroweak currents from
χEFT was initiated in the context of hybrid approaches which
combined phenomenological internucleon interactions with
incomplete χEFT currents [8–12].

A new generation of χEFT interactions, and their cor-
responding currents, have been derived from χEFT by
constructing effective operators which act only on nucle-
onic degrees of freedom, either by the method of unitary
transformations (UTs) [13,14] or by means of time-ordered
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perturbation theory (TOPT) [1–3]. For the Norfolk χEFT
potentials [15,16], which are local and include � intermediate
states, the energy-dependence resulting from the application
of TOPT is removed through an inverse T -matrix approach
[17,18]. For the potentials of the Low Energy Nuclear Physics
International Collaboration (LENPIC) [19–21], which are
nonlocal and include only pion intermediate states, operators
acting purely on nucleonic degrees of freedom are constructed
using the UT method [14,22].

In this work, we apply consistently derived interactions
and currents towards calculating the magnetic dipole mo-
ments of the A = 3 systems 3H and 3He. The magnetic dipole
moments of these systems have previously been calculated
using χEFT currents, both in hybrid approaches with phe-
nomenological potentials [12,23,24], and in a fully χEFT
approach using the Norfolk potentials and currents [25]. We
focus here on LENPIC interactions obtained using semilocal
coordinate-space (SCS) regularization, developed to preserve
the approximately local nature of the long-range potentials
and associated currents. We calculate the magnetic dipole mo-
ments using wave functions obtained by no-core shell-model
(NCSM) [26] calculations. We use the SCS regularized two-
nucleon (2N) and two-nucleon plus three-nucleon (2N + 3N)
LENPIC potentials up to next-to-next-to-leading order
(N2LO), with the consistently derived single-nucleon (1N)
and 2N electromagnetic currents. Consequences of apply-
ing a similarity renormalization group (SRG) transformation
[27–29] to the potential are also considered. Initial results
were reported in Ref. [30].

We first derive the SCS-regularized magnetic dipole op-
erator starting from the momentum-space representation of
the LENPIC χEFT vector current (Sec. II). We then detail
the calculational scheme used for our NCSM calculations of
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magnetic dipole moments for the A = 3 systems (Sec. III),
and present our results for the magnetic dipole moments ob-
tained with the LENPIC SCS-regulated interaction and χEFT
magnetic dipole operator through N2LO (Sec. IV). We dis-
cuss the effects of including the 3N interaction and of the
choice of SCS regulator parameter and SRG evolution and
compare with prior results. To achieve a compact presentation,
we include most of the formal developments regarding the
derivation of the SCS-regularized operators in Appendices.

II. MAGNETIC DIPOLE OPERATOR FROM χEFT

The magnetic dipole moment, characterizing the interac-
tion between a charged current and the electromagnetic field,
is defined classically as [31]

μ = 1

2

∫
R3

d3x x × j̄(x), (1)

where j̄(x) is the charged-current density at position x. We
can also express the magnetic dipole moment in terms of the
current density in momentum space via the Fourier transform,

j̄(x) =
∫

R3

d3k

(2π )3/2 eik·xj(k), (2)

obtaining

μ = 1

2i
∇k × j(k)

∣∣∣
k=0

. (3)

If we take the momentum-space matrix element of the
nonrelativistic current operator [32] for a charged particle with
spin, we obtain

j
(
p′, p; k

) = 2μN

(
gl

p′ + p
2

− igsk × s
)

, (4)

with the connection to the quantum-mechanical matrix ele-
ment given by

〈p′|j(k)|p〉 def= j(p′, p; k)δ3(p′ − p − k), (5)

following the notation of Ref. [33], where μN = e/2mN is the
nuclear magneton, p (p′) is the initial (final) momentum, s is
the spin operator, gl and gs are the orbital and spin g factors,
and the momentum eigenstates are normalized as 〈p′|p〉 =
δ(3)(p′ − p). Combining this with (3) and writing the orbital
angular momentum l = −p × i∇p in momentum space, we
get the conventional [34,35] (impulse-approximation) expres-
sion for the magnetic dipole moment operator1

μIA = μN (gl l + gss), (6)

where l and s are the orbital and spin angular-momentum
operators, respectively. The operator μIA is a one-body oper-
ator which corresponds to the treatment of nucleons as point
particles with charges and intrinsic magnetic moments.

1The magnetic dipole operator μ considered here, normalized ap-
propriately for calculation of the magnetic dipole moment, is related
to the magnetic dipole operator M1 found in the theory of electro-
magnetic transitions (see Appendix A 2) by a conventional factor, as
μ = (4π/3)1/2M1.

For the present work, we have used the LENPIC SCS-
regulated potentials described in Refs. [19,20,36], and pre-
viously used for low-energy nuclear structure calculations in
Refs. [36–38]. The 2N potentials have been derived up to
next-to-next-to-next-to-next-to leading order (N4LO) in the
chiral order and fit to nucleon-nucleon scattering data and the
deuteron bound state, while the 3N interactions have been de-
rived up to N2LO and fit to nucleon-deuteron (Nd) scattering.

Because iteration of the 2N interaction with the Lippmann-
Schwinger equation generates ultraviolet (UV) divergences
[39,40], one must regulate the high-momentum (or, equiv-
alently, short-distance) behavior of the interaction. This is
usually done by introducing a momentum-space UV cutoff �.
Choosing a large value for �, such as the mass of the ρ meson,
results in spurious deeply bound states, while choosing a small
cutoff leads to more-pronounced finite-cutoff artifacts (for
more details, see Ref. [20]).

To attempt to mitigate finite-cutoff artifacts, in the LENPIC
SCS framework, a hybrid regularization scheme has been
adopted. The terms in these potentials arising from pion ex-
change (without contact interactions) have been regularized
in coordinate space by multiplying with the coordinate space
function

f (r) =
[

1 − exp

(
− r2

R2

)]6

, (7)

where r is the relative separation between the two nucleons,
and R characterizes the cutoff separation. Meanwhile, the
contact terms have been regularized in momentum space by
multiplying by the nonlocal Gaussian regulator

g
(
p, p′) = exp

(
− p2 + p′2

�2

)
, (8)

where p and p′ are the magnitudes of the incoming and out-
going relative nucleon momenta, respectively, with the cutoff
� = 2R−1. Here we have two sets of interactions, one set with
R = 0.9 fm and the other with R = 1.0 fm.

For consistency with the regularization scheme for the
interaction, we must also regularize the operators that arise
from the χEFT expansion of the magnetic dipole moment
operator. The current-density operator is typically derived and
expressed in momentum space [5,32,41]. However, in order
to apply the regulator function in (7), we must transform the
long-range parts of the magnetic dipole moment operator to
coordinate space. For the coordinate-space matrix element of
the a-body operator μaN we have [34,42]

μaN (r′
1, . . . , r′

a, r1, . . . , ra)

= 1

2

∫
d3x x × j̄aN

(r′
1, . . . , r′

a, r1, . . . , ra; x), (9)

where ri (r′
i ) is the initial (final) position of the ith nucleon.

We define the coordinate-space matrix element of j̄aN via

〈r′
1 · · · r′

a|j̄(x)|r1 · · · ra〉 = j̄(r′
1, . . . , r′

a, r1, . . . , ra; x). (10)

024001-2



MAGNETIC MOMENTS OF A = 3 NUCLEI OBTAINED … PHYSICAL REVIEW C 108, 024001 (2023)

To use the (momentum-space) current matrix elements de-
rived in Refs. [41] and [32] with the coordinate-space
regulators, we perform the change of basis via the multidi-
mensional Fourier transform

j̄aN (r′
1, . . . , r′

a, r1, . . . , ra; x)

=
∫

{q}a
1

∫
{Q}a

1

∫
k

a∏
i=1

eiqi ·(r′
i+ri )/2 eiQi·�ri eik·x

× jaN (q1, . . . , qa, Q1, . . . , Qa; k)

× (2π )−3a+3δ(3)(q1 + · · · + qa − k), (11)

where qi = p′
i − pi, Qi = (p′

i + p)/2 are linear combinations
of the incoming (pi) and outgoing (p′

i) momenta of the ith nu-
cleon, and k is the momentum of the external electromagnetic
field. Following the convention of Refs. [32,33], we define
the function jaN (q1, . . . , qa, Q1, . . . , Qa; k) in terms of the
momentum-space matrix element

〈p′
1 · · · p′

a|j(k)|p1 · · · pa〉 = (2π )−3a+3δ(3)(q1 + · · · + qa − k)j(q1, . . . , qa, Q1, . . . , Qa; k), (12)

where we adopt the nonrelativistic normalization of states
〈p′|p〉 = δ(3)(p′ − p). We also use the notations

∫
{q}a

1
=∫

q1
· · · ∫qa

, with
∫

q = ∫ d3q
(2π )3/2 , and �ri = r′

i − ri. From equa-
tions (9) and (11) we obtain

μaN (. . .)

= (2π )3

2i

[
∇k ×

∫
{q}a

1

∫
{Q}a

1

a∏
i=1

eiqi·(r′
i+ri )/2 eiQi·�ri jaN (. . .)

× δ(3)(q1 + · · · + qa − k)

]
k=0

, (13)

where for brevity we have omitted the arguments of μaN and
jaN .

We use these relations to derive the magnetic dipole
operators from the corresponding momentum-space electro-
magnetic currents. While we will now focus on specific 1N
and 2N currents, we emphasize that this relation is true for
any electromagnetic current derived from χEFT. For a general
derivation of electric and magnetic multipole operators see
Appendix A.

A. Single-nucleon magnetic dipole operators

For 1N currents, after integrating over q1 and expanding
the curl, equation (13) reduces to

μ1N = 1

2i

[
i

2
(r′

1 + r1) ×
∫

Q1

eiQ1·�r1 j1N (q1 = k, Q1)

+
∫

Q1

eiQ1·�r1 ∇k × j1N (q1 = k, Q1)

]
k=0

. (14)

If the current is independent of Q1 then integrating over Q1
gives an additional δ function, δ(3)(�r1). Up to N2LO in the
power counting scheme established in Ref. [32], there are two
1N currents—one at next-to-leading order (NLO), and the
other at N2LO. The 1N current at NLO is

j1N
NLO = e

4mN

[−iq1 × σ1
(
gs + gvτ

3
1

) + 2Q1

(
1 + τ 3

1

)]
, (15)

where mN is the average nucleon mass, gs = 1
2 (gs,p + gs,n),

and gv = 1
2 (gs,p − gs,n) are the isoscalar and isovector g fac-

tors of the nucleon, respectively, while σ and τ are the Pauli
matrices in spin and isospin spaces, respectively. Substituting
this current into equation (14) we get

μ1N
NLO = μN

2

[(
gs + gvτ

3
1

)
σ1 + (

1 + τ 3
1

)
l1

]
δ(3)(�r1),

(16)

where �r1 = r′
1 − r1. This expression is equivalent to μIA in

equation (6). The 1N current at N2LO, which arises due to the
chiral expansion of the 1N form factors, is given by

j1N
N2LO = − ieg2

A

32πF 2
π

τ 3
1

[
mπ − (

4m2
π + q2

1

)
A(|q1|)

]
(q1 × σ1),

(17)

where A(q) = 1
2q tan−1( q

mπ
), gA is the axial coupling constant,

mπ is the average pion mass, and Fπ is the pion-decay con-
stant. The chiral expansion of the 1N form factors converges
slowly, and so in this work we use physical values of the
1N form factors, which at k = 0 are just the isoscalar and
isovector magnetic moments in equation (15). This current
does not contribute to the magnetic dipole moment operator,
as can be shown by substituting j1N

N2LO into equation (13) to
obtain zero.

B. Two-nucleon magnetic moment operators

We define the initial relative and center-of-mass coordi-
nates for a 2N system:

r12 = r1 − r2, R12 = (r1 + r2)/2. (18)

The final relative and center-of-mass coordinates are similarly
defined with r′

1 and r′
2. For 2N currents, after expressing

the nucleon coordinates in terms of these new coordinates,
integrating over q2, and expanding the curl, equation (13)
reduces to

μ2N = 1

2i

[
i

2
(R′

12 + R12)
∫

q

∫
{Q}2

1

eiq·(r′
12+r12 )/2ei(Q1+Q2 )·�R12 ei(Q1−Q2 )·�r12/4j2N

(
1
2 k + q, 1

2 k − q, Q1, Q2

)

+
∫

q

∫
{Q}2

1

eiq·(r′
12+r12 )/2ei(Q1+Q2 )·�R12 ei(Q1−Q2 )·�r12/4∇k × j2N

(
1
2 k + q, 1

2 k − q, Q1, Q2

)]
k=0

, (19)
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where we have replaced q1 → 1
2 k + q and q2 → 1

2 k − q in
the arguments to the current j2N , while �r12 = r′

12 − r12 and
�R12 = R′

12 − R12. If the current is independent of Q1 and
Q2 then we get additional δ functions, δ(3)(�R12)δ(3)(�r12).

Up to N2LO there is one 2N current, arising from the
seagull and pion-in-flight diagrams at NLO [41]:

j2N
NLO = ieg2

A

4F 2
π

[τ1 × τ2]3 σ2 · q2

q2
2 + m2

π

(
q1

σ1 · q1

q2
1 + m2

π

− σ1

)

+ 1 � 2. (20)

Using (19) we get the associated magnetic dipole operator

μ2N
NLO = gπ [τ1 × τ2]3[μ2N

NLO,cm-dep(R12, r12)

+μ2N
NLO,cm-indep(r12)

]
δ(3)(�R12)δ(3)(�r12), (21)

where the center-of-mass dependent part is

μ2N
NLO,cm-dep(R12, r12)

= R̂12 × r̂12(mπR12)Y0(z)

× [Y2(z)σ1 · r̂12 σ2 · r̂12 − Y1(z)σ1 · σ2], (22)

and the center-of-mass independent part is

μ2N
NLO,cm-indep(r12)

= [(1 + z)(σ1 × σ2) · r̂12r̂12 − z(σ1 × σ2)]Y0(z), (23)

where a hat on a symbol denotes a unit vector, gπ =
− 2mN

e
eg2

Amπ

32πF 2
π

, Y2(z) = z + 3
z + 3, Y1(z) = 1 + 1

z , Y0(z) = e−z

z ,
and z = mπ r12.

Finally, given these expressions for the magnetic dipole
moment operator in coordinate space, we can apply the reg-
ulator scheme consistent with the interaction. Since there are
no contact terms in these currents we only need to multiply
these coordinate-space expressions by the regulator f (r12/R)
from (7). In Appendix B we demonstrate the consistency of
the SCS-regularized current.

Note that these operators are written involving products of
the basic vector operators r̂12, σ1, and σ2. To calculate two-
body matrix elements of these operators, it is advantageous to
carry out angular-momentum recoupling on these products to
break these operators into spherical tensor components with
definite total orbital angular momentum L and definite total
spin angular momentum S. We have provided such tensor
decompositions in Appendix C.

III. NO-CORE SHELL-MODEL CALCULATIONS FOR THE
THREE-NUCLEON SYSTEM

The A = 3 ground-state wave functions, for which we
deduce magnetic dipole moments in the present work, are
obtained from ab initio no-core shell-model (NCSM) [26,43]
calculations with the LENPIC interactions. In the NCSM
approach we start with an A-body Hamiltonian of the

form

H = 1

2mN A

A∑
i< j

(pi − p j )
2

+
A∑

i< j

V2N,i j +
A∑

i< j<k

V3N,i jk + · · · , (24)

where the terms on the right-hand side are the relative kinetic
energy, 2N interactions, and 3N interactions, respectively. The
many-body nuclear wave functions |	〉 are the eigenstates of
this Hamiltonian, obtained by solving the A-body Schrödinger
equation:

H |	〉 = E |	〉 , (25)

where E is the energy eigenvalue corresponding to the state
|	〉.

The wave functions are expanded in a complete or-
thonormal basis {|
〉}, where the basis states |
〉 are Slater
determinants of single-particle states |φ〉 occupied by the
system’s nucleons, with fixed parity and fixed total angular-
momentum projection. That is,

|
〉 = A
[

A∏
i=1

|φαi〉
]
, (26)

where the label αi denotes the quantum numbers of nucleon
i, and A is the antisymmetrization operator. The three-
dimensional harmonic oscillator (HO) basis, characterized by
the energy parameter h̄ω, is the conventional choice for the
single-particle basis, which we adopt here.

The resulting many-body basis {|
〉} is, in principle, infi-
nite, but, for actual calculations, we must truncate it. In the
usual Nmax truncation scheme, configurations are selected by
limiting the total number of HO quanta, shared among the
nucleons, to Nmax, relative to the minimum number of quanta
required by the Pauli principle. This truncation scheme, in par-
ticular, ensures a well-behaved center-of-mass wave function
(e.g., Ref. [44]).

Expressed in terms of the many-body basis, the A-
body Schrödinger equation (25) becomes a finite-dimensional
matrix eigenproblem, where the matrix elements of the Hamil-
tonian are defined as 〈
ν |H |
μ〉 with μ and ν labeling the
many-body basis states. The exact result, corresponding to
the full, untruncated many-body problem, is recovered in the
limit Nmax → ∞. Furthermore, given a large enough Nmax

the expectation value of an observable computed in these
bases will approach independence of h̄ω. We use the MANY

FERMION DYNAMICS FOR NUCLEONS (MFDn) package [45,46]
to solve this matrix eigenvalue problem and obtain the ground-
state energies and corresponding many-body wave functions
of the 3N systems. We then compute the magnetic dipole
moment μ(J ) for these many-body state wave functions, using
the magnetic dipole moment operator μ considered above in
Sec. II.2

2In terms of this operator, the magnetic dipole moment μ(J ) [35]
of a many-body state of angular momentum J is defined as the
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For the A = 3 nuclei, calculations can readily be carried out
to sufficiently high Nmax, with the LENPIC 2N potentials, to
yield the magnetic dipole moment with a numerical precision
which is effectively unlimited. However, the present calcula-
tions are also intended to explore the use of χEFT currents
with the NCSM in anticipation of future application through-
out the range of nuclei accessible to the NCSM. In general, the
accessible Nmax may be expected to critically limit precision
which can be obtained for magnetic dipole observables.

Although the χEFT interaction at N2LO includes 3N con-
tributions, incorporating these 3N into NCSM calculations
adversely impacts the sparsity of the many-body Hamiltonian
matrix in the NCSM basis, typically imposing an order-of-
magnitude penalty in computational demands [48]. Thus, the
sensitivity of the calculated magnetic observables to the 3N
interaction are not only of physical interest but also of com-
putational interest. We calculate magnetic dipole moments
for A = 3 wave functions obtained from the N2LO LENPIC
interaction, including either only the 2N contributions to
this interaction (LENPIC 2N) or also the 3N contributions
(LENPIC 2N + 3N).

Furthermore, in calculations for all but the very lightest nu-
clei, in order to provide reasonable convergence for accessible
values of Nmax, the “bare” LENPIC interaction must typically
be softened. This is accomplished by applying a similarity
renormalization group (SRG) transformation [27–29,36,49–
52]. In the SRG approach, the Hamiltonian in a suitable rep-
resentation (e.g., here, momentum representation) is evolved
to a band-diagonal structure by a continuous unitary trans-
formation H (α) = U (α)H (α = 0)U †(α), where H (α = 0) is
the starting Hamiltonian, and α is the flow parameter that
characterizes the transformation. Applying this transforma-
tion to a Hamiltonian with 2N interactions induces 3N and
higher many-body interactions, although the induced interac-
tions are typically truncated at the 3N level. The impact of
SRG transformation on calculated dipole moments in NCSM
calculations, even if such SRG evolution is not actually nec-
essary in the A = 3 case, is thus of interest.

Applying a unitary transformation to the Hamiltonian ne-
cessitates that the same transformation be applied to operators
for observables. SRG evolution of a 2N current operator
may be expected to induce 3N (and higher many-body)
contributions to the current operator as well. Here we re-
strict ourselves to probing the error incurred by applying
a typical SRG transformation (α � 0.1 fm4) to the Hamil-
tonian, without considering the induced corrections to the
magnetic dipole operator. We carry out calculations in which
either the LENPIC 2N or LENPIC 2N + 3N interactions are
SRG evolved, in both cases retaining induced interactions
up to 3N .

Before then extracting a magnetic dipole moment from
the resulting wave function, we must specify the values for

expectation value μ(J )
def= 〈JJ|μz|JJ〉 of the z component in the

stretched (M = J) substate. Equivalently, in terms of the reduced
matrix element [47] of μ, μ(J ) = (2J + 1)−1/2(JJ10|JJ )〈J‖μ‖J〉,
where ( j1m1 j2m2|JM ) is a Clebsch-Gordan coefficient.

the masses and LECs that appear in the current operator [see
(16), (22), and (23)]. For masses and low-energy constants
(LECs) which appear in the expressions both for the potentials
[19,20] and for the magnetic dipole operator, we use the val-
ues already adopted for the potentials: mN = 938.919 MeV,
mπ = 138.03 MeV, Fπ = 92.4 MeV, and gA = 1.29. For the
isoscalar and isovector g factors of the nucleon, we have used
gs = 0.880 and gv = 4.706.

IV. RESULTS AND DISCUSSION

Considering first the bare, SRG-unevolved LENPIC 2N
interaction, convergence patterns are shown in Fig. 1 for the
calculated ground-state energy (left), magnetic dipole moment
(center), and 2N meson exchange current (MEC) correction
(right), for both 3H (top) and 3He (bottom). In particular, these
calculations are for SCS regulator parameter R = 1.0 fm. We
carry out these NCSM calculations, for the 2N interaction,
through Nmax = 18, with h̄ω from 20 to 40 MeV in steps of
4 MeV. Note that the variational minimum of the calculated
energies [Fig. 1 (left)] occurs within this range.

Calculated dipole moments are shown [Fig. 1 (center)],
as they are obtained with just the 1N impulse-approximation
(IA) dipole operator (μIA) or including the 2N χEFT cor-
rections as well (μIA+MEC). Both of these contributions to
the moment arise from terms in the current operator which
appear at NLO, while it may be recalled (from Sec. II) that
the 1N contribution to the current arising at N2LO does not
contribute to the magnetic dipole moment. The difference
between these curves thus represents the total MEC correction
through N2LO [Fig. 1 (right)].

Numerical results for the calculated dipole moments are
tabulated in Table I, as obtained at the highest Nmax and
at the h̄ω corresponding to the approximate location of the
variational minimum of the ground-state energy on our h̄ω

mesh starting from 14 MeV. These same values for the
calculated dipole moments are summarized graphically in
Fig. 2 to facilitate comparison while reading the following
discussion.

The approach to numerical convergence in the calculated
dipole moment is evinced in Fig. 1 (center), as curves for
successive Nmax become compressed against each other and
as the h̄ω dependence tends to decrease for the curves of
higher Nmax. Taking 3H [Fig. 1 (top)] for illustration, at the
variational energy minimum (h̄ω ≈ 32 MeV), the IA mo-
ments [Fig. 1(b)] for Nmax = 14 and Nmax = 16 differ by
0.002 μN, and those for Nmax = 16 and Nmax = 18 differ by
only 0.0009 μN. The variation of the IA moment with h̄ω

at Nmax = 18, over an interval extending by 4 MeV to each
side (28 MeV � h̄ω � 36 MeV) is 0.0019 μN. The basis
dependence of the MEC correction [Fig. 1(c)] is similar on an
absolute scale (e.g., the calculated corrections for Nmax = 16
and Nmax = 18 differ again by 0.0009 μN, and at Nmax = 18
the MEC correction is nearly independent of h̄ω), and both
the IA and MEC contributions thus contribute similarly to the
basis dependence of the calculated total (IA + MEC) moment
[Fig. 1(b)]. However, the basis dependence of the IA and the
MEC correction is such that the combined result, μIA+MEC,
exhibits a weak but seemingly persistent h̄ω dependence over
the 20 MeV window shown in Fig. 1 (center), even though
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FIG. 1. Calculated ground-state energies (left), magnetic dipole moments (center), and 2N MEC corrections (right), for 3H (top) and 3He
(bottom), illustrating their convergence with respect to basis parameters Nmax (successive curves) and h̄ω. For the magnetic dipole moment,
μIA represents the contribution from the 1N impulse approximation (IA) operator μ1N in Eq. (16), μMEC represents the contribution from
the 2N MEC operator μ2N in Eq. (21), and μIA+MEC = μIA + μMEC. Wave functions are obtained using the 2N LENPIC SCS potential with
R = 1.0 fm and no SRG transformation of the potential.

it does seem to converge with Nmax. We can therefore not
put a firm numerical uncertainty on our calculated magnetic
moments.

The calculated MEC contributions for the mirror nuclides
3H [Fig. 1(c)] and 3He [Fig. 1(f)] are approximately equal
in magnitude (0.15 μN) but opposite in sign. This is to be

expected as a consequence of isospin symmetry, given that the
sole MEC contribution at NLO may be seen, from the isospin
factor in (21), to be manifestly isovector. To facilitate com-
parison of the pattern of MEC contributions (of approximately
equal magnitude but opposite sign) across the mirror nuclides,
note that the magnetic dipole moment axis in Fig. 2(b) is

TABLE I. Magnetic moments of the A = 3 nuclides calculated with the LENPIC potentials and currents, with consistent LECs, at N2LO
(the last nonvanishing contribution to the current thus arises at NLO). The SRG-unevolved LENPIC 2N calculations are shown for Nmax = 18,
while the other LENPIC calculations are shown for Nmax = 14, with h̄ω based on the variational energy minimum. Estimated uncertainties
from basis truncation are discussed in the text. Prior results obtained with INOY (� = 500 MeV and 900 MeV) [23], AV18 + IL7 [24], and
Norfolk (NV2 + 3-IIb*) [25] potentials, with the χEFT current taken to NLO, are shown for comparison, as are the experimental values [53].
The SRG parameter α is given in units of fm4, h̄ω is in units of MeV, and the magnetic moment in units of μN.

3H 3He

Potential R (fm) α h̄ω μIA μMEC μIA+MEC h̄ω μIA μMEC μIA+MEC

LENPIC 2N 0.9 0.00 36 2.629 0.173 2.802 36 −1.796 −0.172 −1.968
1.0 0.00 32 2.640 0.151 2.791 28 −1.801 −0.149 −1.950

LENPIC 2N 1.0 0.04 20 2.677 0.143 2.820 16 −1.822 −0.141 −1.963
+ induced 3N 1.0 0.08 14 2.692 0.139 2.831 14 −1.831 −0.138 −1.969

LENPIC 2N + 3N 1.0 0.04 20 2.667 0.147 2.814 20 −1.817 −0.145 −1.962
1.0 0.08 14 2.683 0.142 2.825 14 −1.827 −0.141 −1.968

INOY (NLO; 500 MeV)a 2.657 0.103 2.760 −1.810 −0.103 −1.913
INOY (NLO; 900 MeV)a 2.657 0.172 2.829 −1.810 −0.170 −1.980
AV18 + IL7 (NLO)a 2.556 0.253 2.809 −1.743 −0.248 −1.991
Norfolk (NLO)a 2.588 0.227 2.815 −1.770 −0.224 −1.994

Experiment 2.979 −2.128

aThe tabulated values for prior calculations are partial results calculated with the χEFT current taken to NLO and thus involve the same
diagrams as appear in the current operator used in calculating the present LENPIC results.
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FIG. 2. Magnetic moments of the A = 3 nuclides (a) 3H and (b) 3He, calculated with the LENPIC potentials and currents, along with
results of prior calculations [23–25] (see Table I caption for details of these calculations). Both IA and IA + MEC results are shown (connected
by arrow), where the χEFT current contains contributions from terms appearing through NLO. For the prior calculations, results including
contributions through N3LO are also shown (connected by dotted line); however, these results involve new LECs which are chosen to replicate
(at least approximately) the experimental A = 3 moments, and are thus not predictions per se (see text). The SRG-unevolved LENPIC 2N
results are shown for Nmax = 14, 16, and 18 (increasing symbol size), as an indicator of convergence. The SRG-unevolved LENPIC 2N results
are shown for both R = 0.9 fm and R = 1.0 fm, while all other LENPIC results are shown for R = 1.0 fm. Experimental values [53] are
provided for reference (horizontal bars). Note that the magnetic dipole moment axis for 3He (right) is inverted, to facilitate comparison of the
pattern of MEC contributions (of approximately equal magnitude but opposite sign, as noted in the text) across mirror nuclides.

inverted. The MEC contribution provides an ≈6% correction
to the IA moment for 3H, or ≈8% for 3He. In each case, the
correction serves to increase the magnitude of the moment,
providing a positive correction to the positive 3H moment and
negative correction to the negative 3He moment.

The experimentally observed dipole moments, for compar-
ison, are 2.979 μN for 3H and −2.128 μN for 3He [53]. In each
case, the IA calculation underpredicts the magnitude of the
moment, and the MEC contribution thus has the sign needed
to resolve the discrepancy, but the size of the correction is only
about half that required to provide agreement with experiment
(see Table I and Fig. 2).

Here we may compare with prior results for the A = 3 sys-
tem. Hybrid calculations; that is, with wave functions obtained
from phenomenological potentials but moments extracted us-
ing χEFT currents, were carried out in Ref. [23] with the
INOY 2N potential [54], using wave functions obtained from
solving the Faddeev equations, and in Ref. [24] with the AV18
+ IL72N + 3N potentials [55,56], using the Green’s func-
tion Monte Carlo (GFMC) many-body method [57]. Then, in
Ref. [25], fully χEFT calculations with the Norfolk potential
and currents were obtained in calculations in a hyperspherical
harmonic basis.

These works carry the current operators to N3LO, thus
including higher-order contributions than considered in the
present work. However, they also provide a detailed break-
down of the contributions to the calculated magnetic mo-
ments, arising from terms appearing at different orders in the
χEFT current operator. Results obtained by retaining only
terms through NLO in the MEC contribution, summarized in
Table I and Fig. 2, include the same diagrams as the present
MEC results and are thus directly comparable. In the INOY

calculations [23], the IA moments are essentially identical to
those found here (to within �0.02 μN), and the MEC cor-
rections (at NLO) are comparable in size to those found here
(the INOY results obtained for different choices of regulator
cutoff � bracket the present results). In both the AV18 + IL7
and Norfolk calculations, the IA moment is modestly smaller
in magnitude than calculated here (by �0.1 μN). However,
the NLO correction is correspondingly larger than calculated
here, yielding IA + MEC results at NLO closely similar to
those obtained here.

The additional MEC contributions appearing up to N3LO
in the χEFT currents introduce new LECs, which, in the prior
calculations [23–25], were fit so as to reproduce the exper-
imental moments for the A = 3 nuclei. Thus, the moments
from these calculations [Fig. 2 (dotted lines)] do not constitute
predictions per se and, indeed, match experiment by construc-
tion3 (the small deviation from experiment in the AV18 +
IL7 results arises due to differences in the Hamiltonian, as
well as in certain other approximations, between these GFMC
calculations and the few-body calculation actually used in
fitting the LECs [24]).

Having discussed the qualitative features of the results, let
us now examine the sensitivity of the calculated moments in
quantitative detail to choices made, first, in the χEFT regu-
lator scheme (Sec. II) and, subsequently, in the calculational
process (Sec. III). Comparing calculations with regulator cut-

3In more recent auxiliary field diffusion Monte Carlo (AFDMC)
calculations [58], results with such an approach are, alternatively,
contrasted with results for a global fit of the LECs to moments for a
selection of light nuclei.
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off length scale of R = 0.9 fm to those (just considered) with
R = 1.0 fm induces shifts in the IA moment of �0.006 μN,
and changes to the MEC contribution of �0.011 μN (see
Table I and Fig. 2). It can easily be understood that the MEC
contribution is more sensitive to the regulator scale, because
both the wave function and the MEC operator depend on
the regulator, whereas the IA operator is independent of the
regulator.

Simultaneous SRG evolution of both the interaction and
the moment operator, with all induced many-body contri-
butions retained (only operators through 3N are relevant in
the A = 3 system) would leave the results strictly unchanged
in the full, untruncated space for the problem. We consider
calculations with SRG flow parameter values α = 0.4 fm4

and 0.8 fm4. Induced interactions are retained through 3N , but
only the unevolved moment operator is used. That is, only the
calculated wave functions differ in these calculations, without
compensating changes to the operator for the observable. This
provides an extreme test of sensitivity to SRG evolution in
the calculational scheme. Numerical results are tabulated in
Table I for the highest Nmax calculated, in this case Nmax = 14,
again for h̄ω at the approximate location of the variational
minimum of the ground-state energy on our h̄ω mesh for each
interaction employed.4 The resulting changes in the calculated
IA moments, as a function of the SRG flow parameter, are
�0.05 μN, and the changes in the calculated MEC contribu-
tion are �0.012 μN. Note that these changes are of the same
order as, or even larger than, the basis dependence shown in
Fig. 1 for the unrenormalized magnetic moments.

Finally, inclusion of the 3N contributions to the interaction
may in general be expected to have significant effects on the
structure and on calculated observables [36]. We recalculate
the A = 3 wave functions using the full LENPIC 2N + 3N in-
teraction, again with SRG flow parameter values α = 0.4 fm4

and 0.8 fm4 (see Table I). However, we find that including
the 3N interaction appears to have minimal effect (�0.02 μN)
on the moments obtained for these wave functions; however,
one should keep in mind that the moment operator was not
SRG-evolved, and we cannot exclude the possibility that the

4For the SRG-evolved LENPIC 2N and 2N + 3N interactions, we
carry out the NCSM calculations through Nmax = 14, with h̄ω =
14, 16, 20, 24, 28, in MeV.

effect of 3N interaction is larger when consistent SRG evolved
operators are used.

V. SUMMARY

In this work, we calculated the magnetic dipole moments
of 3H and 3He with a chirally improved magnetic dipole
operator, within the context of the NCSM. Starting from the
momentum-space representation of the LENPIC χEFT vec-
tor current, we derived the SCS-regularized magnetic dipole
operator up to N2LO in chiral order (the methods presented
here generalize to higher chiral and multipole orders). We
then performed consistent calculations of magnetic dipole
moments of these nuclei, with the semilocal coordinate-space
regularized LENPIC 2N and LENPIC 2N + 3N potentials.
Here, by a “consistent calculation” we mean that we adopt
both the operators and the nuclear potentials up to the same
chiral order in the calculation.

This work represents our first step towards consistent cal-
culations of electromagnetic observables using χEFT currents
and LENPIC interactions with the NCSM framework. Our
results are similar to those of prior theoretical calculations
[23–25], when taken with the corresponding NLO current
operator, likewise falling short of the experimental values of
the magnetic dipole moments of both 3H and 3He by 6%–8%.
Including higher-order currents will be essential for a more
comprehensive description of nuclear systems (beyond A = 3)
within the NCSM framework.
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APPENDIX A: ELECTROMAGNETIC MULTIPOLE OPERATORS

Here we present a general method to derive all electromagnetic multipole operators from any a-nucleon (aN) charge or current
derived from χEFT. This is a generalization of the procedure described in Sec. II. Electric multipole operators are derived from
the charge, and magnetic multipole operators are derived from the current.

1. Electric multipole operators

To derive electric multipole operators from an aN charge operator we adopt the following definition [34,42]:

EaN
l, (r′

1, . . . , r′
a, r1, . . . , ra)

def=
∫

d3x xlYl (x̂)ρ̄aN (r′
1, . . . , r′

a, r1, . . . , ra, x), (A1)

024001-8



MAGNETIC MOMENTS OF A = 3 NUCLEI OBTAINED … PHYSICAL REVIEW C 108, 024001 (2023)

where ρ̄aN is the coordinate space representation of the charge, and l is the order of the multipole operator. Note that in this
Appendix, and the following Appendix B, we follow the alternative normalization convention of Refs. [41,59] for the expressions
for momentum-space matrix elements, in which (12) becomes

〈p′
1 · · · p′

a|j(k)|p1 · · · pa〉 = δ(3)(q1 + · · · + qa − k)j(q1, . . . , qa, Q1, . . . , Qa; k), (A2)

and the Fourier transform (11) relating the expressions for momentum-space and coordinate-space matrix elements becomes

j̄aN (r′
1, . . . , r′

a, r1, . . . , ra; x) =
∫

{q}a
1

∫
{Q}a

1

∫
k

a∏
i=1

eiqi·(r′
i+ri )/2 eiQi·�ri eik·x

× jaN (q1, . . . , qa, Q1, . . . , Qa; k)δ̄(3)(q1 + · · · + qa − k), (A3)

where again
∫
{q}a

1
= ∫

q1
· · · ∫qa

, but now with
∫

q = ∫ d3q
(2π )3 , and δ̄(3)(· · · ) = (2π )3δ(3)(· · · ). Then the relation between ρ̄aN ,

and the momentum-space representation ρaN (derived in Refs. [32,41]) is the same as the relation between j̄
aN

and jaN in
equation (A3) above.

We simplify equation (A1) using the following identity [47]:

xlYl (x) =
√

(2l + 1)!!

4π l!
[· · · [xx]2x]3 · · · x]l . (A4)

With this identity Eq. (A1) becomes

EaN
l = (−i)l

√
(2l + 1)!!

4π l!
[[. . . [∇k∇k]2∇k]3 . . . ∇k]l

×
∫

q1···qa

∫
Q1···Qa

a∏
i=1

eiqi·(r′
i+ri )/2 eiQi·�ri ρaN δ̄(3)(q1 + · · · + qa − k)

]
k=0

, (A5)

where we used ∇keik·x = ixeik·x. The tensor product is interpreted as first applying the ∇ks to the integral and then extracting
the required irreducible tensor component from the result. This is best understood with an example. The electric quadrupole
operator, modulo conventional factors, is

EaN
2 = −

√
15

8π

[
[∇k∇k]2

∫
q1···qa

∫
Q1···Qa

a∏
i=1

eiqi·(r′
i+ri )/2 eiQi·�ri ρaN δ̄(3)(q1 + q2 − k)

]
k=0

. (A6)

The leading order (LO) 1N charge is ρ1N
LO(q1, Q1, k) = (e/2)(1 + τ 3

1 )(2π )3δ(3)(q1 − k). Substituting this in the above equa-
tion gives us

E1N
2,LO

(
r′

1, r1
) =

(
−

√
15

8π
[∇k∇k]2eik·r1

∣∣∣
k=0

)
e

2

(
1 + τ 3

1

)
δ(3)(r′

1 − r1). (A7)

Each of the ∇k acting on eik·r1 will bring down an ir1. Extracting the rank-2 irreducible tensor from the resulting tensor we get√
15/8π [r1r2]2, which following equation (A4) is simply r2

1Y2(r̂1). Thus the LO 1N electric quadrupole operator is

E1N
2,LO(r′

1, r1) = e

2

(
1 + τ 3

1

)
r2

1Y2(r̂1)δ(3)(r′
1 − r1), (A8)

which is equivalent to the impulse-approximation definition of the electric quadrupole moment operator found in nuclear physics
textbooks [34,35].

2. Magnetic multipole operators

Generalizing equation (9) we define the mth spherical component of the rank l magnetic multipole operator as

MaN
lm,(r1, . . . , ra, r′

1, . . . , ra)
def= 1

l + 1

∫
d3x[x × j̄aN

(r′
1, . . . , r′

a, r1, . . . , ra, x)] · ∇[xlYlm(x)], (A9)

where j̄aN
O has been defined in (11), and Ylm(r) is the mth spherical component of Yl (r). We use the following identity to simplify

this equation [47]:

∇[xlYlm(x)] =
√

l (2l + 1)xl−1Yl−1
lm (x), (A10)
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where Yn
lm is a vector spherical harmonic whose νth spherical component is given by

(Yn
lm)

ν = (−1)νClm
n m+ν 1 νYn−1 m−ν . (A11)

With this identity, Eq. (A4) and the definition of the tensor product equation (A9) becomes

MaN
lm, =

√
l (2l + 1)

l + 1

√
(2l − 1)!!

4π (l − 1)!

∫
d3x[[[· · · [xx]2x]3 · · · x]l−1[x × j̄aN

]]lm, (A12)

where for brevity we dropped the arguments of the current. Since this equation is true for all projections m, we can drop the
projection index and write the above equation as a tensor equation. Again employing ∇keik·x = ixeik·x we get the following final
form for the magnetic multipole operators:

MaN
l, = (−i)l

√
l (2l+1)

l+1

√
(2l − 1)!!

4π (l − 1)!

{[
{[[. . . [∇k∇k]2∇k]3 . . . ∇k]l−1}

[
∇k×

∫
q1···qa

∫
Q1···Qa

a∏
i=1

eiqi·(r′
i+ri )/2 eiQi·�ri jaN

]]
l

}
k=0

.

(A13)

The interpretation of the tensor products of the ∇k is similar to that in the case of the electric multipole operators. We first
apply the ∇k to the integral and then extract the required irreducible tensor from the result. For l = 1, after multiplying by the
conventional factor

√
4π/3, the above equation reduces to equation (13).

APPENDIX B: CONSISTENCY OF SEMI-LOCAL COORDINATE SPACE OF REGULARIZED CURRENT

The consistency of the current is determined by whether it satisfies the continuity equation

k · ĵ = [Ĥ, ρ̂] (B1)

in momentum space or, equivalently,

∇x · ĵ = −i[Ĥ, ρ̂] (B2)

in coordinate space. (In this Appendix, a hat on a symbol denotes an operator.) Here ĵμ = {ρ̂, ĵ} is the four-current operator,
Ĥ = T̂ + V̂ is the strong part of the nuclear Hamiltonian where T̂ denotes the kinetic energy, and V̂ = V̂LO + V̂NLO + · · · denotes
the potential energy, and the divergence is with respect to the position of the external electromagnetic source. As discussed in
Refs. [32,60,61], the 1N current satisfies the continuity equation with the kinetic energy, and the first 2N current at NLO satisfies
the continuity equation with the LO unregularized potential energy. We do not regularize the kinetic energy. We just have to
check the continuity equation for the 2N current.

The momentum space representation of the four-current operator (where, as in Appendix A, we follow the normalization
conventions of Refs. [41,59]) is [41]

〈p′
1p′

2| ĵ2N,μ(k)|p1p2〉 = δ(3)(q1 + q2 − k) j2N,μ(q1, q2, Q1, Q2; k). (B3)

If jaN,μ does not depend on the Qi (as is true for the current under consideration), then the coordinate-space representation is of
the form

j̄2N,μ(r′
1, r′

2, r1, r2; x) = 〈r′
1r′

2| ĵ2N,μ(x)|r1r2〉 = 1

(2π )3
δ(3)(r′

1 − r1)δ(3)(r′
2 − r2) j̄2N,μ(r1, r2; x), (B4)

where the relation between j2N,μ and j̄2N,μ is the same as for the three-currents in equation (A3). We will use the momentum
representation to check the continuity equation for the NLO 2N current. The left-hand side of equation (B1) in the momentum
representation is

〈p′
1p′

2|k · ĵ
2N
NLO|p1p2〉 = k · j2N

NLO(q1, q2)δ(3)(q1 + q2 − k), (B5)

where j2N
NLO has been defined in equation (20). Doing the dot product, while replacing k by q1 + q2, we get

k · j2N
NLO = i

eg2
A

4F 2
π

(τ1 × τ2)z

(
σ1 · q1σ2 · q1

q2
1 + m2

π

− σ1 · q2σ2 · q2

q2
2 + m2

π

)
. (B6)

To evaluate the right-hand side of (B1) we need the momentum representation of the unregularized LO potential:

〈p′
1p′

2|V̂LO|p1p2〉 = VLO
(

1
2 (p′

1 − p′
2 − p1 + p2)

)
δ(3)(p′

1 + p′
2 − p1 − p2), (B7)

where VLO(q) is given by

VLO(q) = τ1 · τ2W1π (q) = − g2
A

4F 2
π

τ1 · τ2
σ1 · q σ2 · q

q2 + m2
π

. (B8)
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Now we can evaluate what will be the momentum space representation of V̂LOρ̂LO:

〈p′
1p′

2|V̂LOρ̂LO|p1p2〉 =
∫

d3p′′
1d3p′′

2 〈p′
1p′

2|V̂LO|p′′
1p′′

2〉 〈p′′
1p′′

2|ρ̂LO|p1p2〉

=
∫

d3p′′
1d3p′′

2 VLO
(

1
2 (p′

1 − p′
2 − p′′

1 + p′′
2 )

)
δ(3)(p′

1 + p′
2 − p′′

1 − p′′
2 )

× [ρLO,1δ
(3)(p′′

1 + p′′
2 − p1 − p2 − k)δ(3)(p′′

2 − p2) + (1 ↔ 2)]. (B9)

Completing the integrals over p′′
1, and p′′

2, we get

〈p′
1p′

2|V̂LOρ̂LO|p1p2〉 = [VLO(q1)ρLO,1 + (1 ↔ 2)]δ(3)(q1 + q2 − k), (B10)

where ρLO,i = e(1 + τ 3
i )/2. We can similarly evaluate ρ̂LOV̂LO. Using the commutation relation [τ1 · τ2, τ

3
1 ] = 2i(τ1 × τ2)3 we

see that

〈p′
1p′

2|[V̂LO, ρ̂LO]|p1p2〉 = ([VLO(q1), ρLO,1] + (1 ↔ 2))δ(3)(q1 + q2 − k)

= i
eg2

A

4F 2
π

(τ1 × τ2)3

(
σ1 · q1σ2 · q1

q2
1 + m2

π

− σ1 · q2σ2 · q2

q2
2 + m2

π

)
δ(3)(q1 + q2 − k). (B11)

Thus 〈p′
1p′

2|k · ĵ
2N
NLO|p1p2〉 = 〈p′

1p′
2|[V̂LO, ρ̂LO]|p1p2〉, i.e., the NLO 2N current satisfies the continuity equation with the unreg-

ularized LO potential [32,60,61]. Fourier transforming both sides of this equation we get the continuity equation satisfied by the

current in coordinate space, 〈r′
1r′

2|∇x · ĵ
2N
NLO|r1r2〉 = −i 〈r′

1r′
2|[V̂LO, ρ̂LO]|r1r2〉 , where

〈r′
1r′

2|∇x · ĵ
2N
NLO|r1r2〉 = ∇x · j̄2N

NLO(r1, r2, x)δ(3)(r′
1 − r1)δ(3)(r′

2 − r2) (B12)

〈r′
1r′

2|V̂LO(r1, r2)|r1r2〉 = τ1 · τ2W̄1π (r1 − r2)δ(3)(r′
1 − r1)δ(3)(r′

2 − r2), (B13)

〈r′
1r′

2|ρ̂LO|r1r2〉 = e

(
1 + τ1z

2
δ(3)(r1 − x) + (1 ↔ 2)

)
δ(3)(r′

1 − r1
)
δ(3)(r′

2 − r2), (B14)

where j̄2N
NLO and W̄1π are the Fourier transforms of j2N

NLO, and W1π , respectively. With this form for the coordinate space
representation we see that

∇x · j̄2N
NLO(r1, r2, x) = e(τ1 × τ2)zW̄1π (r1 − r2)[δ(3)(r1 − x) − δ(3)(r2 − x)]. (B15)

Introducing a discrete, complete basis, such as the HO basis, we can write this continuity equation as a matrix equation Z = W ,
where the matrix elements are

Zαβ =
∫

d3r1d3r2 φα (r1, r2)∇x · j̄2N
NLO(r1, r2, x)φβ (r1, r2), (B16)

Wαβ = e(τ1 × τ2)z

∫
d3r1d3r2 [δ(3)(r1 − x) − δ(3)(r2 − x)]φα (r1, r2)W̄1π (r1 − r2)φβ (r1, r2), (B17)

where {|α〉 = |α1, α2〉} is the basis, and 〈r1r2|α〉 = φα (r1, r2). We now introduce two new operators f̂ , and ĝ such that
〈r′

1r′
2| f̂ |r1r2〉 = f (r1 − r2)δ(3)(r′

1 − r1)δ(3)(r′
2 − r2), and 〈r′

1r′
2|ĝ|r1r2〉 = g(r1, r2)δ(3)(r′

1 − r1)δ(3)(r′
2 − r2). Here f , and g are

functions of nucleon coordinates, with no isospin structure. It can be easily checked that ĵ
2N
NLO commutes with ĝ, and V̂LO

commutes with f̂ . We want to see how f̂ and ĝ are related if we demand that ∇x · (ĵ
2N
NLOĝ) = −i[V̂LO f̂ , ρ̂LO]. We will use

the coordinate space relations that we have derived above. In the coordinate-space representation, the left-hand side of this
equation evaluates to

〈r′
1r′

2|∇x · ĵ
2N
NLOĝ|r1r2〉 =

∫
d3x1d3x2 〈r′

1r′
2|∇x · ĵ

2N
NLO|x1x2〉 〈x′

1x′
2|ĝ|r1r2〉

= ∇x · j2N
NLO(r1, r2, x)g(r1, r2)δ(3)(r′

1 − r1)δ(3)(r′
2 − r2). (B18)

To evaluate the right-hand side of this equation, in the coordinate space representation, we first need to evaluate
〈r′

1r′
2|V̂LO f̂ ρ̂LO|r1r2〉.

〈r′
1r′

2|V̂LO f̂ ρ̂LO|r1r2〉 =
∫

d3x′
1d3x′

2d3x1d3x2 〈r′
1r′

2|V̂LO|x′
1x′

2〉 〈x′
1x′

2| f̂ |x1x2〉 〈x1x2|ρ̂LO|r1r2〉

= VLO(r1, r2)ρLO(r1, r2, x) f (r1 − r2)δ(3)(r′
1 − r1)δ(3)(r′

2 − r2), (B19)
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where VLO(r1, r2), and ρLO(r1, r2, x), are the expressions in the right-hand side of equations (B12), and (B13), respectively,
modulo the δ functions involving r′

i. We can similarly evaluate 〈r′
1r′

2|ρ̂LOV̂LO f̂ |r1r2〉:
〈r′

1r′
2|[V̂LO f̂ , ρ̂LO]|r1r2〉 = e(τ1 × τ2)zW̄1π (r1 − r2)[δ(3)(r1 − x) − δ(3)(r2 − x)] f (r1, r2)δ(3)(r′

1 − r1)δ(3)(r′
2 − r2). (B20)

Thus according to our demand,

∇x · j2N
NLO(r1, r2, x)g(r1, r2)δ(3)(r′

1 − r1)δ(3)(r′
2 − r2)

= e(τ1 × τ2)zW̄1π (r1 − r2)[δ(3)(r1 − x) − δ(3)(r2 − x)] f (r1, r2)δ(3)(r′
1 − r1)δ(3)(r′

2 − r2). (B21)

Then by equation (B15) we have ∇x · j2N
NLO(r1, r2, x)(g(r1, r2) − f (r1 − r2)) = 0, which means if ∇x · j2N

NLO is not zero, then
g(r1, r2) = f (r1 − r2). In the discrete, complete basis, introduced earlier this translates to

ZG = WF , (B22)

where

Fαβ =
∫

d3r1d3r2φα (r1, r2) f (r1 − r2)φβ (r1, r2),

Gαβ =
∫

d3r1d3r2φα (r1, r2)g(r1, r2)φβ (r1, r2) (B23)

are the matrices corresponding to f̂ and ĝ, respectively, in the discrete, complete basis. Since Z = W , if Z is nonsingular then
G = F , i.e., the matrix elements of the two regulators must be the same. Even though here we derived this result for the 2N
current at NLO, it is evident that as long as equation (B15) is satisfied for a particular pair of current and unregularized potential,
we will reach the same conclusion.

APPENDIX C: TENSOR DECOMPOSITION OF TWO-NUCLEON OPERATORS

We define the rank j tensor product of two irreducible tensors T j1 and T j2 of ranks j1 and j2, respectively, as

[T j1 T j2 ]m
j =

∑
m1,m2

C jm
j1m1 j2m2

T m1
j1

T m2
j2

, (C1)

where m, m1, and m2 are the projection indices and C jm
j1m1 j2m2

is a Clebsch-Gordan coefficient. The tensor product itself is an
irreducible tensor. It follows from the above definition and properties of the Clebsch-Gordan coefficients that the following
recoupling identities hold for commuting tensors [47]:

[TaTb]c = (−1)a+b−c[TbTa]c, (C2)

[[TaTb]cTd ]e = (−1)a+b+d+e
∑

f

�c f

{
a b c
d e f

}
{Ta[TbTd ] f }e, (C3)

[[TaTb]c[Td Te] f ]i =
∑

hi

�c f gh

⎧⎨
⎩

a b c
d e f
g h i

⎫⎬
⎭{[TaTd ]g[TbTe]h}i, (C4)

where �ab···λ = √
(2a + 1)(2b + 1) · · · (2λ + 1), and the quantities in the braces in equations (C3) and (C4) are the Wigner 6 j

and 9 j symbols, respectively. These identities hold for any projections of the tensor product, hence we have omitted any explicit
projection index. Using T · S = −√

3[T1S1]0 and T × S = −i
√

2[T1S1]1, and the above identities we have

(σ1 × σ2) · r̂12r̂12 = i

√
2

3

{
�1 +

√
10

[
C2

2,0�1
]

1

}
, (C5)

R̂12 × r̂12σ1 · σ2 = −i
√

6
[
C1

1,1�0
]

1, (C6)

R̂12 × r̂12(σ1 · r̂12σ2 · r̂12) = i

√
2

3

{
−

√
3
[
C1

1,1�0
]

1
+

√
3

5

[
C1

1,1�1
]

1
+

√
9

5

[
C2

1,1�2
]

1
+

√
14

5

[
C2

3,1�2
]

1
+

√
24

5

[
C3

3,1�2
]

1

}
,

(C7)

where �l = [σ1σ2]l and Cc
a,b = [Ca(r12)Cb(R12)]c. The Cl (r) = √

4π/(2l + 1)Yl (r) is the rank l renormalized spherical
harmonic. We would like to remind the reader that the numerical subscripts associated with the Pauli matrices and the unit
vectors represent nucleon indices and not tensor ranks. Combining all of this we can write Eq. (21) as

μ2N
NLO = 2

3
gπ [τ1τ2]1

[
μ′ 2N

NLO,cm−dep(R12, r12) + μ′ 2N
NLO,cm−indep(r12)

]
δ(3)(�R12)δ(3)(�r12), (C8)
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where

μ′ 2N
NLO,cm−dep(R12, r12) = (mπR12)

[
−

√
3z

[
C1

1,1�0
]

1
+ Y2(z)

(
+

√
3

5

[
C1

1,1�1
]

1
+

√
9

5

[
C2

1,1�2
]

1

+
√

14

5

[
C2

3,1�2
]

1
+

√
24

5

[
C3

3,1�2
]

1

)]
Y0(z), (C9)

and

μ′ 2N
NLO,cm−indep(r12) =

√
10(1 + z)

[
C2

2,0�1
]

1
+ (−1 + 2z)�1. (C10)
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