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Gapless superfluidity in neutron stars: Thermal properties
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The interior of mature neutron stars is expected to contain superfluid neutrons and superconducting protons.
The influence of temperature and currents on superfluid properties is studied within the self-consistent time-
dependent nuclear energy-density functional theory. We find that this theory predicts the existence of a regime
in which nucleons are superfluid (the order parameter remains finite) even though the energy spectrum of
quasiparticle excitations exhibits no gap. We show that the disappearance of the gap leads to a specific heat
that is not exponentially suppressed at low temperatures as in the Bardeen-Cooper-Schrieffer regime but can
be comparable to that in the normal phase. Introducing some dimensionless effective superfluid velocity, we
show that the behavior of the specific heat is essentially universal and we derive general approximate analytical
formulas for applications to neutron-star cooling simulations.
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I. INTRODUCTION

The densely packed material constituting neutron stars sev-
eral decades after their formation is thought to become cold
enough for the existence of various superfluid and supercon-
ducting phases [1] (for a review about neutron-star cooling,
see, e.g., Ref. [2]): neutron superfluidity with 1S0 type pairing
in the inner crust and outer core and with 3PF 2 pairing in
deeper regions, proton superconductivity with 1S0 pairing in
the outer core, and possibly more exotic phases involving
hyperons or quarks in the inner core. Predicted by Arkhady
Migdal in 1959 [3] and extensively studied theoretically since
then [4], nuclear superfluidity has found support from radio-
timing observations of pulsar frequency glitches [5] and more
recently from the rapid decline of luminosity of the youngest
known neutron star in the supernova remnant of Cassiopeia A
[6–12].

So far, most microscopic calculations of the nuclear
pairing properties have been carried out for superfluids at rest
(see, e.g., Ref. [4] for a recent review); a notable exception is
the study of Ref. [13] about the possibility of a 3D2 neutron-
proton superfluid phase in the inner core of massive neutron
stars. However, observed neutron stars are not static but are
spinning with periods ranging from milliseconds to seconds,
as reported in the Australia Telescope National Facility
(ATNF) online catalog1 (see Ref. [14]). The neutron and
proton superfluids in a neutron star are expected to be rotating
at different rates due to their weak coupling with the rest of
the star. The influence of superflows on the order parameter
of the neutron and proton superfluid phases in neutron stars
has been previously studied in Refs. [15–17] using Landau’s
theory of Fermi liquids. Recently, we have investigated
the dynamics of neutron-proton superfluid mixtures within
the self-consistent time-dependent nuclear energy-density

1https://www.atnf.csiro.au/people/pulsar/psrcat/

functional theory. We have obtained exact analytical solutions
of the time-dependent Hartree-Fock-Bogoliubov (TDHFB)
equations at finite temperatures in homogeneous matter with
stationary flows [18,19]. Applying this formalism to neutron
stars, we have calculated numerically the 1S0 neutron and
proton pairing gaps in their outer core in the presence of
arbitrary currents [20].

In this paper, the breakdown of nucleon superfluidity and
superconductivity is more closely examined within the same
microscopic framework. The critical temperature and critical
velocities for the disappearance of nucleon superfluidity and
superconductivity are calculated explicitly. We find that the
nuclear energy-density functional theory predicts the exis-
tence of a regime in which nucleons remain superfluid (the
order parameter is finite) even though the energy spectrum
of quasiparticle excitations exhibits no gap. Such kinds of
gapless phases have been known for a long time in terrestrial
superconductors [21] and superfluids [22] but have not been
studied so far in the context of neutron stars. We analyze in
detail the disappearance of the gap in nuclear superfluids by
calculating the density of quasiparticle states. Implications of
gapless nuclear superfluidity for the specific heat are investi-
gated.

The paper is organized as follows. In Sec. II, we review
the time-dependent nuclear energy-density functional theory
and its application to homogeneous superfluid mixtures. The
properties of nuclear superfluids in neutron stars are presented
in Sec. III.

II. TIME-DEPENDENT NUCLEAR ENERGY-DENSITY
FUNCTIONAL THEORY

A. Time-dependent Hartree-Fock-Bogoliubov equations

The time-dependent density functional theory provides a
unified microscopic framework for studying the dynamics
of various fermionic systems from atomic nuclei and cold
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atomic gases to neutron stars (see, e.g., Ref. [23]), in terms of
independent quasiparticle excitations in self-consistent mean
fields (see, e.g., Refs. [24,25]). Although the nuclear energy-
density functional theory is close in spirit to the density
functional theory in condensed-matter physics, it is con-
ceptually different because nucleons are self-bound unlike
electrons. In nuclear physics, functionals have been tradition-
ally constructed from effective nucleon-nucleon interactions
within the mean-field approximation. Although such interac-
tions could in principle be derived from many-body theory
[26] (see also Ref. [27] for a recent review of the de-
velopments of more microscopically grounded functionals),
phenomenological interactions are generally adopted. Corre-
lations are then taken into account in an effective way by
introducing density-dependent terms in the interactions and
by fitting the parameters to some properties of finite nuclei
and infinite nuclear matter. In the following, we will consider
semilocal functionals, such as those obtained from contact
interactions of the Skyrme type [28].

Introducing the set of quantum numbers k, the evolution
of the two components ψ

(q)
1k (r, σ ; t ) and ψ

(q)
2k (r, σ ; t ) of the

quasiparticle wave function for nucleon species q (here q =
n, p for neutrons, protons) at position r with spin projection
σ = ±1 (in units of h̄/2) is governed by the TDHFB equations(

hq(r, t ) − λq �q(r, t )
�q(r, t )∗ −hq(r, t )∗ + λq

)(
ψ

(q)
1k (r, σ ; t )

ψ
(q)
2k (r, σ ; t )

)

= ih̄
∂

∂t

(
ψ

(q)
1k (r, σ ; t )

ψ
(q)
2k (r, σ ; t )

)
, (1)

where λq is the chemical potential. The single-particle Hamil-
tonian hq(r, t ) and the pair potential �q(r, t ) are defined in
terms of functional derivatives of the total energy E of a matter
element of volume V with respect to the following densities:

(i) the particle number density at position r and time t ,

nq(r, t ) =
∑

σ=±1

nq(r, σ ; r, σ ; t ); (2)

(ii) the kinetic-energy density (in units of h̄2/2mq, with mq

the relevant nucleon mass) at position r and time t ,

τq(r, t ) =
∑

σ=±1

∫
d3r′ δ(r − r′)∇ · ∇′nq(r, σ ; r′, σ ; t ); (3)

(iii) the momentum density (in units of h̄) at position r and
time t ,

jq(r, t ) = − i

2

∑
σ=±1

∫
d3r′ δ(r − r′)(∇ − ∇′)nq(r, σ ; r′, σ ; t );

(4)

and (iv) the pair density2 at position r and time t ,

ñq(r, t ) =
∑

σ=±1

ñq(r, σ ; r, σ ; t ). (5)

2Also called anomalous or abnormal density

The particle density and pair density matrices [29] are defined
by the thermal averages,

nq(r, σ ; r′, σ ′; t ) =< cq(r′, σ ′; t )†cq(r, σ ; t ) >, (6)

ñq(r, σ ; r′, σ ′; t ) = −σ ′ < cq(r′,−σ ′; t )cq(r, σ ; t ) >, (7)

respectively where cq(r, σ ; t )† and cq(r, σ ; t ) are the creation
and destruction operators for particle species of type q at
position r with spin projection σ at time t . The single-particle
Hamiltonian hq(r, t ) is explicitly given by

hq(r, t ) = −∇ · h̄2

2m⊕
q (r, t )

∇ + Uq(r, t )

− i

2
[Iq(r, t ) · ∇ + ∇ · Iq(r, t )], (8)

with

h̄2

2m⊕
q (r, t )

= δE

δτq(r, t )
, Uq(r, t ) = δE

δnq(r, t )
,

Iq(r, t ) = δE

δ jq(r, t )
. (9)

The Bogoliubov–de Gennes equations [30] originally devel-
oped for inhomogeneous terrestrial superconductors (and later
adapted to cold atoms) are recovered after replacing the ef-
fective mass m⊕

q (r, t ) by the bare mass mq and ignoring the
potential vector Iq(r, t ). The pair potential is defined by

�q(r, t ) = 2
δE

δñq(r, t )∗
. (10)

Since the energy E is real, it can only depend on the pair
density through its square modulus |̃nq(r, t )|2. The pairing
potential (10) can thus be written as

�q(r, t ) = 2
δE

δ|̃nq(r, t )|2 ñq(r, t ). (11)

The local order parameter of the superfluid phase is related to
the pair potential via [19]

	q(r, t ) = 1

4

(
δE

δ|̃nq(r, t )|2
)−1

�q(r, t ). (12)

This order parameter is complex in general and can thus be
written as

	q(r, t ) = |	q(r, t )| exp(iφq(r, t )). (13)

The gradient of its phase φq(r, t ) defines the superfluid veloc-
ity V q(r, t ) as follows:

V q(r, t ) = h̄

2mq
∇φq(r, t ). (14)

The self-consistency of the TDHFB equations is contained
in the following expressions for the particle and pair density
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matrices:

nq(r, σ ; r′, σ ′; t ) =
∑

k

[
f (q)
k ψ

(q)
1k (r, σ ; t )ψ (q)

1k (r′, σ ′; t )∗

+ (1 − f (q)
k )σσ ′ψ (q)

2k (r,−σ ; t )∗

× ψ
(q)
2k (r′,−σ ′; t )

]
, (15)

ñq(r, σ ; r′, σ ′; t ) =
∑

k

[
f (q)
k ψ

(q)
1k (r, σ ; t )ψ (q)

2k (r′, σ ′; t )∗

− (
1 − f (q)

k

)
σσ ′ψ (q)

2k (r,−σ ; t )∗

× ψ
(q)
1k (r′,−σ ′; t )

]
, (16)

with f (q)
k being the distribution of quasiparticle excitations at

temperature T .

B. Application to homogeneous superfluid mixtures
with stationary flows

Considering a homogeneous superfluid mixture with sta-
tionary flows in the normal fluid rest frame, the TDHFB
equations can be solved exactly [19]. Expressing the pair
potential as �q(r) = �q exp(2iQq · r), where �q = |�q(r)|.
The order parameter (12) becomes in this case

	q(r) = 1

4

(
δE

δ|̃nq|2
)−1

�q exp(2iQq · r). (17)

The superfluid velocity (14) thus reads V q = h̄Qq/mq. In this
stationary situation, the partial derivative ih̄∂/∂t in Eq. (1)
leads to the multiplication by the energy of a quasiparticle
excitation with momentum h̄k given by

E(q)
k = h̄k · VqVqVq +

√
ε

(q)2
k + �2

q, (18)

with

ε
(q)
k = h̄2k2

2m⊕
q

+ 1

2
m⊕

q

(
VqVqVq + Iq

h̄

)
.

(
VqVqVq − Iq

h̄

)
+ Uq − λq,

(19)

and we have introduced the effective superfluid velocity,

VqVqVq ≡ mq

m⊕
q

V q + Iq

h̄
. (20)

For superfluids at rest (in the normal frame), the lowest
possible quasiparticle energy E(q)

k is finite and given by �q,
which in this case represents a gap in the quasiparticle energy
spectrum. However, in the presence of arbitrary currents, �q

does not necessarily imply the existence of a gap. As we
shall show, the quasiparticle energy spectrum may be contin-
uous while �q is finite: In this peculiar regime, the nucleons
remains superfluid since the order parameter (17) does not
vanish. In any case, �q is obtained from the self-consistent
equations

�q(T,VqVqVq) = − 2

V

δE

δ|̃nq|2
∑

k

�q(T,VqVqVq)√
ε

(q)2
k + �q(T,VqVqVq)2

× tanh

(
β

2
E(q)

k

)
, (21)

where β = (kBT )−1 (kB being the Boltzmann constant) and
it is understood that the summation must be regularized to
remove ultraviolet divergences by means of introducing a
cutoff ε
 (see, e.g., Ref. [31] for discussions). Equation (21)
must be solved together with the particle number conservation

nq = 1

V

∑
k

⎡⎢⎣1 − ε
(q)
k√

ε
(q)2
k + �2

q

tanh

(
β

2
E(q)

k

)⎤⎥⎦. (22)

As can be seen from Eq. (19), Eqs. (21) and (22) both depend
on the reduced chemical potential defined by

μq = λq − Uq − 1

2
m⊕

q

(
VqVqVq + Iq

h̄

)
.

(
VqVqVq − Iq

h̄

)
, (23)

so that �q does not require the explicit form of the potential
Uq.

Each species can be characterized by the Fermi energy
εFq = h̄2k2

Fq/2m⊕
q , the Fermi temperature TFq = εFq/kB, and

the Fermi velocity VFq = h̄kFq/m⊕
q (recalling that the Fermi

wave number is given by kFq = (3π2nq)1/3). In the following
and for convenience, we will introduce the following dimen-
sionless ratios:

T̄q = T

TFq
, μ̄q = μq

εFq
, ε̄
 = ε


εFq
,

�̄q = �q

εFq
, V̄q = Vq

VFq
. (24)

We will also take the continuum limit, i.e., we will replace
discrete summations over wave vectors by integrations as
follows:

1

V

∑
k

· · · →
∫

d3k
(2π )3

· · · =
∫

d�k

4π

∫
dεDq(ε) · · · , (25)

with �k the solid angle in k-space and Dq(ε) the density of
single-particle states per spin given by

Dq(ε) ≡
∫

d3k
(2π )3

δ
(
ε − ε

(q)
k

) = m⊕
q

2π2h̄3

√
2m⊕

q (ε + μq), (26)

and we have made use of Eq. (19). After integrating over
solid angle and changing variables (setting x = μ̄q + ε/εFq =
k2/k2

Fq), Eq. (21) and the particle number conservation (22)
become, respectively,

�q = −1

4
vπqDq(0)�q

T̄q

V̄q

∫ μ̄q+ε̄


0

dx

E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]
,

(27)

4

3
=

∫ +∞

0
dx

{
√

x − T̄q

V̄q

x − μ̄q

2E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]}
,

(28)
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with the following shorthand notation:

Dq(0) ≡ kFqm⊕
q

2π2h̄2 , (29)

and

E(q)
x ≡

√
(x − μ̄q)2 + �̄2

q, (30)

and we have introduced the pairing strength vπq (which may
depend on the densities and currents) through the relation

δE

δ|̃nq|2 = 1

4
vπq < 0. (31)

It is worth remarking that although �q depends in gen-
eral on the directions of the superfluid velocities V q, this
dependence is entirely contained in the absolute value of the
effective superfluid velocities VqVqVq.

III. PROPERTIES OF NUCLEAR SUPERFLUIDS
IN NEUTRON STARS

For numerical applications, we will consider npeμ matter
in beta equilibrium, as found in the outer core of neutron stars.
The present formalism could also be applied to the neutron
superfluid in the inner crust of neutron stars to the extent
that the effects of spatial inhomogeneities can be neglected
for the temperatures of relevance (see, e.g., Refs. [32,33]).
Unless stated otherwise, we will adopt the Brussels-Montreal
functional BSk24 [34] for which the equation of state through-
out all regions of a neutron star is available [35–37]. This
equation of state is consistent with astrophysical constraints
coming from analyses of the gravitational-wave signal from
the binary neutron-star merger GW170817 and of its elec-
tromagnetic counterpart [38]. Moreover, we have already
employed this functional in our previous study to calculate
some superfluid properties in neutron-star cores [20]. The
functional BSk24 was constructed by fitting directly effective
masses and 1S0 pairing gaps, as obtained from diagrammatic
many-body calculations based on realistic two- and three-
body interactions [39].

A. Critical temperature

In the absence of currents, Eq. (27) for �q, which is inter-
pretable as the pairing gap under such conditions, becomes

1 = −1

2
vπqDq(0)

∫ μ̄q+ε̄


0
dx

√
x

E(q)
x

tanh

(
E(q)

x

2T̄q

)
. (32)

At T = 0, Eq. (32) further reduces to

1 = −1

2
vπqDq(0)Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)],

(33)

where we have introduced the integral

Iq[μq(T, Vq); �q(T, Vq)]

≡
∫ μ̄q+ε̄


0
dx

√
x

E(q)
x

=
∫ μ̄q+ε̄


0
dx

√
x

(x − μ̄q)2 + �̄2
q

.

(34)

In the weak-coupling approximation, i.e., �q 	 εFq, ε
,
it is a very good approximation to neglect �q in Eq. (28)
so that μq ≈ εFq. As shown in Ref. [40], the integral (34) is
approximately given by

Iq ≈ 2 log

(
2

�̄q

)
+ log(16ε̄
) + 2

√
1 + ε̄


− 2 log(1 +
√

1 + ε̄
) − 4. (35)

Solving for �q yields

�(0)
q ≡ �q(T = 0, Vq = 0)

≈ 8
√

εFqε


1 + √
1 + ε
/εFq

exp

(
1

vπqDq(0)
+

√
1 + ε


εFq
− 2

)
.

(36)

It should be stressed that this expression was obtained by
going beyond the usual (zeroth-order) “weak-coupling ap-
proximation” according to which the density of single-particle
states Dq(ε) is taken outside the integral and evaluated at the
Fermi level. Even though this provides a good approximation
in the case of conventional Bardeen-Cooper-Schrieffer (BCS)
superconductivity [41], it is less accurate in the nuclear con-
text, especially at low densities, because essentially all states
lying below the cutoff are involved in the pairing mechanism.

We will now follow the same line of reasoning as in
Ref. [40] to estimate the critical temperature T (0)

cq at which the
pairing gap vanishes, i.e., �q(T = T (0)

cq , Vq = 0) = 0. In this
case, the gap Eq. (32) assuming μq ≈ εFq reduces to

1 = −1

2
vπ qDq(0)Jq, (37)

with

Jq ≡
∫ ε̄
/2T̄ (0)

cq

−1/2T̄ (0)
cq

du
tanh |u|

|u|
√

1 + 2uT̄ (0)
cq . (38)

Expanding the square root in the integrand in powers of T̄ (0)
cq

leads to

Jq =
+∞∑
r=0

(2r)!

(1 − 2r)(r!)2

(
− T̄ (0)

cq

2

)r ∫ ε̄
/2T̄cq

−1/2T̄cq

du
ur

|u| tanh |u|.

(39)

The integral Jq is generally evaluated by keeping only the first
term. Using the approximation∫ y

0
du

tanh u

u
≈ log

(
4y

π

)
+ γ , (40)
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for y � 1 (γ � 0.57722 being the Euler-Mascheroni con-
stant), we find

Jq ≈
∫ ε̄
/2T̄ (0)

cq

−1/2T̄ (0)
cq

du
tanh |u|

|u| ≈ log

[
4ε̄


(T̄ (0)
cq π )2

]
+ 2γ . (41)

It is not difficult to evaluate the higher-order coefficients.
Calculating the integrals, keeping as before the leading terms,
and summing all coefficients yields

Jq = 2γ + log

[
4εFqε


(kBT (0)
cq π )2

]

+ 2
√

1 + ε


εFq
− 4 + log 16 − 2 log

(
1 +

√
1 + ε


εFq

)
.

(42)

Substituting Eq. (42) in Eq. (37) and solving for T (0)
cq leads to

the familiar scaling relation

kBT (0)
cq

�
(0)
q

= exp(γ )

π
� 0.56693. (43)

Note that this relation was historically obtained in the crud-
est version of the weak-coupling approximation according to
which the density of single-particle states is taken as a con-
stant in the integral, i.e., only the first term r = 0 is retained
while all higher-order terms for r � 1 are dropped [41]. We
have thus shown that the validity of Eq. (43) is more general
and extends well beyond the first term r = 0, in fact it holds
to all terms.

B. Critical velocities

Substituting Eq. (33) into (27), the equation for �q can be
alternatively written as

Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)]

− Iq[μq(T, Vq); �q(T, Vq)]

=
∫ μ̄q+ε̄


0

dx

E(q)
x

{
log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)

× sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]
T̄q

2V̄q
− √

x

}
. (44)

If the superfluid velocity is small enough such that
E(q)

x > 2V̄q
√

x for all x between 0 and μ̄q + ε̄
, then the
argument of the logarithm in the right-hand side of Eq. (44)
is approximately given by

cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)

≈ exp

(
2V̄q

T̄q

√
x

)
(45)

at low temperatures T̄q 	 1. Taking the limit T = 0 of
Eq. (44) thus leads to

Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)]

= Iq[μq(T = 0, Vq ); �q(T = 0, Vq)]. (46)

Similarly, at T = 0 Eq. (28) reduces to

4

3
=

∫ +∞

0
dx

√
x

(
1 − x − μ̄q

E(q)
x

)
. (47)

This shows that μq(T = 0, Vq) depends implicitly on
Vq through �q(T = 0, Vq ) contained in E(q)

x . As a con-
sequence, both μq(T = 0, Vq) = μq(T = 0, Vq = 0) and
�q(T = 0, Vq ) = �q(T = 0, Vq = 0) are independent of the
superflows. This conclusion, however, does not hold for ar-
bitrarily large superfluid velocity Vq. Indeed, the integral
on the right-hand side of Eq. (44) no longer vanishes if
E(q)

x � 2V̄q
√

x for some x.
Let us examine the behavior of E(q)

x − 2V̄q
√

x. For this
quantity to be negative, we must have

(x − μ̄q)2 − 4V̄ 2
q x + �̄2

q � 0. (48)

It can be easily shown that this condition is fulfilled if x lies
between x− and x+ defined by

x± = μ̄q + 2V̄ 2
q ± 2

√
μ̄qV̄ 2

q + V̄ 4
q − 1

4 �̄2
q, (49)

provided 4μ̄qV̄ 2
q + 4V̄ 4

q − �̄2
q � 0. For this inequality to

hold, the effective superfluid velocity must exceed some criti-
cal value VLq given by

V̄Lq ≡

√√√√ μ̄q

2

(√
1 +

(
�̄q

μ̄q

)2

− 1

)
(50)

recalling that both μ̄q and �̄q are independent of Vq for
Vq � VLq. Let us remark that E(q)

x − 2V̄q
√

x is nothing but
the lowest value of the quasiparticle energy (18) in units of
the Fermi energy, obtained for the wave vector k antiparallel
to VqVqVq. When Vq < VLq, E(q)

x − 2V̄q
√

x hence also E(q)
k remain

always strictly positive, i.e., there exists a gap in the quasipar-
ticle energy spectrum. This is no longer the case for Vq = VLq.
In other words, this velocity corresponds to the vanishing of
the quasiparticle gap even though �q remains finite.

The velocity VLq coincides with Landau’s critical velocity,
here derived for the case of strongly interacting nuclear super-
fluid mixtures. Indeed, Eq. (50) can be alternatively obtained
using Landau’s criterion according to which the critical ve-
locity is determined by the minimum of E(q)

k /h̄k, where the
quasiparticle energy E(q)

k is here evaluated for the superfluids
at rest in the normal frame. However, it should be stressed that
Landau’s criterion applies here to the effective rather than the
true superfluid velocities. Due to mutual entrainment effects
between neutrons and protons, VLq will generally depend on
both V p and V n. The expression (50) also generalizes that
obtained earlier in the context of cold atoms for a single super-
fluid within the BCS theory using a much simpler Hamiltonian
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including only a kinetic term [42]. In the weak-coupling ap-
proximation μ̄q ≈ 1 and �̄q 	 1, VLq reduces to lowest order
to

VLq ≈ �q(T = 0, Vq = 0)

h̄kFq
= �(0)

q

h̄kFq
. (51)

In the limit of a single constituent, this expression coincides
with the well-known expression from the BCS theory of elec-
tron superconductivity [21,43] recalling that VqVqVq = V q in this
case [20]. Our analysis shows that the same expression still
holds for mixtures but in terms of the effective superfluid
velocities.

Let us assume that Vq � VLq. At low temperatures T̄q 	 1,
the argument of the logarithm in the right-hand side of
Eq. (44) is now approximately given by

cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)
≈ exp

(
E(q)

x

T̄q

)
,

(52)

if E(q)
x � 2V̄q

√
x (i.e., for x values between x− and x+). Taking

the limit T = 0, Eq. (44) becomes3

Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)]

− Iq[μq(T, Vq); �q(T, Vq)]

=
∫ x+

x−

dx

E(q)
x

(
E(q)

x

2V̄q
− √

x

)

= x+ − x−
2V̄q

−
∫ x+

x−
dx

√
x

(x − μ̄q)2 + �̄2
q

. (53)

Using the definition (34), this equation can be equivalently
written as

Iq

[
μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)

]
= x+ − x−

2V̄q
+

∫ x−

0
dx

√
x

(x − μ̄q)2 + �̄2
q

+
∫ μ̄q+ε̄


x+
dx

√
x

(x − μ̄q)2 + �̄2
q

. (54)

This equation admits nontrivial solutions �q 
= 0 even
though Vq > VLq. However, �q is no longer indepen-
dent of the superflow but decreases with increasing Vq.
Superfluidity thus disappears at some critical velocity
V (0)

cq > VLq such that 	q(T = 0, Vq = V (0)
cq ) = 0 therefore

�q(T = 0, Vq = V (0)
cq ) = 0 in view of Eq. (17). To estimate

this velocity let us set �̄q = 0 and μ̄q = 1. The roots x±
reduce to 1 + 2V̄ 2

q ± 2V̄q

√
1 + V̄ 2

q . Assuming x+ < 1 + ε̄


3Let us recall that the contribution to the right-hand side of Eq. (44)
from x values outside the [x−; x+] interval has been shown to vanish
identically.

and integrating, we find

Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)]

= 2
√

1 + V̄ 2
q +

∫ x−

0
dx

√
x

1 − x
+

∫ 1+ε̄


x+
dx

√
x

x − 1

= 2
√

1 + V̄ 2
q − 2

√
x− + 2 arctanh

√
x−

+ 2(
√

1 + ε̄
 − √
x+)

+ 2(arcoth
√

x+ − arcoth
√

1 + ε̄
). (55)

Expanding the right-hand side to lowest order in V̄q 	 1, we
obtain

Iq[μq(T = 0, Vq = 0); �q(T = 0, Vq = 0)]

≈ 2(
√

1 + ε̄
 − 1 − arcoth
√

1 + ε̄
 + log 2 − log V̄q).

(56)

Substituting Eq. (35) and solving for V̄q yields

V̄ (0)
cq ≈ e

4
�̄q(T = 0, Vq = 0), (57)

or equivalently

V (0)
cq ≈ e

2

�q(T = 0, Vq = 0)

h̄kFq
= e

2
VLq ≈ 1.35914VLq, (58)

where e ≈ 2.71828 is Euler’s number and we have made use
of Eq. (51). In the limit of a single constituent, this expression
coincides with Eq. (30) of Ref. [21] obtained in the context of
conventional BCS electron superconductivity. However, the
present derivation shows that this result is quite general and
remains valid (i) for a more general class of single-particle
Hamiltonians hq(r) including not only a kinetic term but in-
volving also a scalar potential Uq as well as a vector potential
Iq and (ii) for mixtures provided V (0)

cq are understood as effec-
tive superfluid velocities.

In the absence of superflows, the quasiparticle en-
ergy spectrum at zero temperature exhibits a gap given
by �(0)

q , as can be seen from Eq. (18). With increasing
effective superfluid velocity Vq, the gap shrinks as previ-
ously discussed and vanishes for Vq = VLq, recalling that
�q(T = 0, Vq �VLq) = �(0)

q remains unchanged. At still
higher effective superfluid velocities Vq > VLq and Vq < V (0)

cq ,

the quasiparticle energies E(q)
k thus form a continuum with-

out any gap even though the order parameter therefore
�q(T = 0, Vq) itself does not vanish: The superfluid phase
is gapless. Landau’s criterion implies the existence of quasi-
particle excitations for Vq > VLq even at T = 0. Indeed, the
quasiparticle distribution at any temperature T is given by [24]

f (q)
k = [

1 + exp
(
βE(q)

k

)]−1 = 1

2

[
1 − tanh

(
β

2
E(q)

k

)]
. (59)

At T = 0, we thus have f (q)
k = 0 for any k if Vq < VLq (since

E(q)
k > 0). If Vq > VLq, then f (q)

k = 1 for some k for which
E(q)

k < 0. Recalling that the entropy density within the HFB
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approach is given by (see, e.g., Ref. [24])

sq = −2kB

V

∑
k

[
f (q)
k log f (q)

k + (
1 − f (q)

k

)
log

(
1 − f (q)

k

)]
,

(60)

where kB denotes Boltzmann’s constant, the third law of
thermodynamics requiring sq to vanish thus remains fulfilled
despite the presence of quasiparticle excitations. The gapless
phase only exists for effective superfluid velocities Vq � VLq

and Vq < V (0)
cq .

The critical effective superfluid velocity above which su-
perfluidity is destroyed at any given temperature is well fitted
by the following expression [20]:

Vcq
(
T � T (0)

cq

) � V (0)
cq

√√√√1 −
(

T

T (0)
cq

)2.508

. (61)

The error decreases with increasing density, the maximum
relative error is attained at the crust-core boundary but does
not exceed 0.95%. The modulus of the order parameter can be
represented by the following analytical expression [20]:∣∣	q

(
T = 0, VLq < Vq � V (0)

cq

)∣∣
|	q(T = 0, Vq = 0)|

= �q
(
T = 0, VLq < Vq � V (0)

cq

)
�

(0)
q

= 0.5081

√
1 − Vq

V (0)
cq

⎛⎝3.312
Vq

V (0)
cq

− 3.811

√
V (0)

cq

Vq
+ 5.842

⎞⎠.

(62)

The maximum relative error amounts to 0.13%.

C. Density of quasiparticle states

The different superfluid regimes can be directly seen by
calculating the density of quasiparticle states per spin defined
by

Dq
(E,�q(T, Vq)

) =
∫

d3k
(2π )3

δ
(E − E(q)

k

)
. (63)

At low temperatures T̄q 	 1 and since V̄q 	 1, we can make
use of Landau’s approximations (see Section 2.5 of Ref. [20]
for more details). Substituting Eq. (18) in Eq. (63), the den-
sity of quasiparticle states can thus be approximated by the
following integral

Dq(E,�q(T, Vq)) ≈ Dq(0)
∫ 1

−1
dη

E − h̄kFqVqη√
(E − h̄kFqVqη)2 − �2

q

× H (E − h̄kFqVqη − �q), (64)

FIG. 1. Density of quasiparticle states Dq(E, �q(T = 0, Vq )) at
zero temperature (normalized by D (q)

N (0)) for different effective su-
perfluid velocities up to Landau’s velocity VLq. The red-dashed line
corresponds to the BCS case, for which no quasiparticle state exists
for energies E � �(0)

q . The presence of a nonvanishing effective
superfluid velocity Vq reduces the value of the gap which disappears
at VLq. See text for details.

where H denotes the Heaviside distribution. Carrying out the
integration yields

Dq(E,�q(T, Vq))

= D (q)
N (0)

2h̄kFqVq
H (E + h̄kFqVq − �q)

[√
(E + h̄kFqVq)2 − �2

q

− H (E − h̄kFqVq − �q)
√

(E − h̄kFqVq)2 − �2
q

]
,

(65)

where we have introduced the density of quasiparticle states
in the normal phase

D (q)
N (0) ≡ 2Dq(0) = kFqm⊕

q

π2h̄2 . (66)

In the absence of superflows, the previous expression re-
duces to

D (BCS)
q (E,�q(T, Vq = 0))

= D (q)
N (0)E√E2 − �q(T, Vq = 0)2

H (E − �q(T, Vq = 0)). (67)

This expression generalizes the well-known BCS result for
a conventional superconductor to a superfluid mixture. The
density of quasiparticle states is then identically zero for
quasiparticles energies E � �q(T, Vq = 0), thus reflecting
the existence of a gap in the quasiparticle energy spectrum
whenever �q 
= 0 and Vq = 0. However, as shown in Fig. 1,
the gap is progressively filled with quasiparticle states as the
effective superfluid velocity Vq is increased and disappears
when Vq = VLq while �q remains unchanged. With further
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FIG. 2. Same as Fig. 1 for effective superfluid velocities ranging
from Landau’s velocity VLq to the critical velocity V (0)

cq = (e/2)VLq.
For Vq > VLq, quasiparticle states with negative energies E appear.
The superfluid is gapless although the order parameter �q remains
finite.

increase of Vq, �q decreases and eventually vanishes at the
critical velocity Vq = V (0)

cq while quasiparticle states with neg-
ative energies appear, as can be seen in Fig. 2.

D. Specific heat

The disappearance of the gap in the quasiparticle energy
spectrum is expected to have a very strong impact on thermal
properties, such as the specific heat. Using the expression

(60) for the entropy density and (59) for the quasiparticle
distribution functions, the specific heat can be expressed as

c(q)
V = T

∂sq

∂T
= kB

2
β2

∫
d3k

(2π )3

(
E(q)2

k + βE(q)
k

∂E(q)
k

∂β

)

× sech2

(
β

2
E(q)

k

)
. (68)

At low temperatures β�(0)
q � 1, the term involving the partial

derivative ∂E(q)
k /∂β can be neglected. Introducing the density

of quasiparticles states and changing variables, the specific
heat can thus be written as

c(q)
V ≈ kB

2β

∫ +∞

−∞
dx Dq

(
x

β
,�q

)
x2sech2

(
x

2

)
. (69)

1. Normal phase

In the normal phase, nucleons obviously remain at rest
in the normal fluid frame; therefore we must have Vq = 0.
Setting �q = 0 in Eq. (67) and substituting in Eq. (69) leads
to the classical result (see, e.g., Ref. [44] in the context of
metals)

c(q)
N

(
T (0)

cq < T 	 TFq
) ≈ π2

3
D (q)

N (0)k2
BT = 1

3

kFqm⊕
q

h̄2 k2
BT .

(70)

2. Superfluid phase: General case

Substituting Eq. (65) in Eq. (69) yields the general expres-
sion of the specific heat in the superfluid phase for arbitrary
effective superfluid velocities:

c(q)
V

(
T 	 T (0)

cq , Vq
) ≈ kBD (q)

N (0)

4h̄kFqβVq

∫ +∞

β(�q−h̄kFqVq )
dx

√(
x

β
+ h̄kFqVq

)2

− �2
q x2sech2

(
x

2

)

− kBD (q)
N (0)

4h̄kFqβVq

∫ +∞

β(�q+h̄kFqVq )
dx

√(
x

β
− h̄kFqVq

)2

− �2
q x2sech2

(
x

2

)

≈ 3

4π2
c(q)

N

VLq

Vq

∫ +∞

−δ−
q

dx

√√√√(
eγ

π

T

T (0)
cq

x + Vq

VLq

)2

−
(

�q

�
(0)
q

)2

x2sech2

(
x

2

)

− 3

4π2
c(q)

N

VLq

Vq

∫ +∞

δ+
q

dx

√√√√(
eγ

π

T

T (0)
cq

x − Vq

VLq

)2

−
(

�q

�
(0)
q

)2

x2sech2

(
x

2

)
, (71)

where the lower bounds of the integrals are defined by

δ±
q = β(h̄kFqVq ± �q) = π

eγ

T (0)
cq

T

(
Vq

VLq
± �q

�
(0)
q

)
. (72)

This shows that the ratio c(q)
V /c(q)

N is a universal function of
T/T (0)

cq , Vq/VLq, and �q/�
(0)
q . Explicit analytical expressions

will be derived in the next subsections.

3. Superfluid phase: BCS limit Vq = 0

In the superfluid phase and in the absence of superflows,
the specific heat can be easily calculated from Eq. (69) using

Eq. (67) leading to:

c(q)
V

(
T 	 T (0)

cq , Vq = 0
)

≈ 3
√

2

π3/2

(
T (0)

cq

T

π

eγ

)5/2

exp

(
−T (0)

cq

T

π

eγ

)
c(q)

N (T ). (73)

The exponential suppression of the specific heat at low tem-
peratures is a well-known prediction of the BCS theory (see,
e.g., Ref. [44]) and is a direct consequence of the existence of
a gap in the quasiparticle energy spectrum, energies E��(0)

q
being forbidden. Numerical interpolations over the whole
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range of temperatures (including the normal phase) can be
found in Ref. [45].

4. Superfluid phase: Subcritical regime 0 � Vq < VLq

Let us now consider the more general situation of sta-
tionary mixtures in presence of superflows in the subcritical
regime, i.e., with effective superfluid velocities below Lan-
dau’s critical velocity. In this case, we notice that δ+

q > 0
and δ−

q < 0. For sufficiently low temperatures T 	 T (0)
cq , we

have |δ±
q | � 1 so that both integrals in Eq. (71) become

vanishingly small. Substituting sech2(x/2) ≈ 4 exp(−x) in
Eq. (71), using the approximation �q ≈ �(0)

q (see the dis-
cussion in Sec. III B), and expanding the square roots around
x = |δ±

q | as√√√√(
eγ

π

T

T (0)
cq

x ± Vq

VLq

)2

− 1 ≈
√

2

√
eγ

π

T

T (0)
cq

x ± Vq

VLq
− 1,

(74)

the resulting integrals can then be evaluated analytically. After
some simplifications, the specific heat is finally approximately
given by

c(q)
V /c(q)

N ≈ 3

4
√

2

(
T (0)

cq

eγ T

)3/2
VLq

Vq
exp

[
− π

eγ

T (0)
cq

T

(
1 + Vq

VLq

)]

×
{

exp

(
2π

eγ

Vq

VLq

T (0)
cq

T

)[
15

(
eγ

π

T

T (0)
cq

)2

+ 12eγ

π

T

T (0)
cq

(
1 − Vq

VLq

)
+ 4

(
1 − Vq

VLq

)2
]

−
[

15

(
eγ

π

T

T (0)
cq

)2

+ 12eγ

π

T

T (0)
cq

(
1 + Vq

VLq

)
+ 4

(
1 + Vq

VLq

)2
]}

. (75)

In the limit Vq = 0, it can be shown that this expression
reduces to Eq. (73). For Vq > 0, the specific heat is still
exponentially suppressed as in the BCS case compared to
the normal phase; however, the reduction becomes less pro-
nounced with increasing effective superfluid velocity Vq, as
can be seen in Fig. 3. The relative deviation between Eq. (75)
and Eq. (69) does not exceed 2.5% for effective superfluid ve-
locities Vq < 0.9VLq and T � 0.1T (0)

cq [see Fig. 4(a)] but can
reach higher values for velocities closer to Landau’s critical
velocity [see Fig. 4(b)]. The low-temperature behavior of the
specific heat changes drastically at the onset of the gapless
phase. The explicit temperature dependence will be derived in
the next subsection.

FIG. 3. Low-temperature specific heat (69) in subcritical regime
[normalized by the specific heat in the normal phase (70)] as a
function of the reduced temperature T/T (0)

cq .

5. Superfluid phase: Onset of gapless regime Vq = VLq

The specific heat is amenable to an analytical approxima-
tion when the effective superfluid velocity is equal to Landau’s
critical velocity. Setting Vq = VLq = �(0)

q /h̄kFq, along with
�q = �(0)

q , in Eqs. (71) and (72) leads to

c(q)
V /c(q)

N ≈ 3

4π2

∫ +∞

0
dx x2sech2

( x

2

)√√√√(
eγ

π

T

T (0)
cq

x + 1

)2

− 1

− 3

4π2

∫ +∞

2πT (0)
cq /(Teγ )

dx x2sech2
( x

2

)

×

√√√√(
eγ

π

T

T (0)
cq

x − 1

)2

− 1. (76)

In the low-temperature limit T 	 T (0)
cq of interest here, the

lower bound of the second integral tends to infinity while the
associated integrand vanishes exponentially for high values
of x so the contribution of this term to the specific heat
can be safely ignored. As for the first integral, we expand
the first term inside the square root up to the first order in
eγ T x/(πT (0)

cq ):

c(q)
V /c(q)

N ≈ 3

4π2

√
2eγ

π

T

T (0)
cq

∫ +∞

0
dx x5/2sech2

( x

2

)
. (77)

The integral over x can be performed analytically and is given
by (4 − √

2)�(7/2)ζ (5/2) [�(z) and ζ (z) denote the Euler
gamma function and the Riemann zeta function, respectively].
The specific heat in the superfluid phase at Landau’s critical
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velocity is finally given by

c(q)
V (T 	 T (0)

cq , VLq) = 3

2π2

√
eγ

π
(2

√
2 − 1)�

(
7

2

)
ζ

(
5

2

)

×
√

T

T (0)
cq

c(q)
N (T )

≈ 0.933

√
T

T (0)
cq

c(q)
N (T ). (78)

The maximum relative deviations between this approximation
and (69) increase linearly with the temperature and do not ex-

ceed 5%, for temperatures T � 0.1T (0)
cq . The low-temperature

behavior of the specific heat is very different from the standard
BCS case (73) and is only moderately reduced compared to
that in the normal phase (70), as can be seen in Fig. 3. This
is a direct consequence of the gapless superfluidity: The pre-
viously forbidden quasiparticle energy gap is now populated
thus increasing the available degrees of freedom to store heat.

6. Superfluid phase: Gapless regime VLq < Vq � V (0)
cq

For effective superfluid velocities larger than VLq, �q no
longer remains constant but decreases with increasing Vq and
vanishes at the critical velocity V (0)

cq . The specific heat (71)
can be equivalently written as

c(q)
V /c(q)

N ≈ 3

4π2

∫ +∞

−δ−
q

dx

√√√√(
eγ

π

T

T (0)
cq

VLq

Vq
x + 1

)2

−
(

�q

�
(0)
q

VLq

Vq

)2

x2sech2
( x

2

)

− 3

4π2

∫ +∞

δ+
q

dx

√√√√(
eγ

π

T

T (0)
cq

VLq

Vq
x − 1

)2

−
(

�q

�
(0)
q

VLq

Vq

)2

x2sech2
( x

2

)
. (79)

For sufficiently low temperatures, the contribution of the second integral can be ignored since the lower bound δ+
q in the second

integral tends to infinity while its integrand vanishes exponentially. As for the first integral, the square root in the integrand is
expanded up to the first order in eγ T VLq/πVqT (0)

cq

√√√√(
eγ

π

T

T (0)
cq

VLq

Vq
x + 1

)2

−
(

�q

�
(0)
q

VLq

Vq

)2

≈

√√√√1 −
(

�q

�
(0)
q

VLq

Vq

)2

+ eγ

π

VLq

Vq

T

T (0)
cq

x

⎡⎣1 −
(

�q

�
(0)
q

VLq

Vq

)2
⎤⎦−1/2

. (80)

With this, the specific heat reduces to

c(q)
V /c(q)

N ≈ 3

4π2

√√√√1 −
(

�q

�
(0)
q

VLq

Vq

)2 ∫ +∞

−δ−
q

dx x2sech2
( x

2

)
+ 3eγ

4π3

VLq

Vq

T

T (0)
cq

⎡⎣1 −
(

�q

�
(0)
q

VLq

Vq

)2
⎤⎦−1/2 ∫ +∞

−δ−
q

dx x3sech2
( x

2

)
.

(81)

Note that this expansion requires Vq > VLq. Both integrals can be performed analytically and read

∫ +∞

−δ−
q

dx x2sech2
( x

2

)
= 2

{
2π2

3
+ (δ−

q )2

[
tanh

(
δ−

q

2

)
− 1

]
+ 4

[
Li2

(−e−δ−
q
) − δ−

q log
(
1 + e−δ−

q
)]}

, (82)

∫ +∞

−δ−
q

dx x3sech2
( x

2

)
= −24

[
δ−

q Li2
( − e−δ−

q
) + Li3(−e−δ−

q )
] − 2(δ−

q )2

{
δ−

q

[
tanh

(
δ−

q

2

)
− 1

]
− 6 log

(
1 + e−δ−

q
)}

, (83)

where we have introduced the the polylogarithm of order n:

Lin(x) = x

�(n)

∫ +∞

0

un−1

eu − x
du, (84)
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The specific heat is thus given by

c(q)
V /c(q)

N ≈

√√√√1 −
(

�q

�
(0)
q

VLq

Vq

)2{
1 + 3

2π2
(δ−

q )2

[
tanh

(
δ−

q

2

)
− 1

]

+ 6

π2

[
Li2(−e−δ−

q ) − δ−
q log(1 + e−δ−

q )
]}

− VLq

Vq

T

T (0)
cq

⎡⎣1 −
(

�q

�
(0)
q

VLq

Vq

)2
⎤⎦−1/2{

18eγ

π3

[
δ−

q Li2(−e−δ−
q ) + Li3

( − e−δ−
q
)]

+ 3eγ

2π3
(δ−

q )2

[
δ−

q

(
tanh

(
δ−

q

2

)
− 1

)
− 6 log(1 + e−δ−

q )

]}
. (85)

Considering δ−
q � 1 in the hyperbolic tangents and in the

(poly)logarithms, the specific heat can finally be approxi-
mated by

c(q)
V

(
T 	 T (0)

cq , Vq > VLq
) ≈

√√√√1 −
(

�q

�
(0)
q

VLq

Vq

)2

c(q)
N (T ).

(86)

This shows that the specific heat in the gapless regime is
comparable to that in the normal phase (see also Fig. 5)
while it is exponentially suppressed in the BCS regime. The
specific heat increases with increasing Vq as more and more
quasiparticle states appear in the previously forbidden region.
As expected, c(q)

V coincides with the specific heat in the nor-
mal phase whenever Vq � V (0)

cq since then �q = 0 and the
superfluidity is destroyed. The relative deviations between the
approximation (86) and Eq. (69) are plotted on Fig. 6. For a
given Vq, the relative deviation increases with the temperature
as expected from our assumption of T 	 T (0)

cq . For a given
temperature, the relative deviation increases as the effective
superfluid velocity approaches Landau’s velocity; this stems
from the fact that the expansion (80) becomes singular for
Vq = VLq. At this velocity, Eq. (86) yields c(q)

V = 0 indepen-
dently of the temperature (recalling �q ≈ �(0)

q for T 	 T (0)
cq ),

whereas setting Vq = VLq before the expansion leads to the
finite value (78).

IV. CONCLUSIONS

Pursuing our previous studies of nuclear superfluidity
within the TDHFB theory [18–20], we have further analyzed
the properties of neutron-proton superfluid mixtures.

We have demonstrated that the critical temperatures T (0)
cq

for the disappearance of the neutron and proton superfluid
phases in the absence of currents obey the BCS scaling re-
lation (43) even though the approximations introduced in the
original derivation by Bardeen, Cooper, and Schrieffer in their
theory of electron superconductivity [41] do not hold in the
nuclear context. As discussed in our previous studies, the
influence of the superflows on the pairing properties are nat-
urally expressed in terms of the effective superfluid velocities
Vq defined by Eq. (20) rather than the usual superfluid veloci-
ties (14). We have found that superfluidity at low temperatures

is not destroyed for effective superfluid velocities exceeding
Landau’s velocity VLq given by Eq. (51) but enters a regime
in which the energy spectrum of quasiparticle excitations ex-
hibits no gap while the order parameter 	q therefore also �q

FIG. 4. Relative deviation (in percents) between the specific heat
given by the “exact” expression (69) and the approximation (75) as
a function of temperature T/T (0)

cq for different effective superfluid
velocities Vq expressed in terms of Landau’s velocity VLq: (a) for
effective superfluid velocities Vq � 0.75VLq and (b) for effective
superfluid velocities close to Landau’s velocity. The deviation was
calculated as (exact-approximate)/exact.
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FIG. 5. Low-temperature specific heat in gapless regime (86)
[normalized by the specific heat in the normal phase (70)] as a
function of the reduced effective superfluid velocity Vq/V (0)

cq ranging
from 2/e � 0.73576 (i.e., Vq = VLq, onset of gapless regime) to 1
(i.e., Vq = V (0)

cq , disappearance of superfluidity).

remains finite provided Vq lies below the critical velocity V (0)
cq

given by Eq. (58).
We have explicitly studied the vanishing of the quasiparti-

cle energy gap with increasing effective superfluid velocities
by calculating the density of quasiparticle states. We have
shown that the existence of a gapless superfluid regime has a
very strong impact on the specific heat. Whereas c(q)

V is expo-
nentially suppressed in the BCS superfluid phase (compared
to the specific heat in the normal phase) at low temperatures
and effective superfluid velocities Vq < VLq, it is only mod-
erately reduced in the gapless regime VLq � Vq < V (0)

cq . The

dependence of c(q)
V on the effective superfluid velocity Vq is

universal when properly rescaled by the critical velocity V (0)
cq

FIG. 6. Relative deviation (in percents) between the specific heat
given by the “exact” expression (69) and the approximation (86) as
a function of temperature T/T (0)

cq for different effective superfluid
velocities Vq expressed in terms of Landau’s velocity VLq. The devi-
ation was calculated as (exact-approximate)/exact.

and is very well approximated by Eq. (75) in the subcriti-
cal regime, and by Eqs. (62) and (86) in the gapless phase.
The present results may have important implications for the
cooling of neutron stars, as will be discussed in a separate
paper [46].
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