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Dense nuclear matter with phenomenological short distance repulsion
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The possibility of new short distance physics applicable inside the cores of neutron stars is incorporated into
the equation of state generated by the quark-meson coupling model. The contribution of this new physics to the
energy density is taken to be proportional to the amount of overlap between the quark cores of the baryons
involved. With no change to the properties of symmetric nuclear matter at saturation density, including an
incompressibility compatible with data on giant monopole resonances, one can sustain neutron stars with a
maximum mass Mmax > 2.1M�, even when hyperons are included.
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I. INTRODUCTION

Understanding the equation of state (EoS) of dense nuclear
matter, namely the pressure as a function of energy density
[1–3], p = p(ε), is one of the key challenges being addressed
in modern nuclear theory. The EoS is well known in the
low density region [4,5] and is believed to be constrained
by perturbative QCD in the high density region [6–9]. In the
intermediate region, the description of nuclear matter is still
a matter of considerable debate. Heavy ion reactions have
provided important constraints [10,11] up to densities of order
several times the saturation density of symmetric nuclear mat-
ter, n0. However, the matter formed in these collisions exists
only for a short time and in a small volume, which introduces
a degree of model dependence in the interpretation. Intense
interest has shifted to long lived, cold neutron stars (NSs)
because their core densities are expected to be as large as 4–10
times n0. At such large densities we cannot be sure whether
the matter is hadronic, quark matter, or some hybrid form
[6,12,13]. Furthermore, as the matter in a NS is stable long
term, to the extent that it is hadronic, one must satisfy the
conditions of β equilibrium and hyperons must be present.

Of the more than 40 NS mass measurements, most center
around the canonical mass of 1.4–1.5 M� [13–16]. These rely
on the detection of a NS in a binary system [15,17,18]. Given
the compactness and the extraordinary distances of these stars
from Earth, mass and radius measurements on the same star
still carry considerable uncertainty, making them suboptimal
for constraining the EoS. Much of the focus has shifted to
the heaviest of these stars, of which three are known; PSR
J0348+0432 has a mass of M = 2.01+0.04

−0.04 M� [19], PSR
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J1614−2230 has a mass of M = 1.908+0.016
−0.016 M� [20], and

PSR J0740+6620 has a mass of M = 2.072+0.067
−0.066 M� [21,22].

Measurements of NS radii are particularly difficult to
narrow down [23]. However, the gravitational wave (GW)
detection of GW170817 has placed new emphasis on the radii
of NSs [24]. The NS merger event also allowed a totally
new property, the tidal deformability, to be extracted from the
waveform of the passing gravitational wave. For a 1.1–1.5 M�
NS, the radius is largely independent of the mass. GW170817
involved component masses of m1 ∈ [1.18, 1.36] M� and
m2 ∈ [1.36, 1.58] M�, with radii for either star R = 11.9 ±
1.4 km, making it highly likely that the event involved a binary
NS system [24] (GW190425 may contain NSs but there is a
high probability that the merger event has at least one black
hole component [25]). The tidal deformability measured for
GW170817, which was reported to be �1.4 = 190+390

−120, is a
measure of the quadrupole deformation of a spherical object
caused by an inhomogenous external gravitational field [24].
GW measurements have the further advantage that they may
offer insights concerning the presence of exotic matter in stars
[26,27].

With the observation of NSs with masses M ≈ 2M�, many
EoSs have been ruled out [19,21,28]. This is particularly true
for those where hyperons are included. Under β equilibrium,
hyperons are predicted to appear at or above 3n0, and, be-
cause they have low momentum near the threshold for their
introduction, the pressure corresponding to a given energy
density is lower than it would be without hyperons. Then the
maximum mass of the star must be lower [13,17,18,29].

The quark-meson-coupling (QMC) model is unique
amongst models for the binding of nuclear matter in that the
change in the structure of any bound hadron, induced by the
strong mean scalar field in medium [30,31], plays a key role.
In particular, the resultant density dependent reduction in the
coupling of baryons to the scalar field [32] is equivalent to
introducing many-body forces [33]. The three-body force, in
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particular, acts between all combinations of baryons, NNN ,
Y NN , YY N , and YYY (with Y a hyperon), without the intro-
duction of any new parameters. As a result of this three-body
force, the QMC model predicted the existence of NSs with
masses up to 2M�, with hyperons [34], three years before the
first was observed [28].

Following the discovery of NSs with masses as large as
2M�, many possible solutions to what was regarded as the
“hyperon puzzle” have been proposed. These include den-
sity dependent couplings, many body forces, and a possible
phase transition from hadronic to deconfined quark matter
[35,36]. By interpolating between accurate low (nB < 1.1n0)
and high (nB > 40n0) density EoSs, several researchers have
derived phenomenological EoSs matching heavy NS obser-
vations [6–9]. The requirement that the EoS approaches that
of perturbative QCD at high densities has a distinct imprint
on the speed of sound (c2

s ). Conformal matter has a limit of
c2

s < 1/3 approaching from below, which suggests deconfined
quark matter [6], although the appearance of hyperons has a
similar signature [37,38].

The QMC model has been extensively developed since
the prediction of high mass NSs with hyperons. The intro-
duction of an isovector scalar meson did not dramatically
change the predictions for NS properties, with the most sig-
nificant change being an increase in the NS radius, for a given
mass [39].

The energy density functional derived in the model [32,40]
has been applied to the properties of even-even nuclei across
the periodic table, with considerable success [41–44]. How-
ever, studies of the giant monopole resonances (GMRs)
required the introduction of a term cubic in the scalar po-
tential, which also lowered the incompressibility of nuclear
matter [41]. The same term included in calculations of the EoS
of dense nuclear matter tends to lower the maximum neutron
star mass.

The parameters of the QMC model, associated with the ex-
changed mesons, are determined by the properties of infinite
nuclear matter at saturation density [45]. On the other hand,
the cores of the highest mass NSs involve much higher densi-
ties, where the finite-size baryons may overlap; something not
included in the model. In that region nonperturbative gluon
exchanges may lead to additional repulsion not accounted for
by longer-range meson exchange. With this in mind, here we
extend the QMC model to include a new, phenomenological,
short-ranged repulsive force, which only affects the EoS at
densities well above saturation density.

The structure of this paper is as follows. In Sec. II we sum-
marize the calculation of the EoS of dense matter within the
QMC model and introduce the new short distance repulsive
force, designed to affect the EoS only at densities well above
nuclear matter density. The results and concluding remarks
are presented in Secs. III and IV.

II. THEORETICAL FRAMEWORK

In the MIT bag model, the quarks are confined in a spher-
ical region, the interior of which is a strictly perturbative
vacuum. In the QMC model the baryons retain their indi-
vidual identity, even at higher densities [46,47]. One of the

criticisms which Stone et al. [34] highlighted is the possi-
bility that the QMC model would begin to breakdown at
some unknown threshold density, where the hadrons start to
overlap and eventually transition into quark matter. Actually,
this may even be apparent at lower densities, of order 4n0,
where nucleons geometrically touch [15]. Performing a lattice
QCD calculation, Bissey et al. showed that three quarks in a
baryon are connected by a Y-shaped flux tube [48]. Elsewhere
a nonperturbative QCD vacuum exists, through which baryons
are permitted to move freely. Thus a literal interpretation of
the MIT bag model may not reflect the full physical picture of
nuclear matter [34,40]. While this provides some justification
for treating the baryons as nonoverlapping to higher densities
than one might naively expect, one may anticipate that new
interactions are likely to be needed eventually.

Berryman and Gardner proposed an extension to the stan-
dard model based upon gauging baryon number [49]. Their
new short-ranged, repulsive quark-quark force was mediated
by a vector boson coupling to baryon number B. Normally
this would be suppressed by the highly repulsive short-range
(0.4–0.6 fm) NN , Y N , and YY potentials [50]. However, be-
yond saturation density, as the baryons start to overlap, the
new interaction would have an affect on the resulting EoS
[49,51]. To model this, a two-particle NN Yukawa potential
was used, and Berryman and Gardner showed that the ensuing
NS had a maximum mass of 2–2.2 M� [49].

In the QMC model the ω meson generates the short
distance repulsion between baryons. However, as explained
earlier, as the baryons begin to overlap we expect that there
may be additional repulsion arising from nonperturbative
QCD in the multiquark environment. Indeed, quark model
studies over the past 40 years have shown that the Pauli ex-
clusion principle, in combination with the increase in energy
associated with hidden color configurations, leads to strong
short distance repulsion between nucleons (see, e.g., Harvey
[52]). This has been confirmed more recently by, for example,
lattice QCD studies by the HAL Collaboration [53]. Low
energy nucleon-nucleon scattering, which is used to constrain
phenomenological descriptions of this in terms of, say, ω me-
son exchange, does not probe that short distance behavior [54]
in detail and one might expect that this additional repulsion
could be manifest in the much more dense systems at the core
of a neutron star. To model these short distance interactions,
we propose an additional, phenomenological term to be added
to the QMC energy density, which only has appreciable effects
at supranuclear densities. The functional form used to model
the degree of overlap is taken to have a simple Gaussian form,
given in Eq. (18), and is required to stiffen the EoS without
changing the physics at saturation density.

Our summary of the key details of the QMC model follows
closely the work of Motta et al. [39] and Guichon et al. [40].
The calculation is carried out in the Hartree-Fock approxima-
tion, with the inclusion of the isovector scalar meson, δ, as
introduced by Motta et al. [39].

A. Energy density

In infinite nuclear matter, using the mean-field approx-
imation, the effective mass of a baryon with flavor f is
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given by

M∗
f (σ̄ , δ̄) = �uNu + �d Nd + �sNs − z0

RB
+ BVB + 	EM . (1)

RB and VB are the bag radius and volume respectively. �i

expresses the lowest eigenvalue for the three valence quarks,
calculated in the local scalar mean fields (Ni denotes the num-
ber of u, d , or s quarks). The input parameters, determined
at zero density, are B, αs, and z0. These are respectively the
bag pressure, the strong coupling constant, which sets the size
of the hyper-fine color interaction (	EM), and the zero point
gluon fluctuation terms. They are fitted to satisfy the mass
of the free baryons and boundary conditions imposed by the
MIT bag model [46,55]. Although the calculation of 	EM is
complicated, it is essentially given by a spin matrix element
multiplied by αs divided by the bag eigenenergies of the pairs
of quarks involved. It is the reduction in those eigenenergies
in medium which leads to the enhancement of the hyperfine
interaction there [56], which we include.

In the following, the baryon species with flavor f which
we include are n, p, �, and �0,−, since previous calcula-
tions have shown that the �0,± and 	 baryons are absent for
nB < 1.2 fm−3 [34,57] (further explanations may be found in
the results Sec. III B). The total number density is given by
nB = ∑

f n f . Note that each flavor baryon f has a definite
strangeness (S), isospin projection (m), and total isospin (t).

At the deepest level the QMC model takes into account the
coupling of the lightest scalar (σ and δ) and vector (ω and ρ)
mesons to the u and d quarks. Zweig’s rule suggests that the
coupling of these nonstrange mesons to the s quark should be
suppressed, and in order to reduce the number of parameters
in the model we set it to zero. We defer discussion of the
phenomenological success of this approach, which provides
some a posteriori justification, to Sec. III B. Of course, one
does expect that there will be some mesons which couple to
the strange quarks but ss̄ mesons have masses in excess of 1
GeV and, in addition to the expected small coupling to non-
strange nucleons for such mesons, their large masses suggest
that their effects will be strongly suppressed by short-range
correlations. At the mean field level we solve self-consistently
for the mass of the baryon using the MIT bag model but
including the effect of the the σ and δ mesons. The resulting
energy of a baryon with momentum �k is then

E f =
√

M∗
f (σ̄ , δ̄)2 + �k2 + gf

ωω̄ + gf
ρI f

mρ̄. (2)

Here, the mean isoscalar and isovector scalar mean-fields are
σ̄ and δ̄, respectively, while ω̄ and ρ̄ are the time components
of the isoscalar and isovector vector mean fields. In Eq. (2) the
coupling strength of the ω meson is dependent on the number
of nonstrange quarks such that gf

ω = (1 + S/3)gω, with S be-
ing the strangeness of f flavor baryon. The strange quark does

not carry isospin and as such gf
ρ = gρ since the weighting

is carried by I f
m , the isospin projection. gω and gρ are the

coupling constants for the ω − N and ρ − N respectively. A
similar notation for the σ and δ mesons will be used in Eq. (3).
The effective mass in Eq. (1) may be expressed in terms of the
scalar fields as follows:

M∗
f (σ̄ , δ̄) = M f − w f

σ gσ σ̄ + w̃ f
σ

d

2
(gσ σ̄ )2

− t f
δ gδI f

m δ̄ + d̃gσ gδσ̄ I f
m δ̄

= M f − gf
σ (σ̄ )σ̄ − gf

δ (σ̄ )I f
m δ̄. (3)

The scalar polarizabilities (d and d̃) and the flavor dependent
weights (w f

σ , w̃
f
σ , and t f

δ ) are calculated using the under-
lying bag model over a range of densities and involve no
new parameters. These reflect the self-consistent response of
the internal structure of the bound baryons to the applied
scalar fields. The scalar polarizabilities are the origin of the
repulsive three-body forces which arise naturally within the
model [33,40]. Finally the coupling strengths for the nucleon,
calculated in free space using the MIT bag model, are denoted
gσ and gδ for the σ − N and δ − N , respectively. The scalar
fields change the effective mass [see Eq. (3)] and the vector
fields shift the energy of the baryon [see Eq. (2)].

In the mean field approximation each of the meson field op-
erators is set to its expectation value, while the corrections are
treated as a small perturbation, σ → 〈σ̄ 〉 + 	σ . The integrals
range from 0 to the relevant Fermi momentum

k f (n f ) = 3

√
3π2n f . (4)

Omitting the arguments for the Fermi momentum and the
effective mass, the meson fields are then

mσ
2σ̄ = −2

∑
f

∂M∗
f

∂σ̄

∫ k f d3k

(2π )3

M∗
f√

�k2 + M∗
f

2
, (5)

mω
2ω̄ =

∑
f

gf
ωn f , (6)

mρ
2ρ̄ =

∑
f

gρI f
mn f , (7)

mδ
2δ̄ = −2

∑
f

∂M∗
f

∂δ̄

∫ k f d3k

(2π )3

M∗
f√

�k2 + M∗
f

2
. (8)

The contribution to the energy density from baryons and
the meson fields, εB, is

εB = 〈HB + Vσ + Vω + Vρ + Vδ + Vπ 〉
V

. (9)

In the Hartree-Fock approximation, all meson exchanges are
evaluated as follows:

〈HB〉
V

= 2
∑

f

∫ k f d3k

(2π )3

√
�k2 + M∗

f
2, (10)

〈Vσ 〉
V

= mσ
2σ̄ 2

2
+ λ3

3!
gσ

3σ̄ 3 +
∑

f

(
∂M∗

f

∂σ̄

)2 ∫ k f
∫ k f d3k1d3k2

(2π )6

1

( �k1 − �k2)2 + mσ
2

M∗
f

2√
�k2

1 + M∗
f

2
√

�k2
2 + M∗

f
2
, (11)
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〈Vω〉
V

= mω
2ω̄2

2
−

∑
f

gf
ω

2
∫ k f

∫ k f d3k1d3k2

(2π )6

1

( �k1 − �k2)2 + mω
2
, (12)

〈Vρ〉
V

= mρ
2ρ̄2

2
−

∑
f , f ′

gρ
2
∫ k f

∫ k′
f d3k1d3k2

(2π )6

Cm,m′δS,S′

( �k1 − �k2)2 + mρ
2
, (13)

〈Vδ〉
V

= mδ
2δ̄2

2
+

∑
f , f ′

(
gf

δ (σ̄ )gf ′
δ (σ̄ )

) ∫ k f
∫ k′

f d3k1d3k2

(2π )6

Cm,m′δS,S′

( �k1 − �k2)2 + mδ
2

M∗
f√

�k2
1 + M∗

f
2

M∗
f ′√

�k2
2 + M∗

f ′
2
. (14)

Equation (11) includes the term cubic in the σ field required
to lower the incompressibility of symmetric nuclear matter
sufficiently to yield acceptable GMR energies. The strength
of the self-interaction is governed by the coefficient λ3. The
solutions of Eqs. (12) and (13) are simple to evaluate, because
they correspond to two-body interactions. Equations (11) and
(14) are more complicated, because the σ and δ mean fields
are functions of M∗

f , which in turn depend on σ and δ.
These are solved self-consistently at β equilibrium for each
given number density (see Stone et al. [34]). The notation for
Cm,m′ is given in Eq. (15) and is expressed in terms of the
Kronecker delta (δm,m′ ), the isospin (I f

t ), and its projection
(I f

m), consistent with Ref. [39]. Each baryon flavour f has
an associated S, t , and m corresponding to the strangeness,
isospin, and projection respectively. Equations (13) and (14)
involve double summation and are only nonzero when S = S′

(δS,S′ ). In Eq. (14) we have used the fact that
∂M∗

f

∂δ̄
= −gf

δ (σ̄ )I f
m

and allow Cm,m′ to carry the isospin dependence,

Cm,m′ = δm,m′ I f
m

2 + (δm,m′+1 + δm+1,m′ )I f
t . (15)

While we have used a nonrelativistic approximation to the
Fock terms in Eqs. (11) to (14), rather than the relativistic
form used in earlier work [57], this has no bearing on the
effect of the overlap term which is the focus of the present
study.

Finally the long-range pion Fock terms [34,58] are

〈Vπ 〉
V

=
(

gA

2 fπ

)2{
Jpp + 4Jpn + Jnn

+ 1

25
(J�−�− + 4J�−�0 + J�0�0 )

}
, (16)

where

Jf f ′ =
∫ k f

∫ k′
f d3k1d3k2

(2π )6

[
1 − mπ

2

( �k1 − �k2)2 + mπ
2

]
(17)

and the δ function associated with the first term in the square
brackets is dropped because of short distance repulsion. Note
that parameters in Eqs. (16) and (17) are set to mπ = 139
MeV, gA = 1.26, and fπ = 93 MeV [40].

The phenomenological bag overlap term, denoted HO, is
approximated by a simple Gaussian wave function, with the
overall strength E0 and range b treated as free parameters,
subject to the constraint that this term must not change nuclear

matter properties at saturation density:

〈HO〉
V

= E0nB exp

⎧⎨
⎩−

(
n−1/3

B

b

)2
⎫⎬
⎭. (18)

We note that n−1/3
B is roughly the average distance between

baryons in a Fermi gas. Given that b characterizes the size of
the quark cores of the baryons, we expect it to be of order
0.5 fm. This additional term is added to Eq. (9). The over-
lap term is assumed independent of the quark content of the
baryon and is repulsive. This concludes the construction of the
energy density for nuclear matter within the QMC framework.

B. β equilibrium

The material in the NS is assumed to be cold and in β

equilibrium. Any particulate species which exist longer than
the timescale of the system then participate to minimize the
energy density. This includes the hyperons which are stable
at high densities, because of Pauli blocking. The total energy
density of the system, including the leptons (electron and
muon), is minimized under the condition of β equilibrium.
Thus the total energy density is

εtotal = εB + εe(ne) + εμ(nμ), (19)

where εB is given by Eqs. (9) and (18). The energy density of
the electrons and muons is described by a free gas of leptons:

εl (nl ) = 2
∫ kl (nl ) d3k

(2π )3

√
�k2 + ml

2, (20)

where kl (nl ) is given by Eq. (4).
Charge neutrality is imposed along with conservation of

baryon number. The equilibrium condition is then given by
Eq. (21), shown below [34]:

δ

{
εB(nn, np, n�, n�0 , n�− ) + εe(ne) + εμ(nμ)

+�1

∑
i

niqi + �2

(∑
f

n f − nB

)}
= 0. (21)

Here �i are Lagrange multipliers. The electrical charge is
denoted by qi with the summation over the baryons and the
leptons.
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III. RESULTS

The EoS generated by the QMC model supplemented by
the phenomenological overlap term [Eq. (18)] will be studied
either with or without the term cubic in the σ field. The
strength of σ 3 is determined by the coefficient λ3, which is
chosen to be λ3 = 0.02 fm−1 or λ3 = 0 fm−1. The choice
λ3 = 0.02 fm−1 is motivated by the study of the energies of
GMR by Martinez et al. [41], where it was found that this
was the smallest value of λ3 capable of producing a value
for the nuclear incompressibility compatible with that data.
Where the overlap term is explicitly included, the EoS will
be denoted by overlap. When it is not included the EoS will
be denoted no overlap. If the derived EoS includes hyperons,
then it will be denoted F-QMC, while the case where only nu-
cleons are included will be denoted N-QMC as a comparison.

Given that the inclusion of λ3 = 0.02 fm−1 leads to a
maximum NS mass that is unacceptably low when hyperons
are included, various overlap parameters (E0 and b) were
explored:

(i) Overlap energy: E0 = 3500, 4500, 5500 MeV.
(ii) Range parameter: b = 0.4, 0.5 fm.

The upper limits on both the overlap energy and range param-
eter were set by the requirement that there be no significant
change in the properties of symmetric nuclear matter at sat-
uration density. Where the parameters are left unspecified in
what follows, they were chosen to be E0 = 5500 MeV and
b = 0.5 fm. These are the preferred choice, in that they lead
to an acceptable maximum mass while not altering the nuclear
matter parameters.

The bulk properties of the NS are used to test the viability
of the model at high density. The properties of interest are
the mass-radius relationship and the tidal deformability. For
brevity, only PSR J0740+6620 is shown when constraining
the QMC EoS. The mass is taken to be M = 2.072+0.067

−0.066 M�,
with a 68% interval around the median [21,22]. GW170817
serves as a constraint for the tidal deformability, �M [24].

A. The choice of parameters

The mass of the σ meson is set at 700 MeV, while the
masses of the other mesons are taken from their experimental
values (mδ = 983 MeV, mρ = 770 MeV, mω = 783 MeV). In
terms of these masses the meson-nucleon coupling strengths
in free space are often written as

Gσ = gσ
2

mσ
2
, Gω = gω

2

mω
2
, Gρ = gρ

2

mρ
2
. (22)

Gδ = 3 fm2 is chosen as the preferred value for the coupling
of the δ field [39,59] but, for comparison, in the Appendix all
calculations are repeated for Gδ = 0 fm2.

In all cases (with and without λ3 and Gδ) we require that the
bag overlap terms do not alter the properties of nuclear matter
at saturation density. The couplings are fixed at the typical
values n0 = 0.16 fm−3, the binding energy per nucleon at n0 is
taken to be EB/A = −15.8 MeV, while the symmetry energy is
S = 30 MeV [1,2,60]. The couplings are specified without the
overlap term and held fixed when the overlap is introduced.

The incompressibility and the slope of the symmetry energy
are typically taken to lie in the ranges K∞ = 250 ± 50 MeV
[61,62] and L0 = 60 ± 20 MeV [60]. We choose to use K∞ =
260 MeV and L0 = 62 MeV respectively, because, while
the relation between the incompressibility and the energies
of the GMR is somewhat complicated [63,64], calculations
of the GMR using the QMC EDF tend to favor values of K∞
at the lower end of this range [61].

As reported by Guichon et al. [40], the inclusion of
λ3 = 0.02 fm−1 lowers K∞ by about 10%, leading to the value
260 MeV noted earlier. This remains unchanged for b = 0.4
fm for E0 ranging from 3500 to 5500 MeV, while it increases
slightly (from 262 to 264 MeV) over this range of E0 for b =
0.5 fm. So long as b < 0.6 fm then K∞ < 300 MeV is within
the acceptable limits. On the other hand, for λ3 = 0 fm−1 the
incompressibility is 295 MeV (rising to 298 MeV for b = 0.5
fm). Physically the range parameter sets the scale at which the
extra repulsive force acts in medium. Since saturation density
is relatively low, the overlap term has essentially no influence
there and thus does not affect the properties of finite nuclei. In
NSs, the gravitational force compacts the baryonic matter well
past saturation, allowing them to eventually overlap [15]. The
extra repulsion induced by baryon overlap stiffens the EoS at
supranuclear densities. This is explored in Sec. III C.

B. NS composition under β equilibrium

Within the QMC model it was previously demonstrated
[38,57] that among the hyperons only the � and �0,− appear.
It is worth noting at this point that the omission of any cou-
pling of the mesons to the s quark produces surprisingly good
results for � hypernuclei [56] as well as the extremely limited
data on � hypernuclei [65]. It has long been established that �
hyperons experience a repulsive interaction in nuclear matter
[66], and this is indeed found in the QMC model. It is then not
surprising that � hyperons were not found in earlier work on
NS using the QMC model [67], which is why they are simply
omitted here. The physical reason underlying this result is
the enhancement of the color hyperfine interaction in medium
[56] and the repulsive three-body force generated by the scalar
polarizability. This means that the �±,0 baryons experience
significant repulsion and are not energetically allowed at den-
sities nB � 1.2 fm−3.

The species fractions inside a NS, as predicted by F-QMC,
are shown in Fig. 1. F-QMC predicts no hyperons below
3n0. The overlap term has no bearing on the species fraction
because the repulsion introduced by the overlap is indepen-
dent of quark content and hence minimization of the energy
density is not affected. There is a difference in the appearance
of hyperons with (solid) and without (dashed) λ3. The �0,−
appears slightly later when the term in σ 3 is present. The
relative abundances are also modified.

Table I lists the chemical potentials of the baryon species,
with and without overlap (E0 = 5500 MeV and b = 0.5 fm),
calculated at saturation density. The overlap term increases
chemical potentials for all baryon species, but, since Table I is
measured at low densities, the effect is negligible. We see that
the � experiences an attractive potential of 35–40 MeV, while
the attraction felt by the �0 is considerably smaller. These
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FIG. 1. β-equilibrium was calculated for 0 < nB < 1.2 fm−3. Species fractions of the nucleons, leptons, and hyperons are shown relative to
the total baryon number, nB, for F-QMC with overlap. Solid lines indicate λ3 = 0.02 fm−1, while the dashed lines are for the case λ3 = 0 fm−1.
Not shown are the curves for F-QMC without overlap, as they have identical species fractions.

values are consistent with the fact that the � is bound in the
1s state in Pb by around 26 MeV [68], as well as with the
recent observation of a � weakly bound to 14N [56,65,69].

C. QMC EoS

The low density crustal region enveloping the core of a NS
is populated by nuclei with increasing neutron excess [70–72].
Here the QMC EoS, which is an appropriate description of
nuclear matter, is matched onto the low density EoS provided
by Hempel and Schaffner-Bielich [73,74]. The Hempel and
Schaffner-Bielich model is a relativistic mean field model for
interacting nucleons which takes into account excluded vol-
ume effects. In what follows the QMC EoS is matched to the
crust region at n ≈ 0.7n0, which is appropriate in describing
the transition of nuclei to nuclear matter at the crust-core
boundary.

The derived F-QMC (solid) and N-QMC (dashed) EoSs,
with crust, are shown in Fig. 2. Note that in all figures, unless

TABLE I. The chemical potentials, μi in MeV, for each baryon
at saturation density, with and without overlap.

F-QMC n p � �0 �−

λ3 = 0.02 fm−1

Overlap 970 857 1076 1300 1326
No overlap 970 857 1076 1300 1326

λ3 = 0 fm−1

Overlap 970 856 1080 1298 1333
No overlap 970 856 1080 1298 1333

otherwise stated, the overlap case corresponds to b = 0.5 fm
and E0 = 5500 MeV. As expected, the hyperons soften the
EoS when compared to that for nucleons only. While the
inclusion of the overlap term has no influence on the nuclear
matter parameters at saturation density, it is clear that the
EoS is significantly stiffer at high density. In Fig. 2 we see
that the effect of the overlap term becomes considerable at
energy densities of order 250–350 MeV fm−3, or nB > 2n0.
Furthermore, the degree of softening induced by the hyperons
is reduced at higher densities. Comparing the two panels in
Fig. 2, the cubic term in V (σ ) [see Fig. 2(a)], acts to soften
the EoS, whether hyperons are included or not.

In order to make the QMC EoS generated here (with-
out crust) widely available, an analytic function has been
fitted to the F-QMC with overlap EoS for λ3 = 0.02 fm−1

and λ3 = 0 fm−1. This is valid for the energy density range
0–1600 MeV fm−3 but must be matched to a crust EoS
for n < 0.7n0, corresponding to an energy density ε ≈ 105
MeV fm−3. Equation (23) takes the argument for energy den-
sity in MeV fm−3 and gives the pressure in MeV fm−3:

P(ε) = N1ε
p1 + N2ε

−p2 . (23)

The error computed is given by

RMSE (%) =
√√√√ 1

N

N∑
i

(xi − yi )2

yi
2

×100, (24)

and the parameters are summarized in Table II, with the en-
ergy density split into different regions. The relative mean
squared error (RMSE) estimates the difference between the
model’s prediction (xi), as cited in Eq. (23), and that the-
orized by QMC (yi). Equation (23) is not suitable for
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FIG. 2. The EoS for the models considered here, where N-QMC includes only nucleons and F-QMC includes hyperons. (a) corresponds
to λ3 = 0.02 fm−1, whilst the right panel (b) is λ3 = 0 fm−1.

computing the speed of sound [Eq. (29)] as the domain bound-
aries do not precisely correspond to the appearance of new
species.

D. NS bulk properties

The Tolman-Oppenheimer-Volkoff (TOV) equation was
used to compute the mass and radius of the NS. Assuming
that the NS is nonrotating and spherically symmetric, the TOV

equation is

d p

dr
= − [p(r) + ε(r)][M(r) + 4πr3 p(r)]

r[r − 2M(r)]
, (25)

where

M(r) = 4π

∫ r

0
ε(r′)(r′)2dr′. (26)

TABLE II. Parameters for Eq. (23), corresponding to the F-QMC with overlap EoS for λ3 = 0.02 fm−1 and λ3 = 0 fm−1. The domains for
the energy density, ε (MeV fm−3), have been split as denoted by the left-hand column.

ε N1 p1 N2 p2 RMSE

F-QMC with λ3 = 0.02 fm−1

0–34 7.733×10−4 1.203 1.49%
35–90 6.171×10−7 3.043 1.578 1.128 0.64%
91–133 3.309×10−7 3.186 0.10%
134–298 1.260×10−6 2.921 1.09%
299–550 5.884×10−6 2.656 1.16%
551–620 8.387×10−5 2.234 0.13%
621–1021 1.730×10−3 1.764 0.10%
1022–1600 8.269×10−3 1.539 0.11%

F-QMC with λ3 = 0 fm−1

0–24 9.725×10−4 1.183 4.04%
25–90 6.234×10−8 3.498 1.549×10−2 −0.3064 1.10%
91–162 1.376×10−7 3.355 0.66%
163–299 6.243×10−7 3.064 1.02%
300–549 7.150×10−6 2.645 1.59%
550–595 1.143×10−4 2.204 0.06%
596–861 4.517×10−3 1.629 0.05%
862–1600 8.295×10−3 1.538 0.25%
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FIG. 3. The mass-radius sequence of stars computed from QMC EoS shown in Fig. 2. The box constraint (black) is PSR J0740+6620,
extracted from Ref. [21]. In (a) λ3 = 0.02 fm−1 and has a reduced maximum mass compared to (b) when λ3 = 0 fm−1.

The central pressure is chosen at r = 0 and integrated out-
wards until p(R) = 0, where R is the final radius of the star.
This process is repeated for different central pressures to form
the sequence of stars plotted in Fig. 3. The box denotes the
constraint corresponding to pulsar PSR J0740+6620, M =
2.072+0.067

−0.066 M� and R = 12.39+1.30
−0.98 km. The total baryon

number is given by

A =
∫ R

0

4πr2nB(r)(
1 − 2GM(r)

r

) 1
2

dr. (27)

GW 170817 is a binary system with a total mass of
2.73+0.04

−0.01 M� [24]. The component masses in the low spin case
are m1 ∈ [1.18, 1.36] M� and m2 ∈ [1.36, 1.58] M�. The tidal
deformability may be computed as

�M = 2

3
k2

(
R

M

)5

. (28)

The dimensionless constant, k2, is the tidal Love number and
the full equation is given in Refs. [27,75]. Equation (28)
gives the one-sided tidal deformation, which is constrained by
GW170817 for a 1.4M� star to lie in the range �1.4 = 190+390

−120
[24]. This is shown as a black line in Fig. 4. However, we note
that other work has reported that the upper limit on �1.4 could
be as large as 800 [76].

1. Mass-radius relation

Table III summarizes the properties of a NS with maxi-
mum mass, Mmax, predicted by QMC. All entries are for the
case where hyperons are included, unless otherwise indicated.
The overlap parameters alter the NS properties in predictable
ways. Increasing E0 has mild effects on the maximum mass of
the star, with little change to its radius. The range parameter

TABLE III. Macroscopic properties of the NS (including hyper-
ons unless otherwise indicated) are computed with variations of the
overlap parameters. The range parameter b and overlap energy E0

have units of fm and MeV, respectively. The results summarize the
maximum mass (Mmax, M�), total baryon number (A, 1057) and cen-
tral number density (nc, fm−3), central pressure (Pc, MeV fm−3), and
central energy density (εc, MeV fm−3) for each parameter set used.

b E0 Mmax A nc Pc εc

λ3 = 0.02 fm−1

0.4 3500 1.77 2.41 1.01 256 1191
0.4 4500 1.78 2.43 1.02 268 1205
0.4 5500 1.79 2.45 1.03 280 1219

0.5 3500 2.02 2.82 1.02 408 1260
0.5 4500 2.08 2.92 1.01 448 1258
0.5 5500 2.14 3.02 1.00 492 1267

0.5a 5500 2.25 3.22 1.00 680 1314
b 0 1.74 2.36 0.961 213 1111
c 0 1.96 2.74 1.15 559 1461

λ3 = 0 fm−1

0.4 3500 1.91 2.63 0.883 221 1030
0.4 4500 1.92 2.64 0.900 231 1055
0.4 5500 1.92 2.65 0.915 242 1078

0.5 3500 2.11 2.97 0.906 336 1102
0.5 4500 2.17 3.05 0.923 387 1144
0.5 5500 2.21 3.14 0.903 406 1123
0.5 5500 2.34 3.37 0.934 643 1222

0 1.89 2.60 0.867 201 1005
0 2.11 2.97 1.03 529 1305

aN-QMC (overlap).
bF-QMC (no overlap).
cN-QMC (no overlap).
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FIG. 4. Tidal deformability for the QMC EoS when (a) λ3 = 0.02 fm−1 and (b) λ3 = 0 fm−1. Given that no hyperons appear in a star of
mass 1.4M� the solid (F-QMC) and dashed (N-QMC) lines are superimposed. GW170817 is shown by the solid black line and extracted from
[24].

b, however, raises the mass substantially as it is increased.
For b = 0.4 fm and λ3 = 0.02 fm−1, the maximum mass is
predicted to be Mmax < 2M�, which is unsatisfactory.

Table IV reflects the central properties of different mass
NSs predicted for F-QMC with overlap. The central den-
sity, pressure, and energy densities are all greater when λ3 =
0.02 fm−1, for all masses. For a star of mass M = 1.4M�, the
number density is lower than the threshold density for hyper-
ons and hence there are no hyperons in these stars. However,
as the density increases the star’s core is then populated by
hyperonic matter.

TABLE IV. The central number density (nc, fm−3), pressure
(Pc, MeV fm−3) and energy density (εc, MeV fm−3) for different
mass stars (M�) predicted by F-QMC with overlap (E0 = 5500 MeV,
b = 0.5 fm).

Mass nc Pc εc

λ3 = 0.02 fm−1

1.0 0.341 30 336
1.4 0.427 59 432
1.6 0.482 86 496
1.8 0.547 124 576
2.0 0.663 196 733

λ3 = 0 fm−1

1.0 0.317 27 311
1.4 0.395 53 397
1.6 0.438 74 447
1.8 0.487 102 507
2.0 0.564 154 607

In Fig. 3, the mass-radius curve shows that the overlap
term is essential in predicting a heavy NS, M > 2M�, once
the incompressibility is reduced to the preferred range [i.e.,
with λ3 = 0.02 fm−1 in Fig. 3(a)]. Without the overlap term,
the mass of the star is significantly lower. The inclusion of
the σ 3 term acts to reduce the radius and lower the star’s
mass. The mass reduction is caused by the additional scalar
meson attraction, with a consequent softening of the EoS.
For λ3 = 0.02 fm−1, the radius of the star slightly increases
as the mass decreases from 1.5M� to 1.0M�, in contrast to
the case λ3 = 0 fm−1, where there are no significant changes
to the radius. In the phenomenologically interesting region,
M ≈ 1.4M�, the radius of the star is significantly lower when
λ3 = 0.02 fm−1.

The presence of hyperons reduces the maximum mass, as
well as increasing the radius at maximum mass. From Fig. 3
we see that the overlap term decreases the radius at maximum
mass for F-QMC, whereas for N-QMC the radius is increased
at maximum mass when the overlap term is present.

Figure 4 illustrates the tidal deformability for the QMC
EoS. The dashed line for the nucleon only case cannot be
distinguished from F-QMC because the QMC model predicts
no hyperons in a 1.4M� star. For λ3 = 0.02 fm−1 the tidal
deformation is acceptable with and without overlap. The in-
troduction of the overlap term does causes an increase in the
radius around the canonical mass, and this in turn increases
the tidal deformability.

E. Speed of sound

In the absence of direct observations of the composition of
the core of a NS, theoretical calculations of the speed of sound
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FIG. 5. The speed of sound (c2
s ) is given as a fraction of the speed of light for (a) λ3 = 0.02 fm−1 and (b) λ3 = 0 fm−1. The number density

nB is given in fm−3. Nontrivial drops in c2
s correspond to the initial appearance of hyperons (see Fig. 1).

(equivalently, polytropic index γ ) do offer valuable insights.
It has previously been suggested that nontrivial changes in
the EoS correspond to phase changes from hadronic matter
to either quark matter [6] or the threshold of creation of
hyperons [37].

The EoSs at low and extremely high densities have been
extensively studied in effective field theory (nB < 1.1n0) and
perturbative QCD (nB > 40n0), respectively. Annala et al. [6]
suggest that, for stars with M = 1.4M�, hadronic nuclear the-
ories are suitable in predicting the EoS giving rise to canonical
mass stars. The QMC model is consistent with their EoS in
that region. However, for M > 2M�, Annala et al. suggest that
the central density becomes so large that the cores of the stars
may be populated by deconfined quark matter and gluons [6].
Quark matter, being conformal and scale invariant, would then
have a speed of sound, c2

s = 1
3 , approaching logarithmically

from below as the density increases. On the other hand, it
has been shown that this is not a distinct feature of confor-
mal matter [37,38]. Since the QMC model does not contain
any elements of deconfined quarks, c2

s < 1
3 approaching from

below, may also be interpreted as the creation of hyperons.
Recall that the speed of sound is defined as

c2
s = dP

dε
. (29)

Figure 5 shows the three sudden changes in c2
s which

occur at those number densities where the different species
of hyperons first appear (see Fig. 1). In order of appearance,
these are the �, �−, and �0. Without the overlap term, the
results reflect those reported by earlier QMC models [37,38].
However, when the overlap terms are included, c2

s can be as

large as 0.5 or more. This is consistent with pure hadronic
matter, as cited in [6].

IV. CONCLUSION

The excitement of studying neutron stars is that they con-
tain the most dense matter in the Universe. Thus they may be
expected to yield insights into the EoS of strongly interacting
matter at densities inaccessible in any other way.

Relativistic descriptions of nuclear matter typically lead
to higher values of the incompressibility of nuclear matter,
K∞, than nonrelativistic Skyrme forces. While the connection
between the incompressibility and the energies of GMR is
complex, there is a tendency for lower values of K∞ to be pre-
ferred. The energy density functional derived within the QMC
model requires a small cubic term involving the scalar field in
order to reproduce the observed GMR energies. This in turn
lowers the maximum masses of the neutron stars generated by
the model.

In order to solve that problem, we have explored the impact
on the EoS of dense matter and the properties of neutron stars
by introducing a phenomenological repulsive contribution to
the energy density as the degree to which the baryonic overlap
increases. This new term is designed such that it does not alter
the properties of nuclear matter at saturation density.

The effects of this new overlap term are indeed to generate
neutron stars with a maximum mass above 2.1M�, even when
hyperons are included. The radii of stars around 1.4M� lie just
below 13 km, which is the upper end of the range preferred by
the analysis of the gravitational wave data from GW170817.
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FIG. 6. β-equilibrium was calculated for 0 < nB < 1.2 fm−3 with Gδ = 0 fm2. Only the F-QMC with overlap species fraction is shown
with the solid line corresponding the λ3 = 0.02 fm−1 and the dashed line showing the case for λ3 = 0 fm−1. The no overlap case is not shown
as it produces identical species fractions.

The calculated values of the tidal deformability also lie within
the bounds determined from that data. The one qualitative
change from earlier work is that in contrast with the values
of c2

s found with hyperons, which lie below 1
3 , with the over-

lap term they become as large as 0.6. Such large values are
consistent with those expected in hadronic models, in contrast
with the lower range anticipated for quark matter.
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FIG. 7. QMC EoS with Gδ = 0 fm2 for values of λ3 as (a) λ3 = 0.02 fm−1 and (b) λ3 = 0 fm−1.
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FIG. 8. MR curve for Gδ = 0 fm2. The left panel is (a) λ3 = 0.02 fm−1, while the right panel is (b) λ3 = 0 fm−1.

APPENDIX: QMC OVERLAP WITH Gδ = 0

The results (Sec. III) are replicated with no isovector scalar
meson, i.e., Gδ = 0 fm2. As shown by Motta et al., the
isovector δ increases the maximum mass only marginally but
changes the radius significantly [39]. For brevity, not all the
results are included; only the preferred values of the overlap
parameters are shown (E0 = 5500 MeV and b = 0.5 fm). One

finds that the largest effect of the change in Gδ is that the
slope of the symmetry energy, L, decreases to 53 MeV for
λ3 = 0.02 fm−1 (52 MeV for λ3 = 0 fm−1).

The species fractions are given in Fig. 6. The � appears
sooner without the δ meson, while the �0,− both appear later.

Figure 7 shows the EoS, with the corresponding MR curve
in Fig. 8. As expected, there is a slight decrease in the mass

FIG. 9. Tidal deformation with Gδ = 0 fm2 with (a) λ3 = 0.02 fm−1 and (b) λ3 = 0 fm−1.
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FIG. 10. Speed of sound (c2
s ) when Gδ = 0 fm2 with values of (a) λ3 = 0.02 fm−1 and (b) λ3 = 0 fm−1.

and a substantial reduction in the radius. Without overlap and
λ3, the results show the same pattern reported in Ref. [39]. The
reduction in the radius has an impact in the tidal deformability,
which is presented in Fig. 9. In Fig. 4(b) we saw that the
λ3 = 0 fm−1 tidal deformation lay at the upper end of the
experimental bound reported in Ref. [24]. However, with the

reduction of the radii resulting when the δ meson is excluded,
QMC with overlap now falls within GW170817 constraints.
Again the inclusion of the σ 3 term with λ3 = 0.02 fm−1

reduced the radius and fit the GW170817 constraint. Finally
the speed of sound is shown in Fig. 10. The interpretation of
these results may be found in Sec. III E.
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