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We investigate the weak decay of one-neutron halo nuclei into the proton-core continuum, i.e., β-delayed
proton emission from the halo nucleus using a cluster effective field theory for halo nuclei. On the one hand,
we calculate the direct decay into the continuum. On the other hand, we consider the case of resonant final state
interactions between the proton and the core. We present our formalism and discuss the application to the decay
of 11Be in detail. Moreover, we compare to recent experimental results for the branching ratio and resonance
parameters. As another example, we consider the case of 19C and predict the branching ratio for β-delayed
proton emission.
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I. INTRODUCTION

Halo nuclei are exotic nuclei showing a pronounced cluster
structure. They consist of a tightly bound core nucleus and a
few weakly bound valence nucleons. Halo nuclei thus exhibit
a reduction in the number of degrees of freedom since the
many-body nucleus can be described as an effective few-body
system and thereby a different and smaller set of parameters.
This transition to different degrees of freedom is signaled by
a separation of scales that is also apparent in observables. In
halo nuclei, the scales Rcore and Rhalo that denote the length
scales of the core and halo, respectively, are clearly separated
such that the ratio Rcore/Rhalo � 1 can be used as an expansion
parameter. One can then construct an effective field theory
(EFT) to calculate halo observables in a systematic expansion
in Rcore/Rhalo using only the new effective degrees of freedom
[1,2]. This EFT for halo nuclei is known as halo EFT and has
been applied successfully to many halo nuclei (see Refs. [3–5]
for recent reviews). This separation of scales also leads to
other universal features, such as the dependence of matrix ele-
ments on only a couple of few-body parameters. For example,
the one-neutron separation energy of an S-wave one-neutron
halo is directly related to the core-neutron scattering length.
Similar relations exist for other static properties, such as the
matter or charge radii, and reaction rates such as neutron
capture.

Another less obvious candidate for a halo physics-
dominated observable is the weak decay rate: One might
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expect that the decay rate of a one-neutron halo nucleus is
determined by the weakly bound neutron, provided the core
half-life is significantly larger than the neutron half-life. How-
ever, such decays can be dominated by transitions into deeply
bound states of the daughter nucleus since the total decay rate
depends on the available phase space, which is larger when
more energy is released. Nonetheless, one can still identify
the channel in which a proton is emitted into the continuum
as originating from the decay of the halo neutron. For 11Be
this decay channel was first studied theoretically in a clus-
ter model by Baye and Tursonov [6]. The first experimental
measurements of this rare decay were reported in Refs. [7–9].
The authors of Ref. [9] obtained a surprisingly large branching
ratio for this decay mode, which could only be explained in
their analysis if the decay proceeds through a new single-
particle resonance in 11B. Their branching ratio was more than
two orders of magnitude larger than the cluster model predic-
tion by Baye and Tursunov [6]. As a possible resolution of
this discrepancy, Pfützner and Riisager [10] suggested a dark
matter decay mode of the valence neutron [11] as the source
of the large branching fraction of β-delayed proton emission
from 11Be. Thus this rare decay of 11Be would provide a
possible avenue to detect a dark matter decay. However, a new
experiment by the same collaboration could not reproduce the
very large branching ratio bp and instead provided an upper
limit of bp < 2.2 × 10−6 [12] which is about a factor 4 smaller
than the original result.

Recently, Aayad et al. [13] remeasured the branching ratio
for β-delayed proton emission from 11Be and reported a result
similar to that given in Ref. [9]. In particular, they reported a
branching ratio of bp = (1.3 ± 0.3) × 10−5 and a low-lying
resonance with resonance energy ER = (196 ± 20) keV with
a width of �R = (12 ± 5) keV. Using halo EFT, we have
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shown that the extracted resonance parameters and decay rate
by Ayaad et al. are self-consistent [14]. Subsequently, Aayad
et al. also presented data from a new measurement supporting
the existence of a low-lying resonance with ER = (171 ±
20) keV and �R = (4.5 ± 1.1) keV in the 11B system [15].
Their resonance energy is consistent with a near-threshold
proton resonance in 11B which was observed in the reac-
tion 10Be(d, n) 11B∗ → 10Be +p in inverse kinematics [16]
and whose resonance energy was estimated to be ER =
(211 ± 40) keV.

A number of theoretical calculations has recently tried to
address the question of the possible existence of a resonance
in the proton-10Be system. All approaches that we are aware
of indeed found such evidence. A calculation in the shell
model embedded in the continuum [17] employed a phe-
nomenological shell model interaction and found evidence for
a 1/2+ resonance at approximately ER ≈ 142 keV, although
the large branching ratio into β− p was cast into doubt by a
combined study of the β− p and β−α decay channels [18].
Recently, Atkinson et al. [19] used the no-core shell model
in the continuum to calculate the phase shifts for 10Be-proton
scattering in channels of total angular momentum J and parity
� and well-defined total isospin T . Using a chiral effective
interaction, the authors adjusted their ab initio results to repro-
duce the 11B resonance position and calculated the branching
ratio of the decay into the continuum. Their calculation sug-
gests a definite isospin T = 1/2 for the 11B resonance. Finally,
a self-consistent Skyrme Hartree-Fock in the continuum also
found the near-threshold proton resonance in 11B [20].

One important feature of halo EFT is that observables are
parametrized in terms of a few observables. So although the
rates for β-delayed proton emission of different halo nuclei
can be very different, in first approximation they are gov-
erned by the same analytical expressions. Here, we focus on
these universal aspects of β-delayed proton emission in halo
nuclei. We give results for matrix elements in terms of the
few relevant parameters in this problem: the effective range
parameters in the initial and final state channels, the mass of
the halo nucleus, and the charge of the core nucleus. Due to the
large current interest, the main focus is on the application to
the β-delayed proton emission from 11Be. However, we also
consider the case of 19C as further example.

This paper is organized as follows. In Sec. II, we will set
up the halo EFT theoretical framework, which includes the
Lagrangian for the system under consideration, the renormal-
ization of the involved coupling constants, and a derivation
of the weak matrix elements that are needed. Finally, we end
with a summary.

II. HALO EFFECTIVE FIELD THEORY
AND WEAK DECAY

In the following, we use natural units with h̄ = c = 1. The
halo EFT Lagrangian L for a one-neutron-halo nucleus as
well as a low-lying resonance in the core-proton system up to
next-to-leading order can be written as L = L0 + Ld + . . .,
where the . . . indicate higher-order terms in the expansion
in Rcore/Rhalo. L0 is the free Lagrangian of the core, neutron,

and proton:

L0 = c†

(
i∂t + ∇2

2mc

)
c + n†

(
i∂t + ∇2

2mn

)
n

+ p†

(
i∂t + ∇2

2mp

)
p, (1)

where c, n, and p are the core, neutron, and proton fields,
respectively. For 11Be, the masses of core, neutron, and proton
are given by mc = 9327.548 MeV, mn = 939.565 MeV, and
mp = 938.272 MeV. For other 1n halos the core mass mc

has to be adjusted accordingly. The leading core-neutron and
core-proton interactions are S waves. They are given by

Ld = d†
n

[
η

(
i∂t + ∇2

2Mnc

)
+ �

]
dn

+ d†
p

[
η̃

(
i∂t + ∇2

2Mpc

)
+ �̃

]
dp

− g[c†n†dn + H.c.] − g̃[c† p†dp + H.c.], (2)

where Mnc = mn + mc and Mpc = mp + mc. Moreover, dn and
dp are dimer fields (with suppressed spin indices), which rep-
resent the JP = 1/2+ ground state of the 1n-halo nucleus and
the JP = 1/2+ low-lying resonance in the core-proton system,
respectively. The Lagrangian Ld contains all terms required
up to next-to-leading order (NLO) in the strong interaction
sector in the power counting in Rcore/Rhalo. Higher order con-
tributions in the two-body sector will be given by operators
with an increasing number of derivatives.

For completeness, the renormalization of the low-energy
constants of the S-wave nc system will be briefly summarized
(see, e.g., Ref. [21] for details). Due to the nonperturbative
nature of the interaction, we need to resum the nc self-energy
	nc(p0, p) to all orders in order to obtain the halo propagator

Dnc(p0, p) =
[
� + η

(
p0 − p2

2Mnc
+ iε

)
− 	nc(p0, p)

]−1

.

(3)

The nc self-energy, evaluated in the power-divergence sub-
traction scheme, is given by

	nc(p0, p) = −g2mR

2π

⎡
⎣i

√
2mR

(
p0 − p2

2Mnc

)
+ μ

⎤
⎦, (4)

where μ is the regularization scale and mR denotes the re-
duced mass. The T matrix is then given by T (E ) = g2D(E , 0)
and the low-energy constants appearing in Eq. (2) can be
eliminated in favor of the coefficients of the effective range
expansion. We then obtain the full two-body T matrix in the
center of mass of the neutron-core system

Tnc(E ) = 2π

mR

[
1

a0
− r0mRE −

√
−2mRE − iε

]−1

, (5)

where a0 and r0 are the S-wave core-neutron scattering length
and effective range, respectively. This expression holds to
NLO in the power counting in Rcore/Rhalo. The corresponding
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leading order (LO) result can be obtained by setting r0 = 0.1

The residue Z of Eq. (5) at the bound state pole is required to
calculate physical observables:

Z = 2πγ0

m2
R(1 − r0γ0)

(6)

with γ0 = (1 − √
1 − 2r0/a0)/r0 ≡ √

2mRSn the binding mo-
mentum of the S-wave halo state, and Sn the one-neutron
separation energy of the halo nucleus.

The amplitudes for β decay are obtained through calcula-
tion of matrix elements of the electroweak current operator.
We include the weak interaction current through the standard
product of leptonic and hadronic currents

Lweak = − GF√
2

lμ
−((J+

μ )1b + (J+
μ )2b), (7)

where lμ
− = ūeγ

μ(1 − γ 5)vν̄ and (J+
μ )1b = (V 1

μ − A1
μ) +

i(V 2
μ − A2

μ) denote the leptonic and hadronic one-body
currents, respectively. The hadronic current in halo EFT
has one- and two-body contributions. At leading order,
the contributions to the hadronic one-body current are
V a

0 = N† τ a

2 N (Fermi decay), Aa
k = gAN† τ a

2 σkN (Gamow-
Teller decay), where gA 	 1.27 denotes the axial-vector
coupling constant [22]. Terms with more derivatives
will appear at higher orders. When we include resonant
core-proton final state interactions, we have to take into
account a two-body current with known coupling constants
which arises from gauging the time derivative of the dimer
fields appearing in Eq. (2). It also decomposes into vector and
axial-vector contributions and reads

(J+
μ )2b =

{−d†
p dn μ = 0,

gA d†
p σk dn μ = k = 1, 2, 3.

(8)

Our EFT approach also predicts also a two-body current
with unknown contribution that is denoted as L1A. It usually
appears at the same order as the two-body current above.
However, in the case with Coulomb interaction, this piece
is suppressed by (Rcore/Rhalo)1/2 compared to the two-body
current in Eq. (8).2 Therefore, it contributes only at NNLO
allowing us to make predictions up to NLO. Note that our
power counting including resonant final state interactions im-
plies a suppression of (Rcore/Rhalo)1/2 going from order to
order instead of Rcore/Rhalo as in the case without resonant
final state interactions.

A. Weak matrix element and decay rate

The decay rate for the decay of the 1n-halo nucleus into the
final particles given by core, proton, electron, and antineutrino

1For convenience, we do not treat the range r0 in strict perturbation
theory and keep it in the denominator of Eq. (5).

2The scaling of rC
0 ∼ 1/kC [23,24] leads to the suppression of the

counterterm contribution L1A.

expressed via the matrix element M reads

�p =
∫

d3 pc

(2π )3

∫
d3 pp

(2π )3

∫
d3 pe

(2π )3(2Ee)

×
∫

d3 pν̄

(2π )3(2Eν̄ )
|M(pc, pp, pe, pν̄ )|2

× (2π )4δ(Sn − �m + Ec + Ep + Ee + Eν̄ )

× δ3(pc + pp + pe + pν̄ ), (9)

where �m = 1.29 MeV is the mass difference between neu-
tron and proton. Here, Ee = √

m2
e + p2

e is the relativistic
on-shell energy of the electron with me = 0.511 MeV de-
noting the electron mass, Eν̄ = |pν̄ | is the relativistic energy
of the antineutrino (assumed to be massless), Ec = p2

c/(2mc)
and Ep = p2

p/(2mp) are the nonrelativistic kinetic energies
of the core and proton, respectively. Furthermore, pi with
i ∈ {c, p, e, ν̄} is the momentum of the corresponding parti-
cle. |M|2(pc, pp, pe, pν̄ ) denotes the squared matrix element
summed over final spins and averaged over initial spins.
Changing variables, we substitute the coordinates pc and pp

by the relative momentum prel ≡ p and the total momentum
ptot of the core-proton system. Moreover, we neglect recoil
effects in the energy-conserving δ distribution and then use
the momentum-conserving δ distribution to find

�p =
∫

d3 p

(2π )3

∫
d3 pe

(2π )3(2Ee)

×
∫

d3 pν̄

(2π )3(2Eν̄ )
|M(p,−(pe + pν̄ ), pe, pν̄ )|2

× (2π )δ

(
Sn − �m + p2

2mR
+ Ee + Eν̄

)
. (10)

We define the four-dimensional vector σ̃μ consisting of 2 × 2
matrices for each component,

σ̃μ =
{
12×2 μ = 0,

−gA σk μ = k = 1, 2, 3,
(11)

and divide the squared matrix element into a purely leptonic
and hadronic part. Separating the contribution of the nucleon
spin operators, G2

F /2Tr(σ̃μσ̃ †
ν ), from the hadronic part we

obtain

|M|2 =
∑
μ,ν

∑
lept.spins

∣∣Mμ,ν

lept.(pe, pν̄ )
∣∣2

(
G2

F

2
Tr(σ̃μσ̃ †

ν )

)

× 1

2J + 1
|A(p,−(pe + pν̄ ))|2, (12)

where J = 1/2 denotes the total spin of the S-wave halo nu-
cleus. Further, |Mμ,ν

lept.(pe, pν̄ )|2 and |A(p,−(pe + pν̄ ))|2 de-
note the leptonic and hadronic part, respectively. Note that we
have already set ptot = −(pe + pν̄ ). The leptonic part reads∑

lept.spins

∣∣Mμ,ν

lept.(pe, pν̄ )
∣∣2

=
∑

lept.spins

(ūeγ
μ(1 − γ 5)vν̄ )(ūeγ

μ(1 − γ 5)vν̄ )† (13)

= 8
(
Pμ

e Pν
ν̄ + Pν

e Pμ
ν̄ − gμν (Pe · Pν̄ )

)
, (14)
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where Pα with α ∈ {e, ν̄} is the four-momentum of the
corresponding particle as indicated by its subscript.
Evaluating the trace over spin operators leads to

G2
F

2
Tr(σ̃μσ̃ †

ν )

=

⎧⎪⎪⎨
⎪⎪⎩

G2
F μ = ν = 0,

G2
F g2

Aδkl μ = k, ν = l with k, l ∈ {1, 2, 3},
0 otherwise.

(15)

From Eq. (15), we conclude that we have a nonvanishing
contribution either for μ = ν = 0 or for μ = k and ν = l .
The first case implies no spin-flip during the decay of the
neutron into proton while the latter implies a spin-flip during
that transition. The first contribution corresponds to the Fermi
and the latter to the Gamow-Teller transition. Note that there
is no interference term. Using Eqs. (14) and (15), we find

|M|2 = 4G2
F

(√
p2

e + m2
e |pν̄ |

(
1 + 3g2

A

) + pe · pν̄

(
1 − g2

A

))
× |A(p,−(pe + pν̄ ))|2. (16)

In order to take into account electromagnetic interactions of
the emitted electron with the remaining charged particles, we
multiply Eq. (16) with the Sommerfeld factor of the electron
given by

C2(ηe) = 2πηe

(e2πηe − 1)
, (17)

where ηe = αZZeEe/|pe| with α = 1/137 the fine structure
constant. We use Z = Zp in order to ensure that we reproduce
the free neutron decay width in the limit of a vanishing
one-neutron separation energy of the 1n-halo nucleus. This
means that the electron is only interacting with the outgoing
proton. We assume this to be a good approximation since the
core is far away from the decaying valence neutron due to the
small one-neutron separation energy. The error introduced
by this approximation is of higher order (see Ref. [14] for an
explicit estimate). Therefore, Eq. (16) becomes

|M|2 = 4G2
F

(
Ee Eν̄

(
1 + 3g2

A

) + pe · pν̄

(
1 − g2

A

))
× |A(p,−(pe + pν̄ ))|2 C2(ηe). (18)

Substituting energies for momenta, integrating out the energy
conserving δ function and adjusting the integration momenta
accordingly, we then obtain for the decay rate3

�p = G2
F

16π5

∫ �m−Sn−me

0
dE

∫ �m−Sn−E

me

dEe

∫ 1

−1
d cos θ

×
∫ 1

−1
d cos θν̄mR

√
2mRE

3A detailed derivation of the rate equation below is given in the
Appendix.

FIG. 1. Feynman diagram for the weak decay of a one-neutron
halo nucleus into the corresponding core and a proton with Coulomb
final state interactions only. The shaded ellipse denotes the Coulomb
ladder diagrams where multiple (including zero) photon exchanges
contribute.

× Ee

√
E2

e − m2
e (�m − Sn − E − Ee)2

× ((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))
× |A(E , Ee, cos θ, cos θν̄ )|2C2(ηe), (19)

where βe = pe/Ee and βν̄ = pν̄/Eν̄ . The differential decay
rate reads

d�p

dE
= G2

F

16π5
mR

√
2mRE

∫ �m−Sn−E

me

dEe

×
∫ 1

−1
d cos θ

∫ 1

−1
d cos θν̄

× Ee

√
E2

e − m2
e (�m − Sn − E − Ee)2

× ((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))
× |A(E , Ee, cos θ, cos θν̄ )|2C2(ηe) (20)

with

0 < E < �m − Sn − me. (21)

From the partial decay rate we obtain the branching ratio via

bp = �p

�
, (22)

where � = ln(2)/T1/2 is the full decay rate and T1/2 the
half-life of the halo nucleus.

B. Hadronic amplitude without final state interactions

We first consider the hadronic amplitude without final state
interactions. It describes the coupling of the electroweak cur-
rent to the nucleus. For simplicity, we use the momentum
variables p, pe, and pν̄ and later apply the constraints from
energy and momentum conservation. The corresponding di-
agram is illustrated in Fig. 1. In halo EFT, the amplitude
is derived from the Feynman rules according to the La-
grangians given in Eqs. (1), (2) and (7). The pure hadronic
part of Fig. 1 is given by the loop with three propagators,
the Coulomb ladder diagrams, the breakup and the wave
function renormalization constant of the halo nucleus. After
performing the energy integration of the loop, we are left with
two propagators. One propagator together with the Coulomb
ladder diagrams gives the outgoing Coulomb wave function
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(χ̃−
p (r))∗. The other propagator together with the breakup and

wave function renormalization constant of the halo nucleus
gives the bound state wave function of the 1n-halo nucleus
ψ (r). The pure hadronic amplitude without final state interac-
tions then reads

A(p, pe, pν̄ ) = −i
∫

d3r(χ̃−
p (r))∗ei(1−y)(pe+pν̄ )·rψ (r), (23)

where the exponential function results from the recoil due to
the leptons. In general, the Coulomb wave function carries all
possible angular momenta l and can be written as

(χ̃−
p (r))∗ =

∞∑
l=0

(
χ̃ l−

p (r)
)∗ =

∞∑
l=0

χ̃ l+
−p(r) =

∞∑
l=0

(−1)l χ̃ l+
p (r)

(24)

with (see Ref. [25])

χ̃ l+
p (r) = 4π il eiσl

Fl (η|p|, |p|r)

|p|r
l∑

m=−l

Y ∗
lm(ep)Ylm(er ) (25)

and

Fl (η|p|) = Cl (η|p|)2−l−1(−i)l+1Miη|p|,l+1/2(2i|p|r), (26)

Cl (η|p|) = 2l e−πη|p|/2|�(l + 1 + iη|p|)|
�(2l + 2)

, (27)

where Mk,μ(z) is the conventionally defined Whittaker func-
tion. The Sommerfeld parameter is η|p| = αZpZcmR/|p| =
kC/|p| while σl = arg(�(l + 1 + iη|p|)) is the Coulomb phase
shift. Moreover, the bound state wave function of the neutron-
core system is given by

ψ (r) =
√

2γ0
e−γ0r

r
Y00. (28)

We use the partial wave expansion of the plane wave

ei(1−y)(pe+pν̄ )·r

= 4π

∞∑
l=0

l∑
m=−l

il jl ((1 − y)|pe + pν̄ |r)Ylm
(
epe+pν̄

)
Y ∗

lm(er ),

(29)

where jl (x) is a spherical Bessel function. In the low-energy
limit, we approximate jl (x) ≈ (x)l/(2l + 1)!!. The hadronic
amplitude then reads

A(p, pe, pν̄ )

= −i
√

2γ0

√
4π

∫
dr

∞∑
l=0

l∑
m=−l

re−γ0reiσl
Fl (η|p|, |p|r)

|p|r

× 4π
((1 − y)|pe + pν̄ |r)l

(2l + 1)!!
Ylm

(
epe+pν̄

)
Y ∗

lm(ep). (30)

The dominant contribution of the hadronic amplitude results
from the l = 0 transition, meaning no angular momentum
between the lepton momentum (pe + pν̄ ) and the outgoing
relative momentum p. Taking only this contribution into ac-

FIG. 2. Partial decay rate without final state interactions at LO
relative to the free neutron decay width �p/�neutron as a function of
the one-neutron separation energy Sn for the systems p + n, 10Be +n,
and 18C +n.

count leads to

A(p, pe, pν̄ ) = − i
√

8πγ0eiσ0

∫
dr re−γ0r F0(η|p|, |p|r)

|p|r

= − i
√

8πγ0eiσ0C0(η|p|)
e2η|p| arctan(|p|/γ0 )

γ 2
0 + |p|2 .

(31)
Higher l transitions correspond to so-called forbidden decays,
e.g., the l = 1 transition is the first forbidden decay.

III. UNIVERSAL RESULTS WITHOUT
FINAL STATE INTERACTIONS

The rate for β-delayed proton emission strongly depends
on the form of the final state interactions. In the absence of
strong final state interactions, this rate is determined predomi-
nately by the one-neutron separation energy Sn and the electric
charge of the core. We first focus on the latter case.

In Fig. 2, we show the partial decay rate calculated with
Eq. (19) in units of the neutron decay rate �neutron and in
absence of strong final state interactions for systems with
different core nuclei as a function of Sn. On the one hand,
the results show that the decay rate becomes equal to the free
neutron decay rate in the limit of zero one-neutron separation
energy for all different systems. In this limit, the halo neutron
is not influenced by the core at all and therefore it is expected
to give the free neutron decay rate independently of the core
properties. On the other hand, the decay rate approaches zero
as the one-neutron separation energy increases up to the max-
imum value given by Smax

n = mn − mp − me ≈ 782 keV. This
is also expected as the phase space is reduced for increasing
Sn. In between these limits, the results show that the decay
rate is further reduced for systems with core nuclei of larger
sizes with respect to the mass and electric charge. It turns
out that the mass dependency is negligible and therefore the
reduction of the rate is dominantly given by the increase of
the electric charge of the core. This is due to the Coulomb
repulsion between the proton and core which is parametrized
through the Sommerfeld factor C0(η|p|). It leads to a reduction
of the differential decay rate d�p/dE especially for low rela-
tive energies E of the charged particles. Hence, the behaviour
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(a) (b)

FIG. 3. Feynman diagrams for the weak decay of a one-neutron
halo nucleus into the corresponding core and a proton with strong
final state interactions. The thin double line in the middle denotes the
dressed 10Be −p propagator. The shaded ellipse denotes the Coulomb
ladder diagrams where multiple (including zero) photon exchanges
contribute.

for different systems universally depends on the charge of the
core. Next we focus on the case with final state interactions.

IV. RESULTS WITH FINAL STATE INTERACTIONS
FOR BERYLLIUM-11

As laid out above, halo EFT can not predict by itself
whether the resonance exists but instead provides a consis-
tency check between different observables in the resonance
region. In Ref. [14], we performed an analysis of the impact
of a resonance on the branching ratio. In this analysis, it was
assumed that the resonance has no definite isospin. We briefly
summarize our results for this scenario. Using the central
value and errors of the resonance energy from the recent
publication [15], the branching ratio and the resonance width
were determined to be bp = (1.2+1.1

−0.6(exp.)+0.9
−0.2(theo.)) × 10−5

and �R = (5.0+3.0
−2.1(exp.)+3.1

−1.1(theo.)) keV. Based on the value
and errors for the resonance energy published previously [13],
we obtain bp = (4.9+5.6

−2.9(exp.)+4.0
−0.8(theo.)) × 10−6 and �R =

(9.0+4.8
−3.3(exp.)+5.3

−2.2(theo.)) keV. These results are consistent
within the combined theoretical and experimental uncertain-
ties. Next we analyze the scenario of a 11B resonance with
definite isospin of T = 1/2. The additional diagrams due to
the resonance are depicted in Fig. 3. Starting with the La-
grangian given in Eqs. (1) and (2), we project the 10Be −p
interaction on T = 1/2. Therefore, it is ensured that only the
T = 1/2 channel is resonant. As a consequence, the isospin
changes during the decay. This implies that the transition is a
pure Gamow-Teller transition. Moreover, this projection im-
pacts the β-strength sum rule that counts the number of weak
charges that can decay in the initial state. The Gamow-Teller
strength BGT is related to the comparative half-lives or f t
value of the decay. The f t value itself is given by

f t = B

g2
ABGT

, (32)

where B = 2π3 ln 2/(m5
eG2

F ) is the β-decay constant. Here,
we use the value B = 6144.2 s [26,27]. The inverse f t value
can be obtained from the transition matrix element M of 11Be

FIG. 4. Possible resonance parameter combinations obeying the
sum rule obtained in the halo EFT approach with isospin projection.
The dash-dotted line shows the combinations for r0 = 0 fm at LO
corresponding to rC

0 = 0 fm while the dashed line shows the com-
binations for r0 = 2.7 fm at NLO corresponding to rC

0 = 1.8 fm.
The green and yellow band show the resonance parameters given in
Refs. [13,15].

into 10Be +p via the relation

1

f t
= 1

B
|M|2 = 1

B

(
1 + 3g2

A

)
2π2

∫
dE mR

√
2mRE |A(p)|2.

(33)
For a transition into the continuum, the differential Gamow-
Teller β strength can then be calculated from

dBGT

dE
=

(
1 + 3g2

A

)
g2

A

1

2π2
mR

√
2mRE |A(p)|2. (34)

Integration over the whole continuum gives the β-strength
sum rule that we require to be fulfilled at each order within
our EFT power counting. We note that a resonance with no
definite isospin in the halo picture leads to the sum rule
Bmax

F = 1 and Bmax
GT = 3 (see Ref. [14]) accounting for the

halo neutron that can decay in the initial channel. However,
after projecting on a resonance with T = 1/2, we do not fully
count the weak charge that can decay in the initial channel and
therefore expect to have Bmax

GT < 3 for the β-strength sum rule.
At LO where the full nonperturbative solution for a zero-range
interaction is used in the incoming as well as outgoing chan-
nels, we indeed find the sum rule satisfying Bmax

GT < 3. When
integrating over the available Q window, we therefore expect
BGT < Bmax

GT < 3. At NLO range corrections enter. However,
the sum rule Bmax

GT derived at LO puts strong constraints on the
ranges in the incoming and outgoing channels. As a conse-
quence, only certain combinations are allowed. In Fig. 4, we
present the resonance parameter combinations that satisfy the
β-strength sum rule at LO and at NLO. The dash-dotted line
gives the LO result where all ranges are zero. At NLO, we use
r0 = 2.7 fm for the incoming channel, which was determined
from the measured B(E1) strength for Coulomb dissociation
of 11Be [21]. Using the one-neutron separation energy and
the effective range of 11Be, the GT sum rule can be fulfilled
only for a Coulomb-modified effective range in the outgoing
channel of rC

0 = 1.8 fm. The sum rule is then satisfied to very
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FIG. 5. Differential decay rate d�p/dE for β-delayed proton
emission from 11Be as a function of the final-state particle energy
E . The dash-dotted line shows our EFT result without resonant
final state interactions while the solid line gives the result obtained
by Baye and Tursunov [6]. The dashed line shows the EFT result
including a resonance at ER = 0.171 MeV in the outgoing channel at
NLO. The colored bands give the EFT uncertainty.

good approximation for a wide range of Coulomb-modified
scattering lengths in the outgoing channel. In particular, both
sets of resonance parameters from Refs. [13,15] are consistent
with the constraints on ER and �R provided by our halo EFT
calculation, although there is some tension between the two
measurements themselves.

The effect of the resonance on the decay rate can be vi-
sualized by looking at the differential decay rate d�p/dE as
shown in Fig. 5. The dash-dotted line shows the EFT result
in the absence of any final state interactions. The dashed
line shows the differential decay rate with a resonance at
ER = 0.171 MeV [15] and effective ranges in initial and final
state fixed as discussed above. The rapid fall off of the dif-
ferential decay rate at energies below ∼0.08 MeV and above
∼0.21 MeV, and the noticeable enhancement of the decay
rate requires a resonance that also approximately lies in the
same window. Using the value and its errors for the resonance
energy published in Ref. [15], ER = (171 ± 20) keV, we find

bp = (
5.7+5.0

−2.9(exp.)+4.1
−1.1(theo.)

) × 10−6, log( f t ) = 3.37,

�R = (
6.2+3.8

−2.6(exp.)+3.9
−1.4(theo.)

)
keV, BGT = 1.63.

We have also analyzed the impact of a resonance using
ER = (196 ± 20) keV [13] leading to a similar plot as in
Fig. 5 with a peak position at the corresponding resonance
energy. Using the value and its errors for the resonance energy
published in Ref. [13], we find

bp = (
2.3+2.5

−1.3(exp.)+1.8
−0.4(theo.)

) × 10−6, log( f t ) = 3.38,

�R = (
11.3+6.9

−4.2(exp.)+7.0
−2.7(theo.)

)
keV, BGT = 1.59.

Again both sets of values are consistent within their uncertain-
ties.

In Fig. 6, we show the partial decay rate for beta-delayed
proton emission from 11Be as a function of the resonance
energy. The solid line gives our NLO result with the effec-

FIG. 6. Partial decay rate as a function of the resonance energy
at NLO. Explanation of curves and bands is given in inset.

tive range parameters set as described above. The yellow
and green squares give the experimental result given in
Refs. [13,15], respectively. The partial decay rate decreases as
the resonance energy increases and moves out of the energy
range described above. The overlap of the green square and
our EFT predictions shows that our results are consistent
with the results for the decay rate published by Ayyad et al.
[13] when using the new resonance parameters determined
in [15]. However, there is some tension when the resonance
parameters from [13] are used. For resonance energies larger
than ∼200 keV the upper bound on the partial width from
Riisager et al. [12] is satisfied. When using the resonance
energies determined in Ref. [16] given by ER = (211 ± 40)
keV leads to decay rates that are mostly in agreement with
that upper bound.

V. RESULTS FOR CARBON-19

As another example, we consider beta-delayed proton
emission from the 1n-halo nucleus 19C. In contrast to the case
of 11Be, there is no clear separation of scales between the
half-lives of 19C which has T1/2 = 46.3 ms and of the 18C
core which has T1/2 = 92 ± 2 ms. However, the process of
β-delayed proton emission can still be observed by measuring
the 18C core and the proton in the final state. Even if the 18C
core of the 1n-halo nucleus 19C β decays into the ground state
of 18N, it cannot feed into the observed decay channel due to
energy conservation since m18C + mp − (m18N + mn) ≈ 10.5
MeV. We assume the contributions from decay channels via
excited states of 18N∗ to be insignificant.

In Fig. 7, we show the differential decay rate as a function
of the energy E without resonant final state interactions. Our
results for 19C agree qualitatively with those presented by
Baye and Tursunov [6]. The corresponding branching ratio is

bp = (4.1 ± 2.5) × 10−14. (35)

For comparison, the branching ratio for β-delayed proton
emission from 11Be without resonant final state interactions is
given by 1.3 × 10−8. Therefore, the branching ratio for 19C is
almost six orders smaller than for 11Be without final state in-
teractions. This smaller branching ratio results from the larger
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FIG. 7. Differential decay rate d�p/dE for β-delayed proton
emission from 19C as a function of the final-state particle energy E .
The dash-dotted line shows our EFT result without resonant final
state interactions. The green band gives the EFT uncertainty.

separation energy of 19C (Sn = 0.577 MeV), the larger charge
number (see discussion in Sec. III), and the overall larger total
decay rate of 19C. The branching ratio could be in principle
enlarged by a 19N∗ resonance but we do not consider this
effect since no resonances are known in the decay window.
Our result for the branching ratio is approximately by a factor
of three smaller than that given by Baye and Tursunov [6] who
give a value of 1.8 × 10−13 from a cluster model that includes
some final state interactions.

VI. SUMMARY

In this paper, we considered β-delayed proton emission in
one-neutron halo nuclei in the framework of halo EFT. We
discussed the general features of the relevant matrix elements
in systems that do not have strong final state interactions
and in systems that display strong final state interactions due
to a low-lying resonance in the proton-core channel. In the
scenario of no strong final state interactions, we found that
the decay rate predominantly depends on the one-neutron
separation energy and the electric charge of the core. In-
cluding strong final state interactions via a resonance in the
proton-core channel can have a significant impact on the de-
cay rate depending on the resonance position. If it lies within
the energy window defined by the plateau of the differential
decay rate without strong final state interactions, it leads to
a significant enhancement of the decay rate and hence the
branching ratio. We found that for heavier halo nuclei, a
significantly enhanced branching ratio for a given one-neutron
separation energy becomes more unlikely. The bigger charge
of the core nucleus leads to an increased Coulomb repulsion
between core and proton at low relative energies E . Thus,
the differential decay rate for low E is reduced and therefore
the energy window for the required resonance energies in
order to significantly enhance the branching ratio becomes
smaller. The calculations with strong final state interactions
were done with and without isospin projection on states of
definite isospin.

We have also presented additional details of the calculation
for the decay of 11Be previously published in Ref. [14]. Fur-
thermore, we reanalyzed our results in the context of recently
published data [15]. We found that the measured resonance
parameters of the low-lying resonance in the 11B system is
consistent with the measured branching ratio for the β decay
of 11Be into the continuum but that theory and experiment do
not overlap perfectly. We also stress again that our results do
not imply the existence of the low-lying resonance but that
a resonance is required for an enhanced branching ratio of
β-delayed proton emission.

Halo EFT seems generally well suited for the analysis of
this framework: Observables can be calculated in terms of a
small number of parameters that are determined from exper-
iment. The number of parameters used in such a calculation
is also inherently tied to the uncertainty for the observable
of interest. In contradistinction to cluster models, two-body
currents appear naturally in this framework. For example, a
two-body axial current will appear one order higher than what
was considered in this work [28]. A higher order calculation
in halo EFT is therefore unpractical since the unknown pa-
rameter would have to be determined from the β decay itself.
However, this limitation is shared with other approaches such
as calculations of this process in chiral EFT with electroweak
currents. In this framework such a two-body current also ap-
pears at next-to-next-to-leading order in the chiral expansion
[29], the same order that the chiral three-nucleon force enters
which is required for the accurate description of nuclear struc-
ture observables [30]. Furthermore, we note that our approach
implies that any cluster model with the same degrees of free-
dom but without additional microscopic physics will have at
best the uncertainty as our results.

There are several important questions that need to be
addressed in the future. For example, it needs to be ana-
lyzed whether a meaningful calculation can be carried out
for P-wave halo nuclei. In such systems, the counting of
interaction operators and current operators changes nontriv-
ially. It is therefore not clear whether halo EFT or any cluster
approach can predict the lifetime accurately, however, it pro-
vides nonetheless a complementary approach to study the
decay itself. It would also be interesting to apply halo EFT to
weak decays of two-neutron halo systems. Such a calculation
has been done using a cluster model [31]. A halo EFT calcula-
tion could shine light on the uncertainties of this calculation.
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APPENDIX: DERIVATION OF THE DECAY RATE

We choose the z axis of the coordinate system in which we perform the pν̄ integration to be parallel to the momentum
pe. Therefore, the scalar product βe · βν̄ = |βe||βν̄ | cos θν̄ ≡ βeβν̄ cos θν̄ = βe cos θν̄ . Moreover, we choose the z axis of the
coordinate system in which we perform the p integration to be parallel to the momentum (pe + pν̄ ). We denote the angle
between p and (pe + pν̄ ) as θ . As a consequence, the hadronic amplitude depends on |p| and |pe + pν̄ | and cos θ . Since

|pe + pν̄ | =
√

p2
e + p2

ν̄ + 2|pe||pν̄ | cos θν̄, (A1)

the hadronic amplitude will ultimately depend on |p|, |pe|, |pν̄ |, cos θ , and cos θν̄ and therefore we replace

|A(p,−(pe + pν̄ ))|2 → |A(|p|, |pe|, |pν̄ |, cos θ, cos θν̄ )|2 (A2)

and find

�p = G2
F

(2π )8

∫
d3 p

∫
d3 pe

∫
d3 pν̄ δ

(
Sn − �m + p2

2mR
+

√
p2

e + m2
e + |pν̄ |

)

× ((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))|A(|p|, |pe|, |pν̄ |, cos θ, cos θν̄ )|2C2(ηe). (A3)

Now we perform the trivial angle integrations, meaning∫
d3 p → 2π

∫ ∞

0
d p p2

∫ 1

−1
d cos θ, (A4)

∫
d3 pe → 4π

∫ ∞

0
d pe p2

e, (A5)

∫
d3 pν̄ → 2π

∫ ∞

0
d pν̄ p2

ν̄

∫ 1

−1
d cos θν̄, (A6)

and get

�p = G2
F

16π5

∫ ∞

0
d pp2

∫ 1

−1
d cos θ

∫ ∞

0
d pep2

e

∫ ∞

0
d pν̄p2

ν̄

∫ 1

−1
d cos θν̄

× δ

(
Sn − �m + p2

2mR
+

√
p2

e + m2
e + |pν̄ |

)((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))
× |A(|p|, |pe|, |pν̄ |, cos θ, cos θν̄ )|2C2(ηe). (A7)

Using the energy-conserving δ distribution

|pν̄ | →
(

�m − Sn − p2

2mR
−

√
p2

e + m2
e

)
≡ |pν̄ |, (A8)

we perform the pν̄ integration to find

�p = G2
F

16π5

∫ ∞

0
d p

∫ ∞

0
d pe

∫ 1

−1
d cos θ

∫ 1

−1
d cos θν̄p2p2

e |pν̄ |2�(|pν̄ |)

× ((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))|A(|p|, |pe|, |pν̄ |, cos θ, cos θν̄ )|2C2(ηe), (A9)

where � is the Heaviside step function. Since |pν̄ | depends on p and pe, we replace

|A(|p|, |pe|, |pν̄ |, cos θ, cos θν̄ )|2 → |A(|p|, |pe|, cos θ, cos θν̄ )|2 (A10)

and get

�p = G2
F

16π5

∫ ∞

0
d p

∫ ∞

0
d pe

∫ 1

−1
d cos θ

∫ 1

−1
d cos θν̄p2p2

e |pν̄ |2�(|pν̄ |)

× ((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))|A(|p|, |pe|, cos θ, cos θν̄ )|2C2(ηe). (A11)

Substituting ∫ ∞

0
d p p2 =

∫ ∞

0
dE mR

√
2mRE , (A12)
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∫ ∞

0
d pe p2

e =
∫ ∞

me

dEe Ee

√
E2

e − m2
e , (A13)

where E = p2/(2mR) is the relative energy of the core-proton system and replacing

|A(|p|, |pe|, cos θ, cos θν̄ )|2 → |A(E , Ee, cos θ, cos θν̄ )|2 (A14)

we find

�p = G2
F

16π5

∫ ∞

0
dE

∫ ∞

me

dEe

∫ 1

−1
d cos θ

∫ 1

−1
d cos θν̄mR

√
2mREEe

√
E2

e − m2
e

× (�m − Sn − E − Ee)2�(�m − Sn − E − Ee)
((

1 + 3g2
A

) + βe cos θν̄

(
1 − g2

A

))|A(E , Ee, cos θ, cos θν̄ )|2C2(ηe).
(A15)

Finally, we apply the � function by modifying the integration areas

�p = G2
F

16π5

∫ �m−Sn−me

0
dE

∫ �m−Sn−E

me

dEe

∫ 1

−1
d cos θ

∫ 1

−1
d cos θν̄mR

√
2mRE

× Ee

√
E2

e − m2
e (�m − Sn − E − Ee)2

((
1 + 3g2

A

) + βe cos θν̄

(
1 − g2

A

))|A(E , Ee, cos θ, cos θν̄ )|2C2(ηe). (A16)

If we do not neglect recoil effects, then there is an additional term (pe + p2
ν̄ )/(2Mpc) in the energy-conserving δ distribution of

Eq. (A7). Performing a similar calculation as before, we find for the decay rate

�p = G2
F Mpc

16π5

∫ �m−Sn−me

0
dE mR

√
2mRE

∫ 1

−1
d cos θ

∫ Eupper
e

me

dEe Ee

∫ Eupper
ν̄

E lower
ν̄

dEν̄ Eν̄

× ((
1 + 3g2

A

) + βecos θν̄

(
1 − g2

A

)) |A(E , cos θ, Ee, Eν̄ , cos θν̄ )|2 C2(ηe) (A17)

with

E lower
ν̄ =

√
(�m − Sn − E − Ee)2Mpc − (

E2
e − m2

e

) + (
Mpc +

√
E2

e − m2
e

)2 − (
Mpc +

√
E2

e − m2
e

)
, (A18)

Eupper
ν̄ =

√
(�m − Sn − E − Ee)2Mpc − (

E2
e − m2

e

) + (
Mpc −

√
E2

e − m2
e

)2 − (
Mpc −

√
E2

e − m2
e

)
, (A19)

and

E lower
e = me, (A20)

Eupper
e =

√
(�m − Sn − E )2Mpc + m2

e + M2
pc − Mpc. (A21)
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