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g-mode oscillations in neutron stars with hyperons
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A common alternative to the standard assumption of nucleonic composition of matter in the interior of a
neutron star is to include strange baryons, particularly hyperons. Any change in composition of the neutron
star core has an effect on g-mode oscillations of neutron stars, through the compositional dependence of the
equilibrium and adiabatic sound speeds. We study the core g modes of a neutron star containing hyperons,
using a variety of relativistic mean field models of dense matter that satisfy observational constraints on global
properties of neutron stars. Our selected models predict a sharp rise in the g-mode frequencies upon the onset
of strange baryons. Should g modes be observed in the near future, their frequency could be used to test the
presence of hyperonic matter in the core of neutron stars.
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I. INTRODUCTION

The composition of matter in the interior of a neutron
star, uncertain at present, is relevant to fundamental ques-
tions about the phase of strongly interacting, cold and dense
matter [1–3]. An equation of state, which relates state vari-
ables in thermodynamic equilibrium, may be derived from a
theoretical model of purely nucleonic matter (npe or npeμ)
[4–6], hyperonic matter (npeμY ) [5–10], matter with Bose
condensates or delta baryons [5,11], or hybrid matter with a
phase transition from nucleonic to quark degrees of freedom
[1,6,10], to name a few possibilities. One way to test various
theoretical models of dense matter is to compare predicted
macroscopic properties of neutron stars (NSs) with astronom-
ical observations. For example, the appearance of hyperons
can alter a neutron star’s maximum mass, radius, cooling, or
gravitational wave (GW) emission from unstable quasinormal
modes compared to the purely nucleonic scenario [12].

Theoretical models of neutron stars must satisfy maximum
mass constraints gleaned from, e.g., observations of the “black
widow” pulsar PSR J0952-0607, the heaviest neutron star to
date with mass of 2.35+0.17

−0.17 M� [13], or the suggested sec-
ondary component in the binary merger event GW190814 [14]
with mass of 2.5M� or higher. The so-called “hyperon puzzle”
refers to the softening effect of hyperons that makes such
constraints hard or impossible to satisfy [15], though many
solutions have been proposed [9,16,17]. Recent observational
constraints from the Neutron star Interior Composition Ex-
plorer collaboration (NICER) indicate a mass of 1.34+0.15

−0.16 M�
and radius of 12.71+1.14

−1.19 km from [18], and [19] reports
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1.44+0.15
−0.14 M� and radius of 13.02+1.24

−1.06 km for the same star.
Similarly, NICER observations of PSR J0740 + 6620 yield a
mass of 2.08+0.08

−0.07 M� with equatorial radius of 13.7+2.6
−1.5 km

from [20] and 2.072+0.067
−0.066 M� with radius 12.39+1.30

−0.98 km from
[21]. Gravitational wave observations from compact binary
merger events such as GW170817 [22] and GW190814 [14]
are another probe of the equation of state [23]. Assuming that
the secondary object in GW190814 is a heavy neutron star,
the analysis in [14] yields the tidal deformability �1.4 of a
canonical mass neutron star to be 616+273

−158.
While these constraints are narrowing the allowed range

of neutron star mass and radius, it is difficult to draw firm
conclusions on, or distinguish between, different interior
compositions based on static global properties of neutron
stars alone [24–26]. Although the presence of non-nucleonic
species such as hyperons or phase transitions to quark mat-
ter tend to lead to a softening of the equation of state and
some tension with astrophysical constraints [12,27–29], there
are still many models that satisfy current astrophysical con-
straints [30–32]. A different approach, namely that of stellar
oscillations, may provide a new tool for addressing the prob-
lem of composition more directly. The secular quasinormal
oscillation modes of neutron star carry information about
the interior composition and viscous forces that damp these
modes [33–35]. Examples include the fundamental f mode,
p modes, and g modes (driven by pressure and buoyancy
respectively), as well as r modes (Coriolis force) and pure
space-time w modes. Several of these modes may be excited
during a supernova explosion, or in isolated perturbed neutron
stars, or during the post-merger phase of a binary NS [36–38].
Spin and eccentricity may enhance the excitation of the f
modes during the inspiral phase of a neutron star merger
[39,40]. The fundamental f modes as well as composition-
driven g modes are within the sensitivity range of current
generation of GW detectors and the former is correlated with
the tidal deformability [41–44].
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Our focus in this work will be on g modes of hyperonic
stars. It is known that g modes are particularly sensitive to
composition, as shown in studies ranging from npe and npeμ
matter [25] to hybrid stars exhibiting a first-order phase transi-
tion from nucleonic matter to a deconfined quark phase [45] or
in a crossover model [31]. It was found that the appearance of
quarks in neutron star matter, especially via a first order tran-
sition, leads to a dramatic increase in the g-mode oscillation
frequency. In this work, we extend this analysis to consider
compositions including hyperons as well (npeμY ).

This paper is organized as follow: In Sec. II we introduce
the theoretical framework for g-mode oscillation, followed
by a discussion in Sec. III of two sound speeds c2

s and c2
e ,

whose difference drives the g mode. In Sec. IV, we intro-
duce the relativistic mean field models (RMF) we sample for
our calculations: phenomenological models that treat baryons
as fundamental fields interacting via mesons [7,46,47]. In
Sec. V, we outline the method we use for calculating the adi-
abatic sound speed via the sound speed difference expression
introduced in Sec. III. In Sec. VI we present our results for the
g-mode oscillation frequencies, followed by our conclusions
in Sec. VII and an instructive derivation on sound speeds in
the Appendix A.

II. g-MODE OSCILLATIONS

In the general theory of linearized nonradial oscilla-
tions of an ideal self-gravitating fluid composing a com-
pact star, the oscillatory fluid displacement of a mode
with quantum numbers nlm is represented by a vec-
tor field �ξ nlm(�r, t ), conveniently separable in a spherically
symmetric background into radial and tangential com-
ponents ξ nlm

r (�r, t ) = ηnl
r (r)Ylm(θ, φ)e−iωt and ξ nlm

⊥ (�r, t ) =
rηnl

⊥ (r)∇⊥Ylm(θ, φ)e−iωt respectively, where Ylm(θ, φ) are the
spherical harmonics. From the perturbed (Newtonian) con-
tinuity equation for the fluid, the corresponding pressure
perturbation is δp/ρ = ω2rη⊥(r)Ylm(θ, φ)e−iωt , where ρ is
the energy density. The equations of motion (Euler equation)
to be solved to determine the frequency ωnl of a particular nl
mode (degenerate in m for nonrotating stars) is

∂

∂r
(r2ξr ) =

[
l (l + 1)

ω2
− r2

c2
s

](
δp

ρ

)
, (1)

∂

∂r

(
δp

ρ

)
= ω2 − N2

r2
(r2ξr ) + N2

g

(
δp

ρ

)
. (2)

where we have suppressed the indices on ω and ξ and N2 =
c2

s −c2
e

c2
s c2

e
is the Brunt-Väisälä frequency. Additionally, c2

e , the
equilibrium sound speed, is the total derivative of the pressure
p with respect to energy density ε; and c2

s , the adiabatic sound
speed, is the partial derivative of p with respect to ε while
holding the composition of matter χ fixed:

c2
e := d p

dε
, c2

s := ∂ p

∂ε

∣∣∣∣
χ

. (3)

As composition of matter is determined by the various parti-
cle fractions, holding χ fixed is equivalent to holding all of
the independent particle fractions xi := ni/nB in the system

fixed, that is, all the particle fractions except for the electron
fraction xe and the neutron fraction xn. These latter frac-
tions are instead fixed by constraints of charge neutrality and
baryon number conservation.

For a given equation of state (stellar structure), a global
solution of the linear perturbation equations, Eqs. (1) and (2),
is found to be subject to boundary conditions of regularity
at the stellar center (r → 0) and vanishing of the Lagrangian
pressure variation1 p = c2

s ρ at the surface. These solution
values represent the discrete g-mode spectrum for a chosen
stellar model. As in other works [31,45,48–50], we use the
Cowling approximation [51], which neglects the back reaction
of the gravitational potential, while extending Eqs. (1) and
(2) to include the relativistic effects of the matter [48], which
yields

− 1

eλ/2r2

∂

∂r
[eλ/2r2ξr] + �(� + 1)eν

r2ω2

δp

p + ε
− p

γ p
= 0, (4)

∂δp

∂r
+ g

(
1 + 1

c2
s

)
δp + eλ−νh(N2 − ω2)ξr = 0, (5)

where N2, the Brunt-Väisälä frequency, is slightly modified to

N2 = g2

(
c2

s − c2
e

c2
s c2

e

)
eλ−ν, (6)

where ν(r) and λ(r) are metric functions of the unperturbed
star which feature in the Schwarzschild interior metric, and
γ = (nB/p)∂ p(nB,Yp)/∂nB is the adiabatic index with nB the
baryon density.

The impact of the Cowling approximation, compared to a
full general relativistic calculation, typically only affects the
frequencies of the g mode at the 5–10% level, and that too only
for neutron stars heavier than about 1.6M�, as shown in [52],
therefore it does not change our conclusions qualitatively.
Because we have employed the Cowling approximation and
ignored the perturbations of the metric that must accompany
fluid perturbations, we cannot compute the imaginary part of
the eigenfrequency (damping time) of the g mode.2

It is useful to precisely define the local and global g modes
at the outset. The local g mode refers to the oscillation of
a test parcel of fluid located at a distance r from the stellar
center, with free boundaries. Equations (1) and (2) can be
approximated in the short-wavelength limit (kr � 1) to show
that the local dispersion relation has two distinct branches,
with the lower frequency branch corresponding to the fre-
quency of the local g mode. This frequency is then ω2 ∝ eλN2

[50], highlighting the importance of the two sound speeds at
any location inside the star [in particular, the difference of
their inverse squares, as in Eq. (6)]. On the other hand, the
global g mode refers to the motion of all such parcels stitched

1The Lagrangian variation of a fluid variable is related to the Eule-
rian variation through the operator relation  ≡ δ + ξ · ∇.

2The damping time of g modes due to viscosity and gravitational
wave emission, estimated in some works [25,53], suggests that the g
mode can become secularly unstable for temperatures 108<T <109 K
for rotational speeds exceeding twice the g-mode frequency of a
static star.
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together, with boundary conditions imposed at the center and
surface of the star. This results in a single eigenvalue for ω

which describes the global oscillation of the star of a fixed
gravitational mass M and radius R. It can be thought of as
an average of the local g modes in the sense that each parcel
is sensitive to its local environment only, but the changing
profile of that environment from center to surface is taken into
account.

In this work, we study the fundamental g mode with n = 1
and fix the mode’s multipolarity at l = 2. This is because
the l = 2 mode is quadrupolar in nature, and can couple to
gravitational waves. Higher l values (octupole and higher) are
generally weaker than the quadrupole. The reason to study
the n = 1 (fundamental) g mode is that the local dispersion
relation for g modes ω2 ∝ 1/k2 implies that the n = 1 ex-
citation has the highest frequency, whereas higher values of
n are known to have a smaller amplitude of excitation and
a weaker tidal coupling coefficient [31]. The frequency of
the fundamental g mode is also within the sensitivity range
of current generation of gravitational wave (GW) detectors
[54,55].

III. SOUND SPEED DIFFERENCE

A necessary quantity for calculating g-mode oscillations
is the Brunt-Väisälä frequency, which is proportional to the
difference of the squares of two sound speeds, c2

s − c2
e , where

the equilibrium sound speed c2
e is the total derivative of the

pressure p with respect to energy density ε and the adiabatic
sound speed c2

s is the partial derivative of p with respect to ε

while holding the composition of the matter χ fixed as defined
in Eq. (3). The expressions for p and ε are model dependent,
but encapsulate contributions from all particles present.

Starting from the definitions of c2
s and c2

e , the sound speed
difference c2

s − c2
e can be written in terms of partial deriva-

tives of specific linear combinations of chemical potentials
μ̃i defined in Eqs. (8) and (9) as shown for npe and npeμ
matter in Eqs. (51) and (A34) respectively in [45]. A natural
generalization to arbitrary compositions is given in Eq. (7) (as
shown in Appendix A):

c2
s − c2

e = n2
B

μn

∑
i

∂μ̃i

∂nB

∣∣∣∣
χ

dxi

dnB
, (7)

where μn is the neutron chemical potential, xi is the particle
fraction for the ith independent particle, and μ̃i is a linear
combination of chemical potentials satisfying μ̃i = 0 in β

equilibrium as defined in Eqs. (8) and (9) below. The sum over
i accounts for each individual β-equilibrium condition in our
system, where in our case i ∈ p,�0, �−, �0, �+, �−, �0.
In essence, Eq. (7) provides a method for calculating the
adiabatic sound speed c2

s from finding the equilibrium sound
speed c2

e and sound speed difference c2
s − c2

e separately.
At zero temperature, we have

μ̃i = μn − qiμe − μi, i ∈ baryon, (8)

μ̃� = μe − μ�, � ∈ lepton, (9)

where qi is the charge of the baryon (in units where qe = e =
1) [7] and μe is the electron chemical potential. For the baryon
octet, the various μ̃i are explicitly given by

μ̃p = μn − μe − μp, μ̃�0 = μn − μ�0 , (10)

μ̃�0 = μn − μ�0 , μ̃�0 = μn − μ�0 , (11)

μ̃�− = μn + μe − μ�− , μ̃�− = μn + μe − μ�− , (12)

μ̃�+ = μn − μe − μ�+ , (13)

and for the muon μ̃μ = μe − μμ. Physically, the sound speed
difference is a quantitative measure of the restoration of chem-
ical equilibrium when a perturbation occurs. As the g-mode
frequency is dependent on c2

s − c2
e , it follows that if dxi/dnB

is large, i.e., when new species enter the system, the g-mode
frequency will change sharply. Indeed, that is what we find in
our models, as elaborated below.

IV. MODEL FOR NEUTRON STAR STRUCTURE

To model the matter in the core of the star, we use rel-
ativistic mean field (RMF) models [7,46,56,57], which are
particularly well suited for calculating the adiabatic sound
speed via the method described in Sec. III. Specifically, we
sample six different RMF models with a variety of differ-
ent baryon-meson and meson-meson interactions. Four of
these are nonlinear relativistic mean field (NLRMF) models:
GM1-Y5 [8,58], Big Apple [59,60], and Hornick 65, 70 [61].
The remaining two are density dependent relativistic mean
field models (DDRMF): DD-MEX [4,5,9,62] and DD-ME2
[4,5,9,63]. For the most part, these models were originally for-
mulated and provided to model npeμ matter. We extend these
models to include hyperons via a standard SU(6) symmetry
argument and fits to hyperonic optical potentials to generate
the meson coupling constants. [5,58,64,65].

The equations of motion from the model’s Lagrangian,
subject to local (charge neutrality) and global conservation
laws (baryon number conservation) can be solved for any
desired baryon/meson field as a function of baryon density
nB and compositions χ , which then allows for calculating
chemical potential derivatives. β equilibrium is then imposed
to determine all particle fractions as a function of nB only.

A. Nonlinear relativistic mean field models

The first class of models that we consider are nonlin-
ear relativistic mean field (NLRMF) models that describe
baryon-meson interactions with various mesons such as the
isoscalar-scalar σ , isoscalar-vector ω, isovector-vector ρ.
Models that include hyperons can also include other strange
meson degrees of freedom: the hidden strangeness isoscalar-
vector φ, the isovector-vector δ, and/or the isoscalar-scalar
ξ mesons [9]. Specifically, the NLRMF models we use in
this work are Big Apple [59] and Hornick 65 and 70 models
[61], with the various baryon-meson and meson-meson cou-
pling constants listed in Table I. These models chosen differ
from one another primarily in their baryon-meson and meson-
meson interactions. However, as shown in Figs. 4 and 5,
neutron stars described by any of these models satisfy
current astrophysical constraints on mass, radius and tidal
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TABLE I. The parameters of the nonlinear RMF models that we
consider in this work including saturation densities n0, σ meson mass
values, and the various coupling constants. The GM1-Y5 model in-
cludes the hidden strangeness isoscalar-scalar ξ meson and includes
σ self-interactions [8,58]. The Hornick 65 and 70 models include
an additional ω2ρ2 interaction term [61], and the Big Apple model
includes the quartic ω4 self-interaction as well [59,60]. The models
chosen sample a wide range of baryon-meson and meson-meson
interactions as a result, allowing us to investigate possible g − mode
dependence on interaction specific terms, but still produce stars that
satisfy all current astrophysical constraints.

Model GM1-Y5 Hornick 65 Hornick 70 Big Apple

mσ (MeV) 550.0 550.0 550.0 492.730
n0 (fm−3) 0.153 0.150 0.150 0.155
b 0.002947 –0.00198839 –0.004315 0.005280
c –0.001070 –0.0028455 –0.004347 –0.003623
�ω 0.0 0.0295148 0.031432 0.047471
ξω 0.0 0.0 0.0 0.00070

gσN 9.57 10.4291 9.84608 9.6699
gωN 10.61 11.7742 10.7467 12.3116
gρN 8.20 10.1865 9.9829 14.1618

gσ� 5.84 5.898 5.99472 5.7656
gσ� 3.87 3.991 3.8988775 4.1314
gσ� 3.06 2.949 3.10215 2.8556

gω� 7.0733 7.849 7.16446 8.2077
gω� 7.0733 7.849 7.16446 8.2077
gω� 3.5366 3.925 3.58223 4.1039

gρ� 0.0 0.0 0.0 0.0
gρ� 4.10 10.187 9.9829 28.3235
gρ� 8.20 10.187 9.9829 14.1618

gφ� –6.02627 –5.5504 –5.0660 5.8037
gφ� –6.02627 –5.5504 –5.0660 5.8037
gφ� –8.9785 –11.1008 –10.1321 11.6075

gξ� 1.914 0.0 0.0 0.0
gξ� 0.0 0.0 0.0 0.0
gξ� 0.0 0.0 0.0 0.0

deformability. As a result, we can investigate possible g-mode
dependence on interaction-specific terms.

The specific form of meson-meson interactions may vary
from one model to another, but the most general Lagrangian
can be split into the following terms:

L = Lkin
B + Lkin

� + Lkin
M + Lint − UNL, (14)

where Lkin
B are the kinetic Lagrangians for the baryon fields,

Lkin
B =

∑
b

ψ̄b(iγ μ∂μ)ψb, b ∈ baryons. (15)

where we have moved the bare baryon mass terms mb into the
interacting Lagrangian term Lint. Likewise, Lkin

� is the kinetic
Lagrangian for the leptonic fields,

Lkin
� =

∑
k

ψ̄k (iγ μ∂μ − mk )ψk, k = e−, μ−. (16)

Then, the kinetic mesonic Lagrangian explicitly is

Lkin
M = 1

2

(
∂μσ∂μσ − m2

σ σ 2
) + 1

2

(
∂μδ∂μδ − m2

δδ
2)

− 1
4W μνWμν + 1

2 m2
ωωμωμ − 1

4 RμνRμν

+ 1
2 m2

ρρ
μρμ − 1

4�μν�μν + 1
2 m2

φφμφμ

+ 1
2 (∂μξ∂μξ − m2

ξ ξ
2) (17)

with W μν = ∂μων − ∂νωμ and Rμν = ∂μρν − ∂νρμ, �μν =
∂μφν − ∂νφμ. In the mean field approximation, where spatial
variations of the meson fields are neglected and the meson
fields are replaced by their ground state expectation value [7],
Lint, which describes the baryon-meson interaction, takes the
form

Lint = −
∑

i

ψ̄i[γ0(gωiω + gρiI3iρ + gφiφ)

− (mi − gσ iσ − gδiI3iδ − gξ iξ )]ψi, (18)

where ψi and mi are the ith baryon field and bare mass respec-
tively, the gαi for α ∈ ω, ρ, φ, ξ are the coupling constants
coupling baryons to mesons, I3i gives the isospin projection of
the ith baryon species, and ω, ρ, φ, σ, δ, ξ represent the mean
field expectation values of the meson fields. Similarly, UNL,
which describes the meson-meson interactions, is given by

UNL = 1
3 bmN (gσNσ )3 + 1

4 c(gσNσ )4

− �ωg2
ρN g2

ωNω2ρ2 − ξω

4!
g4

ωNω4, (19)

where mN is the nucleon bare mass and b, c,�ω, ξω are cou-
pling constants. There are three main interactions of note:
a cubic and quartic self-interaction of the σ mesons [7,66],
a quartic ω2ρ2 interaction between ω and ρ mesons, and a
quartic ω4 self-interaction. For an arbitrary Lagrangian of this
form, we can identify the chemical potential of a baryon μi

from the interaction Lagrangian [7,61,66]:

μ∗
i = E∗

Fi
= μi − gωiω − gρiI3iρ − gφiφ, (20)

where

E∗
Fi

=
√

k2
Fi

+ m∗
i

2 (21)

and where kFi is the Fermi momenta related to the various
fermionic number densities ni (i.e., the vector number density
ni) by

ni := 〈ψ†
i ψi〉 =

∫ kFi

0

d3k

(3π2)
= k3

Fi

3π2
(22)

and the scalar density ns
i is given by [7]

ns
i := 〈ψ̄iψi〉 = 1

π2

∫ kFi

0

m∗
i

E∗
Fi

k2 dk (23)

= m∗
i

2π2

[
kFi E

∗
Fi

− m∗
i

2 ln
kFi + E∗

Fi

m∗
i

]
. (24)

To solve a particular model for neutron star matter, i.e., to
obtain the particle fractions as a function of baryon density in
the star as shown in Fig. 1 for the Big Apple energy density
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FIG. 1. Particle fractions (n, p, e, μ, �0, �−, �0, �−) as a func-
tion of total baryon number density nB for the Big Apple EDF model
including hyperons.

functional (EDF) model,3 we first derived the Euler-Lagrange
equations of motion for the mesons from the Lagrangian.
Then we applied our constraints of baryon number conserva-
tion and charge neutrality,

nB =
∑

i

ni, i ∈ baryons, (25)

0 =
∑

j

q jn j, j ∈ baryons, leptons, (26)

and imposed chemical equilibrium with respect to weak pro-
cesses

As a result, for a system of m mesons and n baryons and
leptons, we are left with m + n + 1 unknowns: the m meson
field values, the n baryon and lepton fractions, and the total
baryon number density nB. Taking nB to be our free variable,
we solved for the remaining m + n variables at that given
value for nB. One final point to consider is that, for lower
values of nB (which would correspond to the outer layers of
the core or lower mass stars), it may not be energetically
favorable for heavier particles such as hyperons to appear.
Threshold conditions for the emergence of a new particle
species are [7]

μn − qbμe � μ
(0)
b , (27)

where

μ
(0)
b = m∗

i + μ
(m)
i = m∗

i + gωiω + gρiI3iρ + gφiφ. (28)

Whenever this condition is satisfied, we add the baryon to our
system, which involves updating the system of equations.

3The particle fractions in the other models are qualitatively similar
to the Big Apple EDF results shown in Fig. 1.

From the Lagrangian we can write down the energy mo-
mentum tensor [7]

T μν =
∑

n

∂L
∂ (∂μφn)

∂νφn − gμνL, (29)

which yields the energy density ε and pressure p. In the mean
field approximation, the energy density is then

ε = 1

2
m2

σ σ 2 + 1

2
m2

ρρ
2 + 1

2
m2

φφ2 + 1

2
m2

ξ ξ
2 + 1

2
m2

δ δ
2

+ 1

3
bmN (gσNσ )3 + 1

4
c(gσNσ )3 + 3�ωg2

ωN g2
ρNω2ρ2

+
∑
i∈B

2Ji + 1

2π2

∫ kFi

0

√
k2 + m∗

i
2 k2 dk

+
∑

�

2Ji + 1

2π2

∫ kF�

0

√
k2 + m∗

i
2 k2 dk (30)

with the integrals evaluating to∫ kFi

0

√
k2 + m∗

i
2 k2 dk

= 1

4

⎡
⎣kFi

(
k2

Fi
+ m∗

i
2)3/2 + k3

Fi

√
k2

Fi
+ m∗

i
2

−m∗
i

4 ln
kFi +

√
k2

Fi
+ m∗

i
2

m∗
i

⎤
⎥⎦. (31)

The pressure p follows from the relation [61,64]

p =
∑

i

μini − ε (32)

With p and ε, we can determine the equilibrium sound speed
from

c2
e := d p

dε
= d p

dnB

dnB

dε
= d p

dnB

1

dε/dnB
. (33)

Next, we need to consider how to generate the hyperonic
coupling constants. Starting with the nucleon-meson cou-
plings that are chosen to satisfy saturation density properties
[56,57], we can then generate hyperonic couplings via rela-
tionships similar to that expressed in Eq. (34), with the full
list of relationships given in [58]:

gω�

gωN
=

1 − 2z√
3
(1 − α) tan θ

1 − z√
3
(1 − 4α) tan θ

. (34)

If we take the ideal mixing limit, α = 1, z = 1/
√

6, and
tan θ = 1/

√
2, the relations respect SU(6) symmetry [65,67]:

gω� = gω� = 2gω� = 2

3
gωN , (35)

gρ� = 0, gρ� = 2gω� = 2gωN , (36)

gφN = 0, 2gφ� = 2gφ� = gφ� = 2
√

2

3
gωN . (37)
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FIG. 2. Density dependence of coupling constants gσN , gωN , and gρN for the various DDRMF models. Plotted for reference are the constant
coupling constants from the NLRMF models. We see that for large nB that gσN and gωN behave similarly to those in the NLRMF models whereas
gρN decreases towards zero indicating that in the DDRMF models isospin interactions vanish as nB ≈ 8n0.

For most of our models, we generate the hyperonic-vector
meson coupling constants using these SU(6) relations.4 The
coupling constants for scalar fields that couple to mass, that is,
the scalar sigma meson, are determined by fitting to hyperonic
optical potentials via the following equation [5,65]:

U (N )
Y = −gσY σ0 + gωY ω0, (38)

where U (N )
Y is the corresponding hyperon optical potential,

σ0 and ω0 are the saturation density values for the σ and
ω mesons, which can be found by solving the standard npe
case first, and gωY is the omega-hyperon coupling which can
be determined using SU(6) relations described previously.
For the values of the hyperon potentials at saturation den-
sity, we use the most commonly accepted values for U (N )

� =
−30 MeV and U (N )

� = 30 MeV [5,9,64,68,69]. Although U (N )
�

is known to be attractive, its precise value at saturation is
not well constrained [64,68]. For this work, we take it to be
U (N )

� = −14 MeV in accordance with currently used models
[5,9,69]. The hyperonic coupling constants for the strange
scalar mesons gξY and gδY can be found by fitting to a more
general version of Eq. (38),

U (k)
j (nk ) = m∗

j − mj + μ j − μ∗
j , (39)

at densities above saturation when strange degrees of freedom
emerge, as a second step after fitting to saturation [58]. How-
ever, for the work done here, gξY is only used for GM1-Y5
with values taken as specified in [58], and gδY is not calculated
as there is no δ meson dependence in the models that we
choose to consider.

B. Density dependent RMF (DDRMF) models

A class of models related to the NLRMF type of models
is the density dependent relativistic mean field (DDRMF)
model, where the baryon-meson coupling constants are al-
lowed to vary with baryon number density nB rather than

4The GM1-Y5 model takes z = 0.2 rather than z = 1/
√

6 [58].

remain constant throughout the entire range of densities. The
coupling constants become density dependent and typically
take on the forms

gi(nB) = gi(n0)ai
1 + bi(nB/n0 + di )2

1 + ci(nB/n0 + di )2
(40)

for the σ, ω, φ mesons and

gρ (nB) = gρ (n0)aρ exp

[
−aρ

(
nB

n0
− 1

)]
(41)

for the ρ meson, where gi(n0) is the coupling constant at
saturation and ai, bi, ci, di are additional parameters that de-
termine the evolution of the coupling constants for the models
[4,5,9,69,70]. The density dependence of a few coupling con-
stants are highlighted in Fig. 2.

There is an additional term added to the chemical poten-
tial μi called the rearrangement term �r for thermodynamic
reasons [5,9,69]:

μ
(b)
i = E∗

Fi
+ μ

(m)
i + �r (nB), (42)

where for an interaction Lagrangian which includes the scalar-
isoscalar σ , vector-isoscalar ω, vector-isovector ρ and hidden-
strangeness vector-isoscalar φ mesons,

Lint = −
∑

i

ψ̄i(γ0μ
∗
i − m∗

i )ψi (43)

with μ∗
i = μi − gωiω − I3igρiρ − gφ − �r and m∗

i = mi −
gσ iσ , �r takes the form [4]

�r (nB) =
∑

i

[
− ∂gσ (nB)

∂nB
σns

i + ∂gωi(nB)

∂nB
ωni

+ ∂gρi

∂nB
τ 3

i ρni + ∂gφi

∂nB
φni

]
. (44)

This rearrangement term contributes to the expression for
pressure p, though not the energy density ε, which takes on the
same form as Eq. (30), which allows us to determine p through
the thermodynamic relationship with ε given in Eq. (32).

015803-6



g-MODE OSCILLATIONS IN NEUTRON STARS WITH … PHYSICAL REVIEW C 108, 015803 (2023)

TABLE II. Different DDRMF models chosen for this work and
their parameters including saturation density n0, nonstrange me-
son coupling constants, and density dependent specific parameters
[5,69]. In particular, gσN (n0), gωN (n0), gρN (n0) refer to the values
of the coupling constants at saturation and ai, bi, ci, di determine the
dependence of the coupling constants on total baryon number density
nB as given by Eqs. (40) and (41).

Model DD-MEX DD-ME2

n0 (fm−3) 0.152 0.152
mσ (MeV) 547.333 550.124

gσN (n0) 10.707 10.540
gωN (n0) 13.339 13.019
gρN (n0) 7.238 7.367

aσ 1.397 1.388
bσ 1.335 1.094
cσ 2.067 1.706
dσ 0.402 0.442

aω 1.394 1.389
bω 1.019 0.924
cω 1.606 1.462
dω 0.456 0.478

aρ 0.620 0.565

To get the hyperon coupling constants, we can employ the
same SU(6) symmetry scheme as mentioned in Sec. IV A.
The equation relating the hyperon optical potentials to the gσY

coupling constants is modified to include the �r term:

U N
Y = gωY ω0 − gσY σ0 + �r (nB), (45)

which for the previously mentioned hyperon optical poten-
tials of U N

� = −30 MeV, U N
� = 30 MeV, U N

� = −14 MeV
yield the relations gσ� = 0.6105gσN , gσ� = 0.4426gσN , and
gσ� = 0.3024gσN [69]. The corresponding hyperon coupling
constants are listed in Table III.

TABLE III. Hyperon couplings using SU(6) symmetry argu-
ments as determined by fitting saturation density coupling constants
and fields to to Eq. (45) using the following values for the hy-
peron optical potentials: U N

� = −30 MeV, U N
� = 30 MeV, U N

� =
−14 MeV [5,9,64,68,69].

Model DD-MEX DD-ME2

gσ�(n0) 6.613 6.535
gω�(n0 ) 8.893 8.679
gρ�(n0) 0.0 0.0
gφ�(n0) 6.288 6.137

gσ� (n0) 5.0834 4.962
gω� (n0) 8.893 8.679
gρ� (n0) 14.476 14.734
gφ� (n0) 6.288 6.137

gσ�(n0) 3.3319 3.320
gω�(n0) 4.446 4.340
gρ�(n0 ) 7.238 7.367
gφ�(n0) 12.576 12.274

FIG. 3. The equation of state for the various models considered
in this work with npeμ matter (solid line) and npeμY matter (dot-
dashed line). The onset of hyperons leads to a characteristic softening
of the equation of state [15,29].

Ultimately, we choose the following density dependent
RMF models: DD-MEX [62] and DD-ME2 [9], as they
produce stars with mass-radius curves and tidal deforma-
bilities in agreement with current astrophysical constraints
from NICER and GW170817. Their relevant parameters in-
cluding coupling constants are listed in Table II. For these
models, UNL is effectively zero; that is, there are no nonlin-
ear meson-meson interactions unlike in the nonlinear RMF
models. These models are likewise fit to the following
saturation parameters: E0 = −16.14 MeV, K0 = 267.059, and
250.89 MeV [5].

C. Equilibrium structure

The pressure p and ε tabulated against total baryon num-
ber density give us a parametric equation of state, Fig. 3,
which then determines the macroscopic properties such as
mass and radius of the star from the Tolman-Oppenheimer-
Volkov (TOV) equations (46) and (47) for a static, spherically
symmetric star in hydrostatic equilibrium. Figures 4(a), 4(b),
and 5 show the corresponding mass-radius plots and tidal
deformability with observational constraints (as error bars).
The models we use satisfy current observational astrophysical
constraints:

d p

dr
= −Gm(r)ε(r)

r2

[
1 + p(r)

ε(r)

][
1 + 4πr3 p(r)

m(r)

]
1 − 2GM(r)

r

, (46)

dm

dr
= 4πε(r)r2. (47)
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FIG. 4. Mass-radius relations for the various models used in this work with the npeμ and npeμY compositions on the left and right
respectively. The astrophysical constraints of maximum masses from PSR J0740 + 6620 and the secondary object of GW190814 are likewise
plotted here in the light blue areas [14,20]. Additionally plotted are the Neutron star Interior Composition Explorer (NICER) constraints
on the mass-radius of PSR J0030 + 0451 from Riley etal. 2019 (1.34+0.15

−0.16 M� and 12.711.14
−1.19 km) and Miller et al. 2019 (1.44+0.15

−0.14 M� and
13.02+1.24

−1.06 km) [18,19] as well as for PSR J0740 + 6620 with values of (2.072+0.067
−0.066 M� and 12.39+1.30

−0.98 km) and (2.08+0.08
−0.07 M� and 13.7+2.6

−1.5 km)
[20,21].

V. ADIABATIC SOUND SPEED VIA
SOUND SPEED DIFFERENCE

Having established our working models for the stellar
structure and composition, we turn now to the calculation
of the adiabatic sound speed squared c2

s , or equivalently, the
sound speed difference (since c2

e is easily obtained from the
EoS) by using Eq. (7). Starting from Eq.(42), the partial

FIG. 5. Tidal deformability plotted against stellar mass for our
various models for npeμY compositions. The curves for npeμ matter
are similar. We see that all save for GM1-Y5 are safely below the
� � 800 constraint from GW170817.

derivative of the baryonic chemical potential5 is

∂μ
(B)
i

∂nB

∣∣∣∣
χ

= ∂E∗
Fi

∂nB

∣∣∣∣
χ

+ ∂μ
(m)
i

∂nB

∣∣∣∣
χ

+ ∂�r

∂nB

∣∣∣∣
χ

. (48)

We discuss each of these contributions in turn, noting that
the effective energy for ith baryon E∗

Fi
will only couple to the

scalar mesons, and μ
(m)
i will only couple to the vector mesons.

A. Partial derivative of the effective energy (E∗
Fi

)

Through Eq. (21), E∗
Fi

depends on each of the scalar meson
fields (say, m in number) σ, δ, ξ through the effective mass
term m∗

i = mi − gσ iσ − gξ iξ − I3igδiδ for the NLRMF and
DDRMF models. To determine ∂E∗

Fi
/∂nB, we would need

to determine the partial derivatives ∂σ/∂nB, ∂ξ/∂nB, and
∂δ/∂nB as well. First, for each of the baryons (say, b in
number), we have equations for the scalar density given by

ns
i = 〈ψ̄iψi〉 = 1

π2

∫ kFi

0

m∗
i

E∗
Fi

k2 dk

= m∗
i

2π2

[
kFi E

∗
Fi

− m∗
i

2 ln
kFi + E∗

Fi

m∗
i

]
, (49)

providing additional relations between E∗
Fi

and the meson
fields. As a result, after differentiating both sides of Eqs. (21)

5The partial derivatives for leptons can be obtained from their
relativistic dispersion relation,

∂μ�

∂nB

∣∣∣∣
χ

= π 2x�

kF�
EF�

, x� := n�

nB
.
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and Eqs. (B1)–(B6), we arrive at a system of m + b equa-
tions that are linear in the quantities of interest, and, in
particular, can be solved for ∂E∗

Fi
/∂nB. As a concrete illus-

tration, in the NLRMF model, starting with Eq. (21) for E∗
Fi

,
we arrive at

∂E∗
Fi

∂nB

∣∣∣∣
χ

= π2xi

kFi E
∗
Fi

+ m∗
i

E∗
Fi

∂m∗
i

∂nB

∣∣∣∣
χ

, (50)

where

∂m∗
i

∂nB

∣∣∣∣
χ

= −gσ i
∂σ

∂nB

∣∣∣∣
χ

− gξ i
∂ξ

∂nB

∣∣∣∣
χ

− I3igδi
∂δ

∂nB

∣∣∣∣
χ

. (51)

As for each baryon there is an associated E∗
Fi

, each baryon
contributes for a total of b equations of this form. Next, from

the equation of motion for the the σ meson in particular
[Eq. (B1)], after differentiating, we see it likewise depends
on ∂E∗

Fi
/∂nB for each baryon through

∂σ

∂nB

∣∣∣∣
χ

(
m2

σ + ∂2U

∂σ 2

)
=

∑
j

gσ j

∂ns
j

∂nB

∣∣∣∣
χ

(52)

with U = 1
3 bmN (gσNσ )3 + 1

4 c(gσNσ )4 and where

∂ns
j

∂nB

∣∣∣∣
χ

= ∂

∂nB

m∗
j

2π2

[
kFj E

∗
Fj

− m∗
j
2 ln

kFj + EFj

m∗
j

]
, (53)

which after expanding, evaluating, and re-inserting into
Eq. (52) leads us to Eq. (54), where the relationship between
∂E∗

Fi
/∂nB, ∂σ/∂nB, ∂ξ/∂nB, and ∂δ/∂nB is more explicit.

Similar equations appear when we repeat this procedure for the remaining scalar mesons, contributing a total of m equations to
the system. The required derivatives are solved for using standard numerical methods for a linear system of coupled equations:

0 = − ∂σ

∂nB

∣∣∣∣
χ

(
m2

σ + ∂2U

∂σ 2

)
−

∑
i

gσ i

2π2

(
gσ i

∂σ

∂nB

∣∣∣∣
χ

+ gξ i
∂ξ

∂nB

∣∣∣∣
χ

+ I3igδi
∂δ

∂nB

∣∣∣∣
χ

)
ns

i

m∗
i

+
∑

i

gσ i
m∗

i

2π2

[
π2xi

k2
Fi

E∗
Fi

+ kFi

∂E∗
Fi

∂nB

∣∣∣∣
χ

]
+

∑
i

gσ i
m∗

i

2π2

{
2gσ im

∗
i

(
gσ i

∂σ

∂nB

∣∣∣∣
χ

+ gξ i
∂ξ

∂nB

∣∣∣∣
χ

+ I3igδi
∂δ

∂nB

∣∣∣∣
χ

)
ln

kFi + E∗
Fi

m∗
i

− m∗
i

2

⎡
⎢⎢⎢⎢⎣

π2xi

k2
Fi

+ ∂E∗
Fi

∂nB

∣∣∣∣
χ

kFi + E∗
Fi

+ 1

m∗
i

(
gσ i

∂σ

∂nB

∣∣∣∣
χ

+ gξ i
∂ξ

∂nB

∣∣∣∣
χ

+ I3igδi
∂δ

∂nB

∣∣∣∣
χ

)⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (54)

B. Partial derivative of the vector meson contribution
to the chemical potential

The contribution of the vector mesons ω, ρ, φ to the chem-
ical potential in the mean-field approximation takes the form

μ
(m)
i = gωiω + I3igρiρ + gφiφ. (55)

In a similar fashion to Sec. V A, the partial derivative of μ
(m)
i

is dependent on the partial derivatives of the vector meson
fields:

∂μ
(m)
i

∂nB

∣∣∣∣
χ

= gωi
∂ω

∂nB

∣∣∣∣
χ

+ I3igρi
∂ρ

∂nB

∣∣∣∣
χ

+ gφi
∂φ

∂nB

∣∣∣∣
χ

. (56)

Each of these partial derivatives of the vector meson fields
can be found by differentiating their mean field equations of
motion, resulting in a system of linear equations for ∂ω/∂nB

and ∂ρ/∂nB (and ∂φ/∂nB) due to the �ωg2
ρg2

ωω2ρ2 coupling
term. In principle, this system of linear equations as written
below can be solved exactly, though in our work we solve

them numerically:

∑
i

gφixi = m2
φ

∂φ

∂nB
,

∑
i

gωixi = m2
ω

∂ω

∂nB
+ ξ

2!
g2

ωNω2 ∂ω

∂nB

+ 2�vg2
ρN g2

ωN

(
2ρ

∂ρ

∂nB
ω + ρ2 ∂ω

∂nB

)
,

∑
i

gρiI3ixi = m2
ρ

∂ρ

∂nB

+ 2�vg2
ρN g2

ωN

(
∂ρ

∂nB
ω2 + 2ρω

∂ω

∂nB

)
. (57)

C. DDRMF model modifications

For the DDRMF models, as the coupling constants are
density dependent, the contribution to the partial derivative of
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the effective mass are given by

∂m∗
i

∂nB

∣∣∣∣
χ

= −∂gσ i

∂nB

∣∣∣∣
χ

σ − gσ i
∂σ

∂nB

∣∣∣∣
χ

− ∂gξ i

∂nB

∣∣∣∣
χ

ξ (58)

− gξ i
∂ξ

∂nB

∣∣∣∣
χ

− ∂gδi

∂nB

∣∣∣∣
χ

δ − gδi
∂δ

∂nB

∣∣∣∣
χ

(59)

and the partial derivative of the mesonic contribution to the
baryon chemical potential are given by

∂μ
(m)
i

∂nB

∣∣∣∣
χ

= ∂gωi

∂nB

∣∣∣∣
χ

ω + gωi
∂ω

∂nB

∣∣∣∣
χ

+ I3i
∂gρi

∂nB

∣∣∣∣
χ

ρ (60)

+ I3igρi
∂ρ

∂nB

∣∣∣∣
χ

+ ∂gφi

∂nB

∣∣∣∣
χ

φ + gφi
∂φ

∂nB

∣∣∣∣
χ

, (61)

where as usual, the partial derivatives with respect to nB are
taken at fixed composition. The mesonic equations of motion
are likewise modified, though the overall structure of the
resulting equations, and hence the solution methods, are no
more complicated than for the NLRMF models.

The additional rearrangement term �r can be differentiated
in a similar manner. However, we note that in our context we
are ultimately interested in μ̃i, which by its dependence on the
difference of the neutron and baryon chemical potentials [as
in Eq. (8)] leads to the contributions from ∂�r/∂nB from the
neutron and ith baryon canceling each other out and ultimately
does not contribute to c2

s − c2
e .

VI. RESULTS

The sound speed differences for the models considered in
this work are collected in the panels of Fig. 6. A common
observation is that the sound speed difference experiences
a sharp rise when a new species threshold is breached, due
to a drop in c2

e . This effect is quite dramatic for hyperons,
particularly the �0. The gradual decrease of the sound speed
difference between consecutive species thresholds signifies
that the system has returned to chemical and mechanical equi-
librium. A comparison to npeμ matter alone highlights the
remarkable effect of hyperons on the sound speed difference.
Muons, due to their relatively small fraction compared to
hyperons (see Fig. 1), do not impact the sound speed as much
as hyperons. From the hyperon species, the � has the largest
relative effect due to its population fraction.

There are more subtle differences, as reflected in μ∗,
between the various models as well, due to variations
in the baryon-meson and meson-meson interactions in the
Lagrangian, the nature of the coupling constants (density
dependent or not), as well as the recipe chosen to fix meson-
hyperon couplings.

The implication of these trends in the sound speed
difference is that the g-mode frequency, through the Brunt-
Väisälä frequency, would be expected to manifest similar
dramatic features for npeμY compositions. To compute the
global g-mode frequency, we solve the linear perturba-
tion equations (5) numerically by employing a fourth-order
Runge-Kutta scheme to find the eigenvalue for ω obtained by
subjecting this system of equations to the boundary conditions
for the relativistic case outlined above Eqs. (5). In general, our

integration procedure beginning at the starting point (r = 0)
cannot know about the boundary condition at the surface
(r = R) for arbitrary values of ω. However, the eigenvalue by
definition is the value that satisfies both boundary conditions.
Therefore, we perform a scan in frequency space (typically
10 to 1000 Hz) and perform the numerical integration repeat-
edly until we find the frequency for which both boundary
conditions are simultaneously satisfied. This “shooting
method” is the most common method employed in the liter-
ature on g-mode oscillations, and although other numerical
methods are known in the literature, the shooting method
is best suited to our goal of efficiently finding the principal
eigenvalue. Since the solution set comprises overtones, we se-
lected the lowest order g mode (highest frequency) by check-
ing that the radial eigenfunction ξr has only one node inside
the star. The corresponding eigenfrequency ω is plotted in the
figures that follow. Indeed, our results for the g-mode oscil-
lation frequency presented in Fig. 7, where the linear g-mode
frequency ν = ω/2π is plotted, demonstrates this fact. Specif-
ically, a comparison of Figs. 4(a) and 4(b) for npeμ composi-
tions and npeμY respectively (for each of the six RMF models
used in this work), shows that in all but one of the npeμY
models (GM1-Y5) a dramatically sharp increase in the oscilla-
tion frequency occurs at around 1.5–1.6 M�. This corresponds
to the lightest hyperon threshold, the lowest central density
such that the first hyperonic species emerges, in the star. The
g-mode frequencies for the stars with npeμY composition are
approximately 350–750 Hz larger, depending on the stellar
mass, than for those with npeμ composition. The case of
GM1-Y5 is markedly different due to the absence of quartic
interactions or SU(6) coupling constants, pushing the thresh-
old density of hyperons near the tail end of the mass-radius
curve. This qualitative behavior of the g-mode frequency upon
the onset of new degrees of freedom is similar to results in
[31,45,52], where a transition to quark matter in the form
of a mixed/crossover quark matter phase was considered.
In that case, the principal core g-mode frequency for hybrid
stars containing quark matter was in the range ≈200–600 Hz,
and therefore less dramatic than the the effect of hyperons.
Since the frequencies of stars without strangeness degrees of
freedom are only about 100—200 Hz, we conclude that a
precise determination of the g-mode frequency, if and when
observed in perturbed neutron stars, could potentially be a
signature of strangeness, but also allow us to discern if such
strangeness is bound (hyperons) or free (quarks).

VII. CONCLUSIONS

The main objective of this work was to ascertain the
characteristics of g-mode oscillations of hyperonic stars, com-
paring them to the standard npeμ composition of a neutron
star. Toward this end, we used a variety of relativistic mean
field approaches to model the core of the star, where hyperons
can be present. In particular, we used models GM1-Y5 [8,58],
Big Apple [59,60], Hornick 65, 70 [61], DD-MEX [4,5,9,62],
and DD-ME2 [4,5,9,63]. The models were chosen to sample a
variety of different possible baryon-meson and meson-meson
interactions as well as include different treatments of the
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FIG. 6. Sound speed difference c2
s − c2

e plotted for the various models with npeμ matter in the dashed lines and npeμY matter in the
dot-dashed lines. The vertical dotted lines represent the values of nB at which new particles emerge corresponding to the “kinks” observed in
the various curves, except for μ∗ which instead denotes the locations where the muon vanishes. In all models, c2

s − c2
e exhibits a sharp rise

upon the emergence of new particles, after which c2
s − c2

e begins to decrease until the arrival of a new particle. The appearance of hyperons
generally appears to dramatically increase c2

s − c2
e .

coupling constants, including models where the coupling con-
stants vary with total baryon number density (DDRMF). All
models satisfy current astrophysical constraints, producing
equations of state stiff enough to produce maximally sized
stars as well as constraints on the mass-radius relations in
agreement with NICER constraints on PSR J0030 + 0451 and
PSR J0740 + 6620. The calculated tidal deformabilities also
agree with current constraints placed by GW170817.

While M-R curves only depend on the pressure vs density
relation (EOS), the analysis of g-mode oscillations requires
simultaneous information about the equilibrium and adiabatic
squared sound speeds, c2

e = d p/dε and c2
s = ∂ p/∂ε|x, where

x are the local, independent composition variables. The dis-
tinction between these two sound speeds plays a central role
in determining the Brunt-Väisälä frequencies ω2 ∝ c−2

e − c−2
s

of nonradial g-mode oscillations. We generalized the method
applied in [45,54] for npeμ matter to calculate the sound
speed difference c2

s − c2
e from partial derivatives of linear

combinations of chemical potentials, and applied this to ob-
tain the g-mode spectrum for hyperonic stars described by
relativistic mean field models.

We find that the g mode is sensitive to the presence of
hyperons in neutron stars, as signalled by the sharp changes
in sound speed difference at the lightest hyperon threshold
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FIG. 7. g-mode oscillation frequency as a function of stellar mass for npeμ composition on the left and npeμY composition on the right.
As a result of dependence of the sound speed difference on the number of equilibrating species in the system, the g-mode frequency rises
sharply when the threshold density for a new species that participates in β-equilibrium reactions is breached. The case of GM1-Y5 is markedly
different from the other models: the difference arises due to the absence of quartic interactions or SU(6) coupling constants, which forces
hyperons to appear only at the tail end of the mass-radius curve.

(Fig. 6), raising the local Brunt-Väisälä frequency and the
fundamental g-mode frequency of the star (Fig. 7). Contrasts
of g-mode frequencies between normal and hyperonic stars
containing quark matter (Fig. 7) form the principal results of
our work. This contrast is a common feature that arises across
the different models of hyperonic matter, and gives confidence
that the effect is representative of the change in composition
rather than an artifact of a specific model.

We briefly comment on two additional effects that can
affect the g mode. Superfluidity/superconductivity introduces
an additional flow component of the baryonic fluids leading
to a new set of superfluid g modes which were discussed in
some recent works [71]. The frequency of these superfluid
modes can be quite large (≈700 Hz) but they are strongly
temperature dependent, unlike the normal fluid g modes
considered here. The effect of magnetic field on the g mode is
an interesting question that has yet to be investigated in detail,
barring a few studies for the neutron star ocean [72]. It is
possible that the magnetic field plays a role in core g modes if
the field value is sufficiently large to change the composition
from the zero field case.

The novel feature of this work is the first calculation of
the two sound speeds in hyperonic matter and its impact on
the principal g-mode frequency of hyperonic stars. Our results
suggests that determining the composition of the star through
g modes is a possible resolution to breaking degeneracies in
inferences on the equation of state from M-R data alone and
ascertaining if strangeness exists in neutron stars. Future work
is aimed at quantifying the g-mode frequencies for hyperonic
stars with a phase transition to quark matter or crossover tran-
sitions as in quarkyonic matter. It would also be interesting
to study the evolution of the g mode in binary mergers where
one or both components may be a hyperonic star, since such
modes can be excited during inspiral and potentially alter the

phase and amplitude of the gravitational wave signal from
coalescing ordinary neutron stars.

ACKNOWLEDGMENTS

V.T. and P.J. are supported by the US National Science
Foundation Grant No. PHY-2310003. V.T. would like to ac-
knowledge support from the Richard D. Green Graduate
Research Fellowship from the College of Natural Sciences
and Mathematics at CSULB. The authors thank the Inter-
national Centre for Theoretical Sciences (ICTS), Bangalore,
India for organizing the online program Virtual Meeting on
Compact Stars and QCD 2020 (code ICTS/csqcd2020/08),
whereby this work was initiated.

APPENDIX A: DEMONSTRATING VALIDITY
OF SOUND SPEED DIFFERENCE EXPRESSION

It was shown in [45] that from the definitions of c2
s and c2

e
the sound speed difference c2

s − c2
e could be rewritten as

c2
s − c2

e = 1

μavg

∂ p

∂nB

∣∣∣∣
χ

− 1

μn

d p

dnB
, (A1)

where μavg := ∑
i μixi, μn is the neutron chemical potential

and ∂ p/∂nB|χ is the partial derivative of pressure with respect
to baryon density nB while holding composition fixed. This
expression was then shown to be rewritable in terms of partial
derivatives of μ̃i for the specific case of npe and npeμ matter
where the independent variables chosen were the electron
fraction xe in the first case and the lepton fraction x and muon
fraction y in the second case. Then the sound speed difference
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in the npeμ case was rewritable as

c2
s − c2

e = − n2
B

μn

(
∂μ̃x

∂nB

∣∣∣∣
x,y

dx

dnB
+ ∂μ̃y

∂nB

∣∣∣∣
x,y

dy

dnB

)
. (A2)

Here, following the same steps outlined in [45], we
can generalize these results to any arbitrary composition of
baryons and leptons to get the expression shown in Eq. (7)
starting from Eq. (A1).

We can start by taking the neutron fraction xn and the
electron fraction xe to be the dependent fractions for all
compositions. This then implies that all other baryon and
lepton fractions are independent variables in our system. This
type of scheme has the advantage of allowing us to write a
generalized expression for sound speed difference for a vari-
ety of different compositions that may occur as nB increases,
and heavier particles such as hyperons appear without having
to redefine and resolve for different independent and depen-
dent fractions.

Then the pressure p = p(nB, x1, . . . , xn) is a function of
total baryon density nB and the independent baryon, lepton
fractions x1, . . . , xn, so the total derivative of p with respect to
nB is given by

d p

dnB
= ∂ p

∂nB

∣∣∣∣
χ

+
∑

i

∂ p

∂xi

∣∣∣∣
nB,x j �=xi

dxi

dnB
, (A3)

where the sum over i is over all independent baryon and
lepton fractions/particles. When inserted into Eq. (A1) we can
expand and collect terms in the following manner:

c2
s − c2

e =
(

1

μavg
− 1

μn

)
∂ p

∂nB

∣∣∣∣
nB,x j �=xi

(A4)

− 1

μn

∑
i

(
∂ p

∂xi

∣∣∣∣
nB,x j �=xi

dxi

dnB

)
(A5)

=
(

μn − μavg

μavg · μn

)
∂ p

∂nB

∣∣∣∣
χ

(A6)

− 1

μn

∑
i

(
∂ p

∂xi

∣∣∣∣
nB,x j �=xi

dxi

dnB

)
. (A7)

Next, the average chemical potential μavg can be expanded
as

μavg :=
∑

j

μ jx j (A8)

= xnμn + xeμe +
∑

i

xiμi, i ∈ ind. var. (A9)

But with the neutron and electron fractions as dependent vari-
ables, we can rewrite them in terms of the other independent
fractions using the constraints of charge neutrality and baryon
number conservation:

1 = xn +
∑

b

xb, b ∈ baryon, (A10)

0 = −xe − xμ +
∑

b

qbxb. (A11)

After solving for xn and xe in terms of the other fractions,
using these two constraints μavg becomes

μavg =
(

1 −
∑

b

xb

)
μn +

(
−xμ +

∑
b

qbxb

)
μe (A12)

+ xμμμ +
∑

b

xbμb. (A13)

Then the difference μn − μavg becomes

μn − μavg =
∑

b

xbμn −
∑

b

xbμb −
∑

b

qbxbμe (A14)

+ xμ(μe − μμ) (A15)

=
∑

b

(μn − qbμe − μb)xb (A16)

+ xμ(μe − μμ). (A17)

But we see that the terms inside of the parentheses are exactly
combinations of chemical potentials that vanish in β equilib-
rium,

μ̃b = μn − qbμe − μb = 0, (A18)

μ̃μ = μe − μμ, (A19)

which allows us to rewrite μavg in a concise manner in terms
of μ̃i:

μn − μavg =
∑

b

μ̃bxb + μ̃μxμ (A20)

=
∑

i

μ̃ixi, i ∈ all ind. vars. (A21)

The remaining steps follow in a similar fashion as de-
scribed in [45]. In β equilibrium μn − μavg is zero since
μ̃i = 0 for all i. The sound speed difference expression re-
duces to

c2
s − c2

e = − 1

μn

∑
i

∂ p

∂xi

∣∣∣∣
nB,x j �=xi

dxi

dnB
. (A22)

Using p = n2
B∂E/∂nB|χ we can rewrite this as

c2
s − c2

e = − n2
B

μn

∑
i

∂E

∂xi

∣∣∣∣
nB,x j �=xi

dxi

dnB
(A23)

= n2
B

μn

∑
i

∂μ̃i

∂nB

∣∣∣∣
χ

dxi

dnB
, (A24)

where Eq. (A24) is the expression we use in calculating the
sound speed difference in this paper.

APPENDIX B: MESONIC MEAN FIELD EQUATIONS

The forms of the Euler-Lagrange field equations for the
mesons as specified for the general Lagrangian used in
our work, that is, including the form of the meson-meson
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interactions as given in Eq. (19), are

m2
σ σ + bg3

σNσ 2 + cg4
σNσ 3 =

∑
i

gσ in
s
i , (B1)

m2
ωω + ξ

3!
g2

ωNω3 + 2�ωg2
ρN g2

ωNρ2ω =
∑

i

gωini, (B2)

m2
ρρ + 2�ωg2

ρN g2
ωNρω2 =

∑
i

gρiI3ini, (B3)

m2
φφ =

∑
i

gφini, (B4)

m2
ξ ξ =

∑
i

gξ in
s
i , (B5)

m2
δ δ =

∑
i

I3igδin
s
i . (B6)
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