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Effects of finite temperature on the magnetized equation of state in neutron stars
composed of a Bose-Einstein condensate
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We study the role of temperature and magnetic field on the equation of state and macroscopic properties of
Bose-Einstein condensate stars. These compact objects are composed of a condensed gas of interacting neutral
vector bosons coupled to a uniform and constant magnetic field. We found that the main consequence of a finite
temperature in the magnetized equations of state is to increase the inner pressure of the star. As a consequence,
magnetized hot Bose-Einstein condensate stars are larger and heavier than their zero-temperature counterparts.
However, the maximum masses obtained by the model remain almost unchanged, and the magnetic deformation
of the star increases with the temperature. Besides, increasing the temperature reduces the number of stable stars,
an effect that the magnetic field enhances. The implications of our results for the star’s evolution, compactness,
redshift, and mass quadrupolar moment are also analyzed.
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I. INTRODUCTION

Historically, boson star models have been less common
than the ones of fermions for the description of compact stars,
in particular neutron stars. The main reason behind this was
the absence of a realistic candidate for the star-forming boson,
and the fact that a star composed of an ideal gas of bosons
cannot reach the mass of observed neutron stars unless the
mass of the boson is several orders less than that of any known
particle [1–3]. Nevertheless, the experimental achievement of
Bose-Einstein condensation (BEC) of interacting atomic sys-
tems at the end of the last century [4], and the reinforcement
of the long-lasting supposition that neutron stars (NS) may
mainly consist of a superfluid of neutrons given by the theo-
retical adjustment of the cooling data of Cassiopeia A [5–7],
provided a rebirth of the application of bosons stars models
to the study of neutron stars. Paired neutrons inside neu-
tron stars are usually considered as weakly bounded Cooper
pairs whose size is of the order of the interparticle distance
[Bardeen-Copper-Schrieffer (BCS) limit] [8]. However, con-
sidering the neutron pairs as tightly bounded and behaving as
effective bosons (BEC limit) led, some years ago, to models of
Bose-Einstein condensate stars (BECS) [8–12]. It is worth
noticing that, given the NS inner conditions, both situations
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may be possible [8]. Here, our focus will be on the second
one.

A BECS is a compact object composed of a condensed gas
of interacting bosons where gravity is mainly balanced by the
pressure that comes from the interactions. The equations of
state (EoS) of BECS, as well as their mass and size, are
governed by the boson mass m and the interaction strength
through the scattering length a [9]. In the context of NS,
m = 2mn, mn being the neutron mass, and the scattering length
of the bosons is assumed to range from 1 to 15 fm. With those
values of m and a, the model at zero temperature and magnetic
field gives stars with maximum masses around 0.6–2.5 M�,
where M� is the mass of the Sun, and maximum central
densities around ρc ≈ 1016–1014 g/cm3 respectively [9,10].
Those densities are close to that of NS central regions. The
radii of those BECS (≈15–25 km) are slightly higher than
those expected for NS, but it can be diminished by considering
the presence of a strong magnetic field that interacts with the
neutral neutron pair through its magnetic moment [11,12].
Thus, magnetized BECS models would be useful to approach
the description of NS cores in the limiting situation in which
the core can be thought of as mostly composed of paired
neutrons [11].

In this paper, we aim to go deep into this possible connec-
tion between BECS and NS cores by taking into consideration
the effects of a finite temperature on BECS models. We will
consider a naked star fully composed of interacting bosons.
The inclusion of other particles and a crust is needed to estab-
lish a more realistic connection between BECS and NS, but
they are out of the scope of this article and will be tackled
in future work. We would also like to remark that we are
using the traditional name of “neutron star” to include not
only canonical neutron star matter but also the other kind of
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exotic matter that could exist in the cores of NS [13]. Also, we
are mainly interested in reproducing maximum masses around
2M�, although BECS models could also support observations
of less massive (≈0.77M�), smaller stars traditionally blamed
on quark stars [12,14]. Besides, boson stars models have been
largely exploited in the study of the hypothetical dark matter
stars (see, for instance, [14–23]). In this context, the versa-
tility of BECS comes to play since they allow to consider
of several kinds of bosons (charged/neutral, scalar/vector,
relativistic/Newtonian) (see, for instance, [14–23]) and situa-
tions (zero or finite temperature, magnetic field) starting from
the same theoretical setup [10,11,14].

In previous studies of BECS under the action of a uniform
and constant magnetic field [11,12] we found that, in general,
these stars are spheroidal (because the magnetic field splits
the pressure into two components, parallel and perpendicular
to its axis), less massive, and smaller than the nonmagnetic
ones. These effects begin to be noticeable for magnetic fields
intensities B ≈ 10−2Bc or higher, Bc being the boson critical
field.1 They are more relevant at low densities and depend
on whether the magnetic field is constant or varies with the
density.

Thermal effects have been traditionally ignored in the EoS
of compact or exotic stars. In the case of fermion stars,
the main argument behind the zero temperature approxima-
tion is that, given their high densities, the Fermi energy is
much higher than any temperature achievable inside the star
[24]. However, it was recently shown that even the canon-
ical models of neutron stars allow temperatures that range
from 10 to 100 MeV (≈1011–1012 K) for densities around
1014–1015 g/cm3 [25–27]. The effects of these temperatures
are not negligible: they change the internal composition and
the macroscopic properties of those stars.

Boson systems are much more sensitive to environmental
changes (variations in particle density, temperature, and mag-
netic field) due to the Bose-Einstein condensation [28–30].
In the case of BECS with nonrelativistic EoS, a finite tem-
perature increases the pressure at low densities, increasing
the size and mass of the stars [8,10]. When compared to the
magnetized BECS described above, it appears, at first glance,
that the thermal and magnetic effects oppose each other and
that they should cancel out. But, as we shall see, this is not
the case.

Hot BECS without magnetic field had been studied in
previous works [8,10]. Our goal now is to study the joint
role of temperature and magnetic field on their micro and
macroscopic properties by considering the bosons as spin-
1 relativistic particles. Spin-1 bosons are of interest due to
their unique magnetic properties in connection with the con-
densate (see [11,28,30,31] for a discussion on the so-called
Bose-Einstein ferromagnetism and its possible applications).
They may arise as bound states of spin- 1

2 fermions, as in the
core of NS, but also as fundamental particles in the context
of the standard model and its extensions [21,32]. The consid-
eration of relativistic bosons is required to correctly account

1The critical field is defined as the field at which the magnetic
energy of the particle equals its mass.

for the effects of the super-strong magnetic fields that may be
produced in astrophysical environments (up to 1018 G in the
core of NS [33]). For such high intensities, the magnetic field
energy might easily become comparable with the rest mass
and the thermal energy of the particles and the magnetized
vacuum contributes to the system with non-negligible energy,
pressure, and magnetization [30,34].

The paper is organized as follows: We devote Sec. II to the
EoS of magnetized BECS at finite temperatures. In Sec. III
we present the structure equations that we use to obtain the
macroscopic properties of these stars. Later in this section, we
discuss the dependence on temperature of the properties of
nonmagnetized BECS, with emphasis on the stars’ stability
and evolution, and finally we analyze the interplay of the
thermal and magnetic effects. Concluding remarks are given
in Sec. IV.

We use natural units h̄ = c = 1, and for numerical calcu-
lations we consider a spin-1 boson with mass m = 2mN and
magnetic moment κ = 2μN , mN and μN being the mass and
the magnetic moment of the neutron. In the plots, we use
a = 13 fm. The choice of these values responds to our wish
of maintaining the link between BECS and massive NS cores.
However, the discussions of our results are valid for any hot
BECS with a magnetic field, in particular also for dark matter
BECS. Regarding the last ones, our calculations of several
directly observable magnitudes, such as the mass and redshift,
may contribute to the detection and classification of those
exotic stars.

II. EQUATIONS OF STATE OF MAGNETIZED
BOSE-EINSTEIN CONDENSATE STARS

AT FINITE TEMPERATURE

The Hamiltonian of a gas of interacting bosons can be
written as a sum of an ideal gas Hamiltonian Ĥth that includes
the effects of temperature and any external field, plus the
particle-particle interaction Hamiltonian Ĥint,

Ĥ = Ĥint + Ĥth. (1)

Then, the grand thermodynamic potential per unit volume of
the system is [10,11]

� = �int + �th. (2)

The boson-boson interaction is considered as a two-body
contact interaction, i.e., we assume that only the low-energy
binary collisions are relevant [9–11]. This approximation
holds as far as the quantum fluctuations are negligible (mean
field approximation), but this is expected for a dense system
such as the BECS (ρ ≈ 1014–1015 g/cm3) at the relatively low
temperatures needed for the existence of the condensate.

Despite its simplicity, the assumption of a two-body
contact interaction allows one to obtain thermodynamic con-
sistent EoS for a gas of interacting bosons at finite temperature
[10] or magnetic field [11], whose corresponding mass-radius
curves have maximum values and shapes that are consistent
with other BECS models [8,9]. Hence, this is a useful starting
point to understand the physics of hot magnetized BECS.
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Under this assumption, �int transforms into [10]

�int = 1/2u0ρ
2
T , (3)

where u0 = 4πa/m indicates the strength of the interaction
and ρT is the density of particles and antiparticles, although
as we shall see, the effects of antiparticles are negligible.

To compute �th we start with its definition in the one-loop
approximation (i.e., without radiative corrections) [30],

�th(μ, T, B) = �st (μ, T, B) + �vac(B)

=
∑

s

∫ ∞

0

p⊥d p⊥d p3

(2π )2β
ln( f +

BE f −
BE )

+
∑

s

∫ ∞

0

p⊥d p⊥d p3

(2π )2
ε(p3, p⊥B, s). (4)

Here μ is the chemical potential, β = 1/T is the inverse
of the temperature T , B is the magnetic field intensity,
and f ±

BE = [1 − e−(ε∓μ)β ] are the distribution functions for
particles/antiparticles. The sum over s = 0,±1 runs over the
spin states, p3 and p⊥ are the momentum components parallel
and perpendicular to the magnetic field axis, and ε is the en-
ergy spectrum of the vector bosons under an external magnetic
field in the z direction [34],

ε(p3, p⊥, B, s) =
√

m2 + p2
3 + p2

⊥ − 2κsB
√

p2
⊥ + m2, (5)

where

εgs = ε(p3 = 0, p⊥ = 0, B, s = 1) = m
√

1 − 2κB/m (6)

is the ground state energy of the bosons. Note that the mag-
netic field couples with the transversal momentum of the
particles, but contrary to what happens for charged bosons p⊥
is not quantized. That is because the appearance of Landau
quantization is a consequence of the coupling among the
magnetic field and the charge, but the bosons we are studying
are neutral [34].

The first integral in Eq. (4), �st, accounts for the statis-
tical contribution of particles and antiparticles and depends
on T , B, and μ. Using the Taylor expansion of the logarithm
and integrating over the momentum components, �st can be
rewritten as [30]

�st (b, μ, T ) = −
∑

s

∞∑
n=1

enμβ + e−nμβ

2π2nβ

{
y2

0

nβ2
K2(nβy0)

− α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
, (7)

where Kl (x) is the McDonald function of order l , y0 =
m

√
1 − sb, α = smb/2, and b = B

Bc
with Bc = m

2κ
the critical

magnetic field of neutral vector bosons (for the numerical
values of m and κ that we consider in the introduction for
neutron stars cores Bc = 7.8 × 1019 G). Note that Eq. (7)
holds for any temperature [30].

The second integral in Eq. (4) is the zero-point energy
or vacuum term. It is independent of T and μ and has an

ultraviolet divergence. After renormalization it reads [30,34]

�vac(b) = − m4

288π
[b2(66 − 5b2) − 3(6 − 2b − b2)(1 − b)2

× In(1 − b)−3(6 + 2b − b2)(1+b)2ln(1 + b)].

(8)

The thermodynamic potential of the interacting boson gas at
finite temperature is obtained by adding Eqs. (3), (8), and (7)
as � = �int + �st + �vac. Thus, the EoS of the BECS can be
computed as [10,11]

P‖ = −� + ρT

(
∂�

∂ρT

)
μ,T,B

, (9a)

P⊥ = −� + ρT

(
∂�

∂ρT

)
μ,T,B

− MB, (9b)

E = � + μ

(
∂�

∂μ

)
T,B

− T

(
∂�

∂T

)
μ,B

, (9c)

ρ = ρgs −
(

∂�

∂μ

)
T,B

, (9d)

M = −
(

∂�

∂B

)
T,μ

, (9e)

where P‖ and P⊥ are the pressures along and perpendicular
to the magnetic axis, E is the internal energy, M is the
magnetization, and ρ is the particle density of the system.
Note that ρ includes the condensed particles’ ρgs as well as the
difference of the particle/antiparticle densities in the excited
states, −( ∂�

∂μ
)T,μ. Note that ρ differs from ρT in that the former

contains the subtraction while the latter contains the sum of
particle and antiparticle number density.

To complete the EoS of the magnetized compact object,
the energy density and pressures of the magnetic field have to
be taken into account since it also contributes to the hydrody-
namic equilibrium and the gravitational mass of the star [35].
To do so in the case of a uniform and constant magnetic field,
the so-called Maxwell contribution, B2/8π , is added to E and
P⊥ and subtracted from P‖.

After derivation and simplification, the EoS of the hot
magnetized BECS read

P‖ = 1

2
u0ρ

2
T − �st − �vac − B2

8π
, (10a)

P⊥ = 1

2
u0ρ

2
T − �st − �vac − MB + B2

8π
, (10b)

E = 1

2
u0ρ

2
T + mρgs + Est + �vac + B2

8π
(10c)

ρ = ρgs + ρ+ − ρ−, (10d)

M = κ√
1 − b

ρgs + Mst + Mvac, (10e)
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with

Est = − �st +
∑

s

∞∑
n=1

enμβ + e−nμβ

n

{
y3

0T

4π2
[K1(nβy0)

+ K3(nβy0)] + αn

2π2

∫ ∞

y0

dx
x3

√
x2 + α2

K0(nβx)

}
,

(11)

ρ± =
∑

s

∞∑
n=1

e±nμβ

2π2

{
y2

0

nβ
K2(nβy0)

+ α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
, (12)

and

Mst =
∑

s

κs

π2β

∞∑
n=1

enμβ + e−nμβ

n

{
my0

(2 − bs)
K1(nβy0)

+
∫ ∞

y0

dx
x4

2(x2 + α2)3/2
K1(nβx)

}
, (13)

Mvac = − κm3

72π
{7b(b2 − 6) − 3(2b3 − 9b + 7) ln(1 − b)

− 3(2b3 − 9b − 7) ln(1 + b)}. (14)

Here ρ+ and ρ− are the particle and antiparticle densities
respectively.

To determine the range of temperatures to use in our study
of BECS, let us focus first on the Bose-Einstein condensation
of the magnetized gas. The condition for the condensation
to occur is μ = m

√
1 − b and ρgs = 0 [34]. Imposing this

in Eq. (10d) we get the following expression for the implicit
dependence of ρ, T , and B in the transition points (the critical
curve) [30]:

ρc =
∑

s

∞∑
n=1

enm
√

1−bβ − e−nm
√

1−bβ

2π2

{
y2

0

nβ
K2(nβy0)

+ α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
. (15)

In Fig. 1 we show, for B = 0 and B = 1017 G, the critical
curves [Eq. (15)] in the ρ-t plane (where t = T/m). The gas
is condensed in the shadowed regions. For fixed ρ, increasing
the temperature destroys the condensation, while, for fixed t ,
increasing the density drives the system to the condensate.
A finite magnetic field increases the shadowed region, thus
favoring condensation. This enhancing effect of the magnetic
field on the condensation is a consequence of the way it
modifies the ground state of the gas [30]. As a general rule,
the critical temperature of BEC depends on the inverse of the
rest mass of the bosons εgs, so that decreasing εgs increases
the critical temperature and favors condensation. For the gas
we are studying, εgs = m

√
1 − 2κB/m. Thus, as B increases,

εgs decreases, favoring condensation.
To guarantee we have stars with a fraction of the bosons in

the condensate, we need to restrict our study to the regions
of the EoS where BEC exists. To do so, we will analyze

FIG. 1. The phase diagram of Bose-Einstein condensation in the
density-temperature plane for B = 0 and B = 1017 G. The BEC ex-
ists in the shadowed regions.

the dependence on T of the fraction of particles, antipar-
ticles, and condensed particles (ρ+/ρT , ρ−/ρT and ρgs/ρT

respectively) to select a range of temperatures that fulfill the
previous requirement. In Fig. 2 we show those quantities as
functions of ρ for several values of the temperature and B = 0.
The vertical lines mark the critical density of condensation:
for densities at their right, a fraction of the gas is in the
condensed state. The region where the Bose-Einstein con-
densation exists decreases with the increase in temperature.
Moreover, note that only for T � 0.01m ≈ 1011 K does the
gas condenses at densities around the typical central den-
sities of BECS (1015–1016 g/cm3). In this regard, we will
restrict our analysis of hot magnetized BECS to tempera-
tures such that T � 0.01m, to guarantee the existence of
Bose-Einstein condensation at least in some region inside
the star.

For T � 0.01m, the antiparticle density is negligible
(Fig. 2) and they will not have any relevant influence on
the hot BECS physics. This situation does not change at a
finite magnetic field, since to affect antiparticle production
and Bose-Einstein condensation, B needs to be above ≈0.1Bc,
which for Bc = 7.8 × 1019 G is an order above the highest
values of the magnetic field expected in compact stars [30].
Concerning the EoS Eq. (10), this means that ρT = ρ.

With the antiparticles out of the picture, at B = 0 the main
effect of a finite temperature in the BECS EoS, Fig. 3(a), is an
increase of the pressure for the lower energy densities (E �
100 MeV/fm3). This happens because, as T increases from
0, the thermal pressure −�st (b, μ, T ) starts to gain relevance
in comparison to the other components of the pressure. At
high densities the boson-boson interaction pressure [u0ρ

2
T /2

in Eqs. (10a) and (10b)] prevails, being the total pressure
corresponding to those densities barely affected by the tem-
perature [Fig. 3(a)].

Turning on the magnetic field makes the pressure
anisotropy noticeable [Fig. 3(b)]. In this case, as the density
decreases, the parallel pressure Eq. (10a) (dashed lines) tends
to B2/8π and becomes density independent, while the per-
pendicular pressure Eq. (10b) (solid lines) goes to −B2/8π ,
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FIG. 2. Fraction of particles, antiparticles, and particles in the ground state as functions of ρ for several values of the temperature and
B = 0. The vertical lines correspond to the density at which the condensate appears.

becoming negative. This instability imposes a lower bound
on the densities that can exist inside the star for a given
magnetic field [11]. The direct relation between the anisotropy
in the pressures and the Maxwell pressure ±B2/8π can be
also appreciated by plotting the EoS of the magnetized star
without those terms (Fig. 4) and checking that in that case the
instability disappears.

The anisotropy in the pressure and the instability caused
by the magnetic field persist for all the considered temper-
atures [Fig. 3(b)]. The magnetic energy per boson in units

of mass at B = 1017 G, κB ≈ 10−4m, is lower than the ther-
mal energy 5 × 10−4−10−2m, at all the temperatures used,
except when T = 0. This may suggest that the increase in
thermal pressure should be enough to balance the instability.
However, what turns on the anisotropy is the term correspond-
ing to the Maxwell classical energy of the magnetic field:
B2/8π . This term adds, or subtracts, to the pressures an energy
per boson B2/8πρ that is almost negligible at high densi-
ties, B2/8πρ ≈ 10−5m for E ≈ 104 MeV/fm3, but that leads
the system behavior at the low ones: B2/8πρ ≈ 10−2m for

FIG. 3. The EoS of hot BECS with B = 0 (a) and B = 1017 G (b). In (b), the dashed and solid lines correspond to the parallel and
perpendicular pressures respectively, and the horizontal line signals the value of the Maxwell pressure B2/8π for B = 1017 G.
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FIG. 4. The EoS of hot BECS with B = 1017 G and no Maxwell
contribution ±B2/8π in the energy and pressures. The dashed and
solid lines correspond to the parallel and perpendicular pressures
respectively.

E ≈ 10 MeV/fm3. Hence, the EoS in Fig. 3(b) is dominated
by the magnetic field at low densities, by the temperature at
the intermediate ones, and by the interactions at the highest
values of E . So, the selected values of T and B guarantee
that we will study stars where both their effects are relevant,
although dependent on the density and on the assumption of
constant magnetic field intensity.

III. MACROSCOPIC PROPERTIES OF RELATIVISTIC
BOSE-EINSTEIN CONDENSATE STARS AT A FINITE

TEMPERATURE UNDER THE ACTION
OF A MAGNETIC FIELD

Now we focus on both thermal and magnetic effects on the
macroscopic properties of BECS. To do so, we will assume
that the temperature is constant inside the star. The tempera-
ture of compact stars is thought to increase toward the center
[26,27]. However, detailed calculations of the inner profiles of
NS with realistic EoS show that the increase of T is usually
no greater than one order of magnitude and that the biggest
change takes place near the surface of the star [26,36]. Thus
considering a constant temperature is a good approximation.
Similarly, self-consistent numerical calculations with realistic
models for the inner magnetic fields of white dwarfs and
neutron stars show that variations in the magnetic field in-
tensity inside these objects do not usually exceed one order
of magnitude [26,37,38]. Hence, we also assume that, inside
the star, the magnetic field is uniform and constant, although
at the end of Sec. III B we briefly discuss how the magnetic
effects change when a field intensity dependent on the density
is considered.

As discussed in the previous section, the magnetic field
splits the inner pressure of the star into two components,
one along and the other perpendicular to the magnetic axis.
Since the inner pressure of compact objects is, in general,
proportional to its radius [33], magnetized stars are not spher-
ical but axially deformed. As a consequence, the macroscopic
structure of a magnetized compact object cannot be accounted

FIG. 5. The mass vs the central mass density of nonmagnetized
BECS with different inner temperatures and B = 0.

for with the standard Tolman-Oppenheimer-Volkoff (TOV)
equations [24] because they describe static spherically sym-
metric stars and do not admit a pressure anisotropy of the type
caused by the magnetic field. To properly take into account the
anisotropy, we will use the so-called γ -structure equations,
given as [39]

dM

dr
= γ r2 (E‖ + E⊥)

2
, (16a)

dP‖
dr

= − (E‖ + P‖)
[

r
2 + 4πGr3P‖ − r

2

(
1 − 2GM

r

)γ ]
r2

(
1 − 2GM

r

)γ ,

(16b)

dP⊥
dr

= − (E⊥ + P⊥)
[

r
2 + 4πGr3P⊥ − r

2

(
1 − 2GM

r

)γ ]
r2

(
1 − 2GM

r

)γ .

(16c)

These equations establish the hydrodynamic equilibrium be-
tween the gravity and the internal pressure of a spheroidal
compact object, provided it is close to the spherical shape
(γ ≈ 1) [39]. In them, G is Newton’s gravitational constant
and M(r) is the mass enclosed in the spheroid of equatorial
radius r. To obtain the total mass and radius of the star,
Eqs. (16) are integrated with the initial conditions E0 = E (r =
0), P‖0 = P‖(r = 0), and P⊥0 = P⊥(r = 0), where E0, and P⊥0

and P‖0 are taken from the EoS, while the condition P(R) = 0
defines the star equatorial radius from which the total mass
M(R) is computed. At each integration step, E‖ and E⊥ are
computed using the parametric dependence of the energy in
each pressure derived from Eqs. (10a) and (10b).

The parameter γ accounts for the axial deformation of
the star and relates the polar and equatorial radii as z = γ r
(Z = γ R) such that if γ = 1 the star is spherical while for
γ > 1 (γ < 1) it is a prolate (oblate) spheroid. In Eq. (16) γ

acts as an external parameter [39]. To solve them, in [39] γ

has been considered as the ratio between the parallel and the
perpendicular central pressures,

γ = P‖0/P⊥0 . (17)
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FIG. 6. Mass-radius diagram (a) and compactness (b) of BECS at different temperatures and B = 0; in this case, since B = 0 the star is
spherical and the polar and equatorial radii coincide (Z = R). The black dots mark the position on each of the curves of a star with baryon
mass of 1.7M� (composed of around 1057 bosons); they have been joined with a dotted line for a better visualization of the star evolution as
the temperature decreases (see the text).

This ansatz connects the system’s geometry with its physi-
cal properties and follows from the proportionality between
the radius and the central pressure of spherical stars [33].
When B = 0, P⊥ = P‖, γ = 1, Eq. (16) reduced to TOV equa-
tions and the spherical case is recovered. For B 	= 0, the axial
symmetry of Eq. (16) is compatible with a dipolar magnetic
field in the star. Regardless of their approximated character-
istics, the study of the macroscopic structure of magnetized
compact objects through the combination of Eq. (16) with
the ansatz Eq. (17) yields reasonable results [11,12,39–41],
that are qualitatively similar to those coming from models
that consider more sophisticated magnetic field geometries
[26,36–38,42,43].

Equation (16) guarantee the hydrodynamic equilibrium for
spheroidal stars, but equilibrium does not necessarily im-
ply stability [2,24,41,44]. We use two criteria to study the
stability of the solutions. The first one guarantees stability
against radial oscillations and requires that dM/dρ � 0 [24].
The second criterion requires M(ρ) < MB(ρ), where MB is
the baryonic mass of the star, Eq. (18), and assures stability

against the dispersion of the particles forming the star [2,24]:

MB = m
∫ R

0

4πr2ρ(P(r))(
1 − 2GM(r)

r

)γ /2 dr. (18)

Since the solution of Eqs. (16) gives two radii, to compare
with the B = 0 case it is convenient to use the mean radius Rm

so that the surface of the sphere it determines is equal to the
surface of the spheroidal star,

A = 2πR

(
R + Z

ε
arcsin ε

)
, (19)

where ε = √
1 − γ is the ellipticity [41].

Apart from the mass and radii, we are also interested in an-
alyzing the thermal and magnetic effects over the compactness
GM/R, the gravitational redshift [41]

z = 1(
1 − 2GM

R

)γ /2 − 1, (20)

FIG. 7. Gravitational redshift (a) and moment of inertia as functions of the mass of the star (b) for several values of the temperature and
B = 0. The black dots mark the position on each curve of the star with baryon mass of 1.7M�; they have been joined with a dotted line for a
better visualization of the star evolution as the temperature decreases.
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FIG. 8. Mass–central-density (a) and mass-mean radius Rm (b) curves for BECS at several temperatures and magnetic field B = 1017

G (dashed curves) and B = 0 (solid curves). The black dots in (b) mark the position on each curve of the star with baryon mass of 1.7M�; they
have been joined with a dotted line for a better visualization of the star evolution as the temperature decreases.

and the mass quadrupolar moment [41]

Q = γ

3
(M/M�)3(1 − γ 2); (21)

this last equation is only for magnetized stars, since for spher-
ical stars Q = 0. In the case of nonmagnetized stars at a finite
temperature, we show the moment of inertia I instead of Q:

I =
∫ R

0
4πr4E (P(r))dr. (22)

A. Nonmagnetized Bose-Einstein condensate stars
at finite temperature

We will first concentrate on understanding the effects of
temperature on nonmagnetized relativistic BECS. Figure 5
shows the masses of the stars that result from solving the
γ -structure equations with the EoS at B = 0 [Fig. 3(a)]. The
increase that the temperature causes in the pressure at low
densities provokes an increase in the masses of the stars com-
pared to the zero temperature case. This behavior has been
observed for nonrelativistic BECS and white dwarfs in [10]
and [38] respectively. What we found unexpected is that the
temperature affects the stability of BECS.

In Fig. 5 the unstable sections of the curves have a lighter
color. The stability analysis reduced to looking for the re-
gion where ∂M/∂ρ � 0, since the baryonic mass criterion
is always fulfilled for a broader range of central densities.
The interval of central densities of stable stars gets smaller
as the temperature increases. Table I collects the extreme
values of the central mass density and the mass of the stable
stellar configurations for each temperature. The variation with
T of the maximum mass and its corresponding central density
is almost negligible, while the minimum mass and central
density remarkably increase with the temperature. Hence, one
expects that, even if we allow T > 0.01m, there would be
a temperature beyond which there are no stable stars in the
range of central densities considered. At such high temper-
atures, the statistical pressure −�st becomes so high that a
gravitationally bound structure cannot form. In the remaining
figures of this section, we show only the stable part of the
curves.

The squares over the curves in Fig. 5 signal the value of the
central density beyond which there are no condensed bosons
inside the star. As shown in this plot, the condensation disap-
pears from the interior of the stable stars as the temperature
increases (the squares move to the right). For t = 0.01 any
star in the stable region contains Bose-Einstein condensation,
although the qualitative behavior of the mass–central-density
curve does not change. This may be a consequence of the fact
that, ultimately, what sustains the star is the pressure due to
the interaction of the bosons. Anyhow, we will restrict our
following discussions to those temperatures where the con-
densation is present at least in some part of the stable stellar
sequence.

Apart from increasing the mass and reducing the number
of stable stars, the temperature increases the radius of the
stars [Fig. 6(a)]. As a consequence, the compactness of hot
BECS decreases with T , indicating that the hotter stars are less
denser [Fig. 6(b)]. An interesting feature of having BECS at
different temperatures is that, for a fixed baryon mass, one can
compare how the macroscopic properties of the star evolve
as it gets colder and older. We made this for a star with a
baryon mass of 1.7M� (composed by around 1057 bosons).
The position of this star is marked with black dots on Figs. 6
and 7. Especially from Fig. 6(b), we can see how the star
becomes denser as its temperature decreases. This is caused
by the reduction in the radius since the gravitational mass

TABLE I. Extreme values of the central mass density and the
total mass of the stable stellar configurations at finite temperature
and zero magnetic field.

ρmin ρmax Mmin Mmax

(1011 g/cm3) (1015 g/cm3) (M�) (M�)

t = 0 1.23 2.11
t = 0.0005 3.10 1.19 0.05 2.11
t = 0.001 9.72 1.18 0.16 2.11
t = 0.005 336 1.12 0.77 2.15
t = 0.01 1034 1.03 1.45 2.18
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TABLE II. Extreme values of the central mass density and the total mass of the stable stellar configurations at finite temperature and
magnetic field.

ρmin (1013 g/cm3) ρmax (1015 g/cm3) Mmin (Msol ) Mmax (Msol )

B = 0 B = 1017 G B = 0 B = 1017 G B = 0 B = 1017 G B = 0 B = 1017 G

t = 0 7.37 1.23 1.23 0.72 2.11 2.09
t = 0.0005 0.032 7.41 1.19 1.18 0.05 0.73 2.11 2.09
t = 0.001 0.580 7.49 1.18 1.18 0.16 0.77 2.11 2.10
t = 0.005 3.36 7.55 1.12 1.18 0.77 0.96 2.15 2.12

remains almost constant [Fig. 6(a)], indicating that the star
contracts as it cools (its pressure decreases with T ).

Finally, in Fig. 7 we show the change in temperature of
the redshift (a) and the moment of inertia (b). The redshift
increases with decreasing temperature, because the more com-
pact a star is, the more relativistic it gets. As we can expect,
following the same reasoning, the moment of inertia increases
with temperature, since it is proportional to the radius of
the star.

B. Magnetized Bose-Einstein condensate stars
at finite temperature

In this section, we will analyze the interplay of temperature
and magnetic field on the macroscopic properties of BEC,
solving Eq. (16) with the EoS (10) at B = 1017 G [Fig. 3(b)].
For a fixed temperature, a constant magnetic field reduces
the number of star configurations at low densities [Fig. 8(a)].
Magnetized BECS has a lower bound in their central den-
sity at the point where P‖ becomes zero, and for that reason
the mass–central-density curves are shorter when B 	= 0. In
addition to this bound, the mass-central density curves of
magnetized BECS have a minimum in the low-density region
that reduces, even more, the number of stable stars (those
that have dM/dρ > 0). As a consequence, a lower bound
appears for the total mass of magnetized BECS. This min-
imum mass of stable magnetized stars increases with t , while
the maximum mass is barely affected by the temperature and
the magnetic field (Table II). The range of allowed central
densities in the stable stars goes from 1013 to 1015 g/cm3,
which is compatible with the values of densities in the cores
of neutron stars.

The magnetic field drastically reduces the size of the stars
in both the polar and the equatorial directions. This can be
appreciated from Fig. 8(b) through the reduction of the mean
radius of the magnetized stars, but also from Fig. 9, where we
draw the transversal section of the stars with the maximum
mass in the polar-equatorial radius (Z-R) plane for each value
of t and B. However, from Figs. 8(b) and 9 we can also ap-
preciate that, for a high enough temperature, a hot magnetized
BECS can attain masses and radii above those corresponding
to the B = 0, T = 0 case (see the green curves corresponding
to t = 0.005).

In Fig. 8(b) we consider the effect of the magnetic field on
the evolution of a star of baryon mass of 1.7M� (black dots on
the plots). Similarly to B = 0, at B = 1017 G the star becomes
denser as its temperature decreases since its gravitational mass

remains almost constant while its radii diminish [Fig. 8(a)].
The only difference is that the gravitational mass of the hot
magnetized star is slightly less than the one of the B = 0
case (gray dots on the plots). If we were to study the joint
evolution of the temperature and the magnetic field as the star
ages, we should consider a situation in which both magnitudes
diminish. But it will be hard to anticipate whether the BECS
will contract or expand since this will depend on the relative
values of T and B.

Due to the reduction of the equatorial radius of magnetized
stars, the compactness (GM/R) of magnetized hot BECS is
above that of the B = 0, T = 0 case for all the considered
temperatures [Fig. 10(a)]. The redshift also increases at a
finite magnetic field, meaning that the star becomes more
relativistic [Fig. 10(b)]. However, for a fixed magnetic field,
the compactness increases with temperature for low den-
sity, while at higher densities decreases with T . Also from
Fig. 10(b), we see that, as the star cools, its central density
grows.

To explore the effects of the temperature on the defor-
mation of the magnetized BECS, in Fig. 11(a) we show the
equatorial (solid) and polar (dashed) radius R and Z as func-
tions of the stars’ central density for several values of the
temperature. At T = 0, B 	= 0, Z < R, hence, the stars are
oblate objects, and the difference between R and Z is higher at
low densities, while it is negligible at the higher ones (that is
why the transversal section of the stars in Fig. 9 is a circle). An
increase in temperature increases R and Z without eliminating
their difference. Thus, hot magnetized stars are still oblate and
exhibit a nonzero mass quadrupolar moment that increases
with T [Fig. 11(b)]. This happens because the hotter stars are
more deformed than the colder ones [their γ is farther from
one, Fig. 11(c)]. Note that Q depends directly on M and γ

[Eq. (21)]. The values of Q for the more massive stars are
close to zero since for those stars γ ≈ 1. As the gravitational
mass decreases, the behavior of Q changes according to tem-
perature. For the smallest values of T , at which the magnetic
effects dominate, Q attains a maximum value for an interme-
diate mass. This also happens for magnetized strange stars
[41], and it is connected with the fact that at high mass γ goes
to 1 (P‖0 ≈ P⊥0 ), and at lower mass γ decreases (P‖0 → 0).
As T increases, the sequence of stable stars is reduced, the
maximum disappears, and the lighter stars become the ones
with the highest value of Q. Regarding gravitational waves,
the behavior of Q with T implies that the temperature may
enhance their emission for the stars of small and intermediate
masses.
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FIG. 9. The transversal section of the stars with the maximum mass in the polar-equatorial radii (Z-R) plane for several values of t and B.
Due to their high inner densities, for these stars the magnetic deformation is negligible. The external circle in the plots is not a star but the
angular scale.

Finally, we would like to point out that the thermal and
magnetic effects we discussed may be subjected to variations
in the way the temperature and magnetic field are modeled
inside the stars. As an example, Figs. 12(a), 12(b), and 12(c)
show the EoS and the mass-radius and mass–central-density
curves of BECS with t = 0.001 and B = 0, B = 1017 G and
a density-dependent magnetic field B(ρ) = Bcent + Bs(1 −
e−β( ρ

ρc
)α ) [45]. Here Bcent and ρc are the magnetic field and

the density at the center of the star, Bs = 1014 G is the surface
magnetic field, and α = 3 and β = 0.05 [Fig. 12(d)]. The
central and surface values of B have been selected in the
range of those corresponding to NS, although we remind the
reader that the connection of BECS with NS is not straight-
forward. Note that, for all the temperatures here considered,
the major decrease in the magnetic field is produced near the
star’s surface [Fig. 12(d)]. For B = B(ρ) the anisotropy in
the pressures becomes negligible, the low-density instability
disappears [Fig. 12(a)], and the radii of the stars are larger
than those corresponding to B = 0 [Fig. 12(a)]. However, in

this case, there still exists a lower bound for the central density
of stable stars, and their masses are lower than those of non-
magnetized stars with the same central density [Fig. 12(c)].
Our analysis of BECS with a density-dependent magnetic
field also indicates that the use of a realistic temperature
profile may attenuate but not erase the thermal effects we have
discussed.

IV. CONCLUDING REMARKS

We obtained the EoS and the macroscopic properties of
relativistic BECS at finite temperatures with a magnetic field.
Such stars consist of a condensed gas of interacting neutral
vector bosons coupled to a uniform and constant magnetic
field. We assumed for the bosons a two-body contact in-
teraction independent of the temperature and the magnetic
field, while for the thermal part of the EoS we used the
one-loop thermodynamic potential of a gas of free vec-
tor bosons at a finite temperature under the action of an

FIG. 10. Compactness (a) and gravitational redshift (b) for BECS at several temperatures and magnetic field B = 1017 G (dashed curves)
and B = 0 (solid curves). The black and gray dots mark the position on each curve of the star with baryon mass of 1.7M�; they have been
joined with dotted lines for a better visualization of the star evolution as the temperature decreases.
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FIG. 11. Equatorial (solid) and polar (dashed) radii as a function of the central density for B = 1017 G and several values of temperature
(a). The mass quadrupolar moment as a function of the star mass (b). The parameter γ as a function of the star mass (c). In (a) the B = 0,
T = 0 is included for reference. The black dots in (b) mark the position on each curve of the star with baryon mass of 1.7M�; they have been
joined with a dotted line for a better visualization of the star evolution as the temperature decreases.

external magnetic field. To obtain the macroscopic proper-
ties we used the γ -structure equations; they mimic a dipolar
magnetic field and can properly account for the anisotropy in
the pressures.

Our study was restricted to temperatures two orders be-
low the boson mass m. At T > 0.01m, the Bose-Einstein
condensation is achieved at densities far beyond the central
densities of stable stars. Thus, going above this limit does not
preserve the nature of BECS. Since the antiparticles’ density
starts to be non-negligible at T � m, pair production has no
relevance in our model. Finally, the values of T and B used
in the plots were selected such that the thermal and mag-
netic energy is about the same order. This makes it possible
to analyze the joint effects of T and B in the physics of
the star.

At zero magnetic field, the main effect of the tempera-
ture in the EoS of BECS is to increase the pressure at low
densities. It reflects later as an increase in the masses and
radius of the stars. Thus hot BECS are bigger and heavier
than their zero-temperature counterparts. These effects are
more relevant for the stars with lower central densities and
higher temperatures, while the maximum mass of the model
is almost unchanged and remains mainly dominated by the
microscopic properties of the bosons. The other relevant and
unexpected feature related to the pure thermal effects is the
existence of a lower bound on the central density of stable

stars. This lower allowable density increases with T , such that
the higher the temperature, the fewer the number of stable
BECS.

A constant magnetic field reduces, even more, the number
of stable stars and provokes the BECS to axially deform in
a manner that affects their size in all directions and other
macroscopic properties. In general, magnetized BECS at finite
T are smaller, denser, and more compact than nonmagnetized
hot stars. Although increasing T increases the mass and the
polar and equatorial radii of the magnetized stars, a finite
temperature is not enough to erase either the anisotropy in
the pressure or the instability caused by the magnetic field
at low densities. Moreover, increasing the temperature favors
the deformation and increases the value of the quadrupo-
lar moment of the stars of small and intermediate masses,
apparently enhancing gravitational waves’ emission. There-
fore, if at first sight it might seem that a finite temperature
will cancel the magnetic field effects in BECS, it is clear
from the results of our study that the interaction of T and
B adds new and nontrivial features to the physics of these
stars. As we also showed, a magnetic field dependent on
the baryon density of the star erases the anisotropy, but still
causes a reduction in the mass and number of stable stars,
indicating that a more realistic model for the magnetic field
and the temperature may attenuate but not eliminate their
effects.
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(d)

FIG. 12. BECS with t = 0.001 and B = 0, B = 1017 G and inner magnetic field intensity dependent on the star particle density B(ρ ): EoS,
the solid curves, correspond to the parallel pressure while the dashed ones correspond to the perpendicular pressure (a); mass-radius curves
(b); mass–central-density curves (c). Inner magnetic field of the star versus its internal equatorial radius r (in units of the equatorial radius of
the star R) for stars with B(ρ ), central density ρ = 1015 g/cm3, and several temperatures (d).

Magnetized BECS models may be used as alternative mod-
els for the cores of NS. Indeed, the results indicate that
hot magnetized BECS can account for the masses and in-
ner densities of these cores, their radii being larger than the
observed ones. However, the increase of B, as well as the
decrease of T , may contribute to a readjustment of the ra-
dius without provoking considerable changes in the maximum
mass of the stars. This indicates that a better coincidence
with the observed properties of NS may be attained by fine
tuning the parameter space of the model, combined with the

inclusion of some other features as a crust and other com-
ponents of the star. We plan to explore those possibilities in
future works.
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