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Cumulants from fluctuating width of rapidity distribution
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In relativistic heavy-ion collisions, the longitudinal fluctuations of the fireball density caused, e.g., by fluc-
tuations in the number of stopped baryons result in event-by-event modifications of the shape of the proton
rapidity density distribution. The multiparticle rapidity correlation functions due to the varying distribution
width of the proton rapidity density in central Au + Au collisions at low energies are derived. The cumulant
ratios are calculated and discussed in the context of the recent STAR Collaboration results. We find that for
small fluctuations in the width of the proton rapidity distribution, the cumulant ratios are independent of the
underlying width distribution. It is also emphasized that the cumulant ratios strongly depend on the size of the
rapidity interval.
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I. INTRODUCTION

In relativistic heavy-ion collisions, a very hot (about
1012 K) medium, the fireball is created in a tiny volume. Its
initial shape asymmetry is reflected in the measured spectra
of produced particles. The azimuthal asymmetry is broadly
studied using the Fourier decomposition. In this context, the
Fourier coefficients are interpreted as harmonic flows, includ-
ing elliptic flow, triangular flow, and others [1,2]. However,
also the long-range longitudinal correlations can be under-
stood as a reflection of the fireball rapidity density fluctuations
[3]. These fluctuations result in a nontrivial rapidity corre-
lation function [4]. This function contributes to the proton
or baryon number factorial cumulants and cumulants which
are potentially very promising in the search for the predicted
phase transition and critical point between hadronic matter
and quark-gluon plasma [5–26]. Therefore, it is interesting
to better understand the correlations related to longitudinal
fluctuations.

The longitudinal fluctuations might be affected by the
baryon-stopping effect. Indeed, at high energies, baryons are
produced as baryon-antibaryon pairs, satisfying the baryon
number conservation. At lower energies (at which the phase
transition might happen), fewer pairs are created and the
greater baryon density is obtained when more incoming
baryons are stopped in the specific bin of rapidity. Clearly,
a change in the number of stopped baryons in the midrapidity
region modifies the fireball density, as well as it should be
reflected in the baryon multiplicity cumulants. Therefore, the
dynamics of baryon stopping is another source of fluctuations
that has to be taken into account.

The measured proton rapidity density distribution is
averaged over many events. In particular, there may be
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event-by-event fluctuations of the width of the distribution
(described by the standard deviation) even if the total num-
ber of particles remains the same. The varying numbers of
baryons stopped at different rapidity bins may be qualitatively
consistent with the picture of width fluctuations.

So far, the longitudinal fluctuations have been studied
using the formalism in which the single-particle rapidity
density distribution is expanded into orthogonal polynomials
[4,27–29]. The coefficients of this expansion have been mea-
sured by the ATLAS Collaboration at different collision
energies and different colliding systems [30]. This topic has
been also addressed by the ALICE Collaboration [31,32]. The
width fluctuations of the single-particle rapidity density distri-
bution modify the second-order coefficient in the orthogonal
polynomials formalism [4].

In this paper, a new approach that focuses on width fluc-
tuations is proposed. The analytic method to extract the
multiparticle rapidity correlation functions from these fluctua-
tions is derived. The correlation functions are used to calculate
the corresponding factorial cumulants and cumulants. Dif-
ferent possible characteristics of the width fluctuations are
explored. In central Au + Au collisions at low energies, the
proton rapidity density distribution is well described by the
Gaussian function as seen, e.g., from the recent STAR data
[33]. Close to y = 0, it can be approximated by the quadratic
function. For higher energies, already slightly below 10 GeV,
the bimodal structure of the distribution becomes visible and a
single Gaussian function is only a rough approximation. How-
ever, the goal of this paper is to draw attention and estimate
the effect of width fluctuations rather than give precise results.

This paper is organized as follows: In the next section, the
general method of deriving multiparticle rapidity correlation
functions from the width fluctuations is presented. Then, this
method is applied to the quadratic single-particle rapidity den-
sity distribution with different width probability distributions.
In the subsequent section, the examples of cumulant ratios are
calculated and discussed in the context of the corresponding
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STAR measurements. We also show that the results are sig-
nificantly affected by the size of the rapidity interval (e.g.,
−0.5 < y < 0 vs |y| < 0.5). Finally, the comments and sum-
mary are presented. Higher-order cumulants are discussed in
the Appendix.

II. FACTORIAL CUMULANTS FROM WIDTH
FLUCTUATIONS

Let �(y) be a single-particle rapidity density distribu-
tion. Suppose the width of this distribution described by the
standard deviation σ fluctuates from event to event. The mea-
sured distribution �meas(y) is �(y) averaged over σ . Similarly,
�meas,2(y1, y2) is a two-particle rapidity density distribution
averaged over σ . Then, we construct a two-particle rapidity
correlation function originating from the width fluctuation.
Following the same reasoning, we calculate higher-order mul-
tiparticle rapidity correlation functions.

Suppose �(y) is given by the normal distribution,

�(y) = Nt√
2πσ

exp

(
− y2

2σ 2

)
, (1)

where Nt = ∫ +∞
−∞ dy�(y) is the total number of particles. This

function is valid for proton rapidity density distribution in
central low-energy collisions [33]. For y ≈ 0 (the midrapidity
region), this distribution can be approximated by the quadratic
function

�(y) ≈ Nt√
2πσ

(
1 − y2

2σ 2

)
. (2)

We assume that σ (representing the width of the single-
particle rapidity density distribution) fluctuates from event to
event, being a random variable following the probability dis-
tribution, p(σ ), where

∫ +∞
0 dσ p(σ ) = 1. The average value

of σ will be denoted by σ0:

σ0 ≡ 〈σ 〉 =
∫ +∞

0
dσσ p(σ ). (3)

To emphasize the variability of the σ parameter, we denote
the rapidity distribution (1) and (2) as �(y, σ ). In Fig. 1, we
show an example of how a change of σ modifies the rapidity
distribution, using the values of the parameters that are later
used in our examples. Clearly, an increase of σ makes the
distribution wider, whereas a decrease of σ , makes the distri-
bution narrower. As seen from the figure, the chosen interval
y ∈ [−0.5, 0.5] is so narrow that �(y, σ ) with different σ look
like a single distribution that is rescaled by different factors.

The measured (averaged over σ ) single-particle rapidity
density distribution �meas(y) is obtained as

�meas(y) =
∫ +∞

0
dσ�(y, σ )p(σ ). (4)

In the limiting case of p(σ ) = δ(σ − σ0), where δ is the Dirac
δ function, �meas(y) becomes �(y; σ = σ0). We note that the
total number of particles, say baryons, Nt = ∫ +∞

−∞ dy�meas(y)
is unchanged.

FIG. 1. Proton rapidity density distribution (1) with different val-
ues of σ . Nt and σ0 values are roughly estimated to correspond to
proton distribution from central Au + Au collisions at 7.7 GeV, see
Sec. III. The vertical dashed lines show the calculation (measure-
ment) range y ∈ [−0.5, 0.5].

Similarly, the averaged two-particle rapidity density distri-
bution reads

�meas,2(y1, y2) =
∫ +∞

0
dσ�(y1, σ )�(y2, σ )p(σ ). (5)

Then, the two-particle rapidity correlation function is defined
as

C2(y1, y2) = �meas,2(y1, y2) − �meas(y1)�meas(y2). (6)

The second factorial cumulant is obtained by integrating the
correlation function,

Ĉ2 =
∫ Y

−Y
dy1

∫ Y

−Y
dy2C2(y1, y2), (7)

where Y characterizes the rapidity range of the measured
correlations.

By analogy, the averaged n-particle rapidity density distri-
bution is

�meas,n(y1, y2, . . . , yn)

=
∫ +∞

0
dσ�(y1, σ )�(y2, σ ) · · · �(yn, σ )p(σ ). (8)

For example, the three-particle correlation function reads

C3(y1, y2, y3) = �meas,3(y1, y2, y3) − �meas(y1)�meas(y2)

× �meas(y3) − �meas(y1)C2(y2, y3)

− �meas(y2)C2(y1, y3) − �meas(y3)C2(y1, y2),
(9)

and n-particle correlation functions (n = 4, 5, 6) are defined,
e.g., in Ref. [27]. The nth factorial cumulant is obtained by

Ĉn =
∫ Y

−Y
dy1 · · ·

∫ Y

−Y
dynCn(y1, y2, . . . , yn). (10)
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A. Correlation functions and factorial cumulants
for the quadratic rapidity distribution

In our calculations, we assume the quadratic single-particle
rapidity density distribution (2) which is a good approxima-
tion in the midrapidity region. It is convenient to introduce
the notation

mk =
〈

1

σ k

〉
=
∫ +∞

0
dσ

p(σ )

σ k
. (11)

The σ averaged rapidity distribution (4) reads

�meas(y) = Nt√
2π

(
m1 − 1

2
m3y2

)
. (12)

The first factorial cumulant (equal to the mean number of
particles in the integration interval) is given by

Ĉ1 = 〈N〉 =
∫ Y

−Y
dy�meas(y) = NtY√

2π

(
2m1 − 1

3
m3Y

2

)
.

(13)
The two-particle rapidity density distribution, two-particle

correlation function, and the second factorial cumulant

read

�meas,2(y1, y2) =
(

Nt√
2π

)2[
m2 − 1

2
m4
(
y2

1 + y2
2

)+ 1

4
m6y2

1y2
2

]
,

(14)

C2(y1, y2) =
(

Nt√
2π

)2 1

22

[
4A2,0 − 2A2,1

(
y2

1 + y2
2

)
+ A2,2y2

1y2
2

]
, (15)

Ĉ2 =
(

NtY√
2π

)2[
4A2,0 − 4

3
A2,1Y

2 + 1

9
A2,2Y

4

]
,

(16)

where

A2,0 = m2 − m2
1, A2,1 = m4 − m1m3, A2,2 = m6 − m2

3.

(17)
The three-particle rapidity density distribution, correlation

function, and the third factorial cumulant read

�meas,3(y1, y2, y3) =
(

Nt√
2π

)3[
m3 − 1

2
m5
(
y2

1 + y2
2 + y2

3

)+ 1

4
m7
(
y2

1y2
2 + y2

1y2
3 + y2

2y2
3

)− 1

8
m9y2

1y2
2y2

3

]
, (18)

C3(y1, y2, y3) =
(

Nt√
2π

)3 1

23

[
8A3,0 − 4A3,1

(
y2

1 + y2
2 + y2

3

)+ 2A3,2
(
y2

1y2
2 + y2

1y2
3 + y2

2y2
3

)− A3,3y2
1y2

2y2
3

]
, (19)

Ĉ3 =
(

NtY√
2π

)3[
8A3,0 − 4A3,1Y

2 + 2

3
A3,2Y

4 − 1

27
A3,3Y

6

]
, (20)

where

A3,0 = 2m3
1 − 3m1m2 + m3, A3,1 = 2m2

1m3 − m2m3 − 2m1m4 + m5,

A3,2 = 2m1m2
3 − 2m3m4 − m1m6 + m7, A3,3 = 2m3

3 − 3m3m6 + m9. (21)

The four-particle rapidity density distribution is given by

�meas,4(y1, y2, y3, y4) =
(

Nt√
2π

)4
[

m4 − 1

2
m6

4∑
i=1

y2
i + 1

4
m8

∑
j>i

y2
i y2

j − 1

8
m10

∑
k> j>i

y2
i y2

j y
2
k + 1

16
m12y2

1y2
2y2

3y2
4

]
. (22)

The four-particle correlation function and the fourth factorial cumulant read

C4(y1, y2, y3, y4) =
(

Nt√
2π

)4 1

24

[
− 16A4,0 + 8A4,1

4∑
i=1

y2
i − 4A4,2

∑
j>i

y2
i y2

j − 2A4,3

∑
k> j>i

y2
i y2

j y
2
k + A4,4y2

1y2
2y2

3y2
4

]
, (23)

Ĉ4 =
(

NtY√
2π

)4[
−16A4,0 + 32

3
A4,1Y

2 − 8

3
A4,2Y

4 − 8

27
A4,3Y

6 + 1

81
A4,4Y

8

]
, (24)

where

A4,0 = 6m4
1 − 12m2

1m2 + 3m2
2 + 4m1m3 − m4,

A4,1 = 6m3
1m3 − 6m1m2m3 + m2

3 − 6m2
1m4 + 3m2m4

+ 3m1m5 − m6,

A4,2 = 6m2
1m2

3 − 2m2m2
3 − 8m1m3m4 + 2m2

4 + 2m3m5

− 2m2
1m6 + m2m6 + 2m1m7 − m8,

A4,3 = m10 − 6m1m3
3 + 6m2

3m4 + 6m1m3m6 − 3m4m6

− 3m3m7 − m1m9,

A4,4 = m12 − 6m4
3 + 12m2

3m6 − 3m2
6 − 4m3m9. (25)

Five- and six-particle correlation functions and the corre-
sponding factorial cumulants are presented in the Appendix.

We note that Ĉk is proportional to Nk
t which indicates

the long-range correlations. This is understandable since the
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FIG. 2. Different σ distributions studied in this paper. They all
have the same expectation σ0 and the standard deviation εσ0.

change of the width of the distribution modifies the distribu-
tion in the whole rapidity range.

B. σ fluctuations

We do not know how σ fluctuates in realistic heavy-ion
collisions however we may study various probability distri-
butions p(σ ) to obtain a better insight. In all the presented
distributions we require that

〈σ 〉 = σ0 (26)

and the standard deviation√
〈(σ − 〈σ 〉)2〉 = εσ0, (27)

where ε can vary and determines the strength of the σ fluc-
tuations. For ε = 0, there are no σ fluctuations and all the
correlations vanish. Various σ distributions with σ0, and ε

used in our calculations are presented in Fig. 2.

1. Uniform distribution

First, we assume that σ follows a uniform distribution. It is
the simplest distribution to study however most likely it is not
very realistic. Namely,

p(σ ) =
{

1
2
√

3εσ0
if σ ∈ [σ0(1 − √

3ε), σ0(1 + √
3ε)]

0 otherwise,
(28)

where we assume 0 � ε � 1√
3
. The interval within which the

distribution p(σ ) is nonzero is uniquely fixed by condition
(27). We obtain1

m1 = 1

2
√

3εσ0

ln

(
1 + √

3ε

1 − √
3ε

)
,

1We note that m1 = limk→1 mk .

mk = 1

2
√

3εσ k
0

(
1 − √

3ε
)1−k − (1 + √

3ε)1−k

k − 1
,

k = 2, 3, . . . . (29)

One can calculate full analytic expressions for the factorial
cumulants by applying Eqs. (29) to Eqs. (13), (16), (20),
and (24). ε is expected to be small, so we can expand full
expressions into power series in terms of ε about zero. Here
we present the leading-order terms (lowest power in ε):

Ĉ1 ≈ Nt z√
2π

(
2 − 1

3
z2

)
, (30)

Ĉ2 ≈
(

Nt z√
2π

)2

ε2(2 − z2)2, (31)

Ĉ3 ≈
(

Nt z√
2π

)3 24ε4

5
(2 − z2)2(1 − z2), (32)

Ĉ4 ≈ −
(

Nt z√
2π

)4 6ε4

5
(2 − z2)4, (33)

where

z = Y

σ0
. (34)

The factorial cumulants Ĉ5 and Ĉ6 are presented in the
Appendix.

2. Triangular distribution

A step towards a more realistic σ distribution is the trian-
gular distribution. Namely,

p(σ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ−σ0(1−√

6ε)
6ε2σ 2

0
if σ ∈ [σ0(1 − √

6ε), σ0]

−σ+σ0(1+√
6ε)

6ε2σ 2
0

if σ ∈ (σ0, σ0(1 + √
6ε)]

0 otherwise ,

(35)

where 0 � ε � 1√
6
, and the interval within which the distribu-

tion p(σ ) is nonzero is fixed by Eq. (27).
Then,2

m1 = 1

6ε2σ0
[(1 +

√
6ε) ln(1 +

√
6ε)

+ (1 −
√

6ε) ln(1 −
√

6ε)],

m2 = − 1

6ε2σ 2
0

ln(1 − 6ε2),

mk = 1

6ε2σ k
0 (k − 1)(k − 2)

×
[

1

(1 − √
6ε)k−2

+ 1

(1 + √
6ε)k−2

− 2

]
,

k = 3, 4, 5, . . . . (36)

2We note that m1 = limk→1 mk and m2 = limk→2 mk .
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One can calculate full analytic expressions for Ĉk using
Eqs. (13), (16), (20), and (24). The leading-order terms (low-
est power in ε) are given by

Ĉ1 ≈ Nt z√
2π

(
2 − 1

3
z2

)
, (37)

Ĉ2 ≈
(

Nt z√
2π

)2

ε2(2 − z2)2, (38)

Ĉ3 ≈
(

Nt z√
2π

)3 42ε4

5
(2 − z2)2(1 − z2), (39)

Ĉ4 ≈ −
(

Nt z√
2π

)4 3ε4

5
(2 − z2)4, (40)

where z is given by Eq. (34). The higher-order factorial cumu-
lants are presented in the Appendix.

3. Lognormal distribution

It would be natural to assume that σ follows the normal
distribution however, by definition σ � 0, whereas the normal
distribution allows also for negative values. Also, the integrals
used to calculate mk , Eq. (11), do not converge for the normal
distribution. To overcome these issues and still obtain analytic
results, we assume that σ follows the lognormal distribution
[its domain by definition is (0,+∞)]. Namely,

p(σ ) = 1√
2πbσ

exp

(
− (ln σ − a)2

2b2

)
. (41)

Its expectation 〈σ 〉 = exp(a + b2

2 ) and its variance Var(σ ) =
[exp(b2) − 1] exp(2a + b2). This with the constraints (26) and
(27) gives

a = ln

(
σ0√

ε2 + 1

)
, b =

√
ln (ε2 + 1). (42)

We have checked that such a distribution is very close to the
corresponding normal distribution, as can be seen in Fig. 2.

For this distribution,

mk = (1 + ε2)
k(k+1)

2

σ k
0

for k = 1, 2, 3, . . . . (43)

Again, one can easily calculate the full analytic expressions
for Ĉk using Eqs. (13), (16), (20), and (24). For small ε, the
leading-order terms read:

Ĉ1 ≈ Nt z√
2π

(
2 − 1

3
z2

)
, (44)

Ĉ2 ≈
(

Nt z√
2π

)2

ε2(2 − z2)2, (45)

Ĉ3 ≈
(

Nt z√
2π

)3

3ε4(2 − z2)2(2 − 3z2), (46)

Ĉ4 ≈
(

Nt z√
2π

)4

16ε6(2 − z2)2(9z4 − 14z2 + 4), (47)

where z is given by Eq. (34). The higher-order factorial cumu-
lants are presented in the Appendix.

We note that for all three studied distributions, the factorial
cumulants depend on z = Y/σ0 and not on Y and σ0 sepa-
rately. The leading-order term of Ĉk is always proportional to
(Nt z)k . As expected, when ε → 0, all Ĉk = 0 (k � 2) because
in this case there are no width fluctuations. We also note that
the leading-order terms of Ĉ1 and Ĉ2 are the same for the three
studied p(σ ) distributions. It can be shown that this is the case
for all possible p(σ ) distributions satisfying Eqs. (26) and
(27), whereas the higher-order terms and exact results differ
among the distributions.3

4. Truncated normal distribution—numerical computations

Here we assume that σ follows the normal distribution
given by

p(σ ) = 1√
2πεσ0

exp

(
− (σ − σ0)2

2(εσ0)2

)
, (48)

where, as in uniform, triangular, and lognormal distributions,
we require the expectation to be σ0 and the standard deviation
εσ0. To require σ > 0 we use the truncated normal distribu-
tion.4 As mentioned earlier, we were unable to obtain analytic
results for the normal distribution however we calculated mk

numerically using [34]. To test this approach, we used the
same numerical method for uniform, triangular, and lognor-
mal distributions and reproduced the exact results with great
precision.

III. CUMULANT RATIOS

Here we show the cumulant ratios extracted from the fac-
torial cumulants obtained for the quadratic rapidity density
distribution (2). We use the relations between the cumulants
and factorial cumulants [35].5

Our assumption of the Gaussian (approximately quadratic)
proton rapidity density distribution is applicable for low col-
lision energies where also the interesting anomalies of the

3The fact that the leading-order terms of Ĉ1 and Ĉ2 are indepen-
dent of σ distribution can be justified by expanding mk into series.
Namely,

mk = 1

σ k
0

∫
dσ

p(σ )

(1 + x)k ,

where x = (σ − σ0)/σ0 is assumed to be small. Expanding 1
(1+x)k

into a series about zero, one obtains mk as an infinite series in terms
of sk = μk/σ

k
0 , where μk = 〈(σ − σ0 )k〉 is the kth central moment

of σ distribution. s1 = 0 and s2 = ε2 for all the σ distributions that
satisfy Eqs. (26) and (27). We note that, for k � 3, sk is distribution
dependent and such terms do not appear in the leading-order terms
of Ĉ1 and Ĉ2.

4We use the truncated, normalized normal distribution, p̃(σ ) =
Ap(σ ) if σ ∈ [a, b] and p̃(σ ) = 0 otherwise, where p(σ ) is given
by Eq. (48) and A = 1/

∫ b
a dσ p(σ ) with a and b being the limits of

the σ interval.
5See also Appendix A of Ref. [8] for explicit formulas for the first

six cumulants.
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FIG. 3. The contributions of different-order factorial cumulants Ĉk to cumulants, κ3 (left) and κ4 (right). They are calculated from the
quadratic proton rapidity density distribution (2) with σ following lognormal distribution (41) using exact analytic results from Eqs. (13), (16),
(20), (24). The coefficients in front of Ĉk originate from the relation between cumulants and factorial cumulants, namely κ3 = Ĉ1 + 3Ĉ2 + Ĉ3

and κ4 = Ĉ1 + 7Ĉ2 + 6Ĉ3 + Ĉ4. The values of Nt , Y , and σ0 roughly correspond to the STAR measurements in central Au + Au collisions at
7.7 GeV.

scaled kurtosis were measured by the STAR Collaboration
[36]. We have used the simulated net-proton rapidity density
distribution in central 0%–5% Au + Au collisions at

√
sNN =

7.7 GeV from Ref. [37] to roughly estimate that Nt ≈ 200 and
σ0 ≈ 1.5 are reasonable values.6 For

√
sNN = 3 GeV, we have

used the preliminary STAR data on proton density distribution
in central 0%–5% Au + Au collisions [33] and extracted the
parameters Nt ≈ 175, σ0 ≈ 0.75. We note that the estimated
σ0(3 GeV)/σ0(7.7 GeV) = 0.75/1.5 = 0.5 is very close to
the rough estimate ln(3)/ ln(7.7) ≈ 0.54.7 We choose Y =
0.5 as in the STAR measurements.

In our calculations we have tried two methods of approx-
imating the cumulant ratios. In the first method, we calculate
the cumulants from the factorial cumulants using only the
earlier presented leading-order terms of Ĉn. This approxima-
tion works very well in most of the cases as seen in the
following examples. The results of this method are denoted
in the figures as “approx with Ĉ.”

In the second method, we calculate the cumulants from the
factorial cumulants using exact expressions for Ĉn and then
we approximate the obtained cumulant ratios by the power
series expansion about ε = 0. We obtain the expansions of the
form

κn

κ2
= 1 + an f (Nt , z)ε2 + . . .︸︷︷︸

O(ε4 )

, (49)

6At low energies, there are very few produced antiprotons.
Therefore, the net-proton rapidity density distribution is a good
approximation of the proton distribution. As mentioned earlier, treat-
ing the single-particle rapidity distribution as a single Gaussian or
quadratic function is only a rough approximation.

7The width of the single-particle rapidity density distribution
roughly scales as ln(

√
sNN ).

where an = 6, 18, 42, 90 for n = 3, 4, 5, 6, respectively,

f (Nt , z) = Nt z√
2π

(2 − z2)2

6 − z2
(50)

is universal for studied σ distributions (uniform, triangular,
lognormal) and various orders of cumulants, whereas higher-
order terms differ between the distributions and orders of
cumulants. The same expansion is also obtained for κ2/κ1

with the coefficient equal to three. We show the result of
this method as “approx with κ up to ε2.” As seen from the
following examples, this approximation works well for small
ε.8 Therefore, for small σ fluctuations, each of the studied
cumulant ratios is described by the common formula for very
different σ distributions. This suggests that the cumulant ra-
tios are independent of p(σ ) for small ε. f (Nt , z) is found
to be equivalent to considering only the leading-order terms
of Ĉ1 and Ĉ2 and neglecting higher-order factorial cumulants.
This indicates that, for small ε, the cumulant ratios are dom-
inated by two-particle correlations. This is further supported
by Fig. 3.

A.
√

sNN = 7.7 GeV

We assume Nt = 200, σ0 = 1.5, Y = 0.5 which roughly
correspond to the STAR measurements in central Au + Au
collisions at

√
sNN = 7.7 GeV.

In Fig. 4, we show exact κ2/κ1 (calculated with all Ai, j) for
σ following the uniform, triangular, and lognormal distribu-
tions. We note that the scaled variance is very similar for all
three p(σ ). For the lognormal distribution we show also the

8We have checked that including ε4 terms improves the results but
works worse than the “approx. with Ĉ” method.

014907-6



CUMULANTS FROM FLUCTUATING WIDTH OF RAPIDITY … PHYSICAL REVIEW C 108, 014907 (2023)

FIG. 4. (left) Scaled variance κ2/κ1 calculated from the quadratic proton rapidity density distribution (2) with σ following uniform (28),
triangular (35), and lognormal distribution (41) using the exact analytic result from Eqs. (13) and (16). All three distributions give virtually
the same results. (right) κ2/κ1 calculated using σ following lognormal distribution (41). Both approximations reproduce the exact results very
well. The values of Nt , Y , and σ0 roughly correspond to the STAR measurements in central Au + Au collisions at 7.7 GeV.

approximated results which are very close to the exact curve
(the same is true for the uniform and triangular distributions).
The cumulant ratios κ3/κ2 and κ4/κ2 with σ following the
uniform distribution are presented in the first row, the results
with triangular distribution are in the second row, whereas
the results with lognormal distribution are in the third row
of Fig. 5. The exact curves use the analytic exact results
with all Ai, j terms of the factorial cumulants. The dashed line
κn/κm = 1 is the Poisson baseline for no correlations case.
The cumulant ratios κ5/κ2 and κ6/κ2 are presented in the
Appendix.

In the case of the truncated normal distribution, we calcu-
late the factorial cumulants with Nt = 200, Y = 0.5, σ0 = 1.5
using numerical integration for mk (see previous section). The
integration is done for σ ∈ [0.01, 3].9

In Fig. 6, we show the numerical results for the truncated
normal distribution in comparison to the exact results with
the lognormal distribution. The normal distribution results
are in agreement with lognormal results for small ε, and for
larger ε they follow the same trend though they give greater
values.

B.
√

sNN = 3 GeV

We note that the cumulant ratios at
√

sNN = 3 GeV are mea-
sured by the STAR Collaboration in the asymmetric rapidity
range, y ∈ [−0.5, 0], whereas, at other collision energies, they
are obtained within the symmetric interval, y ∈ [−0.5, 0.5]
[36]. As seen from Eqs. (12), (15), (19), and (23), the rapidity
density distributions, as well as rapidity correlation functions
are the even functions with respect to every yi. Clearly, for any

9We have verified that both making this interval wider (σ ∈
[0.005, 5]) or more narrow (σ ∈ [0.9, 2.1]) does not change the cu-
mulant ratios κ3/κ2 and κ4/κ2 for ε ∈ [0.01, 0.09]. We have checked
that the normalization constant is very close to 1 in all these intervals.

function f satisfying this condition,∫ Y

−Y
dy1 · · ·

∫ Y

−Y
dyn f (y1, y2, . . . , yn)

= 2n
∫ 0

−Y
dy1 · · ·

∫ 0

−Y
dyn f (y1, y2, . . . , yn). (51)

Therefore, the kth factorial cumulant from the rapidity cor-
relation function in [−Y, 0] is 2k times smaller than the
corresponding factorial cumulant in [−Y,Y ]. Since the cumu-
lants are the linear combinations of the factorial cumulants of
a different order [35], the cumulant ratios are modified in a
more complicated way.

Using Nt = 175 and σ0 = 0.75 extracted from the fit to the
STAR data at

√
sNN = 3 GeV [33] and taking Eq. (51) into

account, we have calculated the cumulant ratios, originating
from the width fluctuations, in y ∈ [−0.5, 0] as well as y ∈
[−0.5, 0.5]. They are presented in Figs. 7 and 8 for various σ

distributions. The higher-order cumulant ratios are shown in
the Appendix. We note that the results obtained in symmet-
ric and asymmetric rapidity intervals differ significantly. We
have checked that the previously discussed two methods of
approximation also work but in Eq. (49) an should be divided
by two.

IV. DISCUSSION AND SUMMARY

In this paper, we have presented the method of analytical
calculation of the correlation functions, factorial cumulants,
and cumulants originating from the fluctuating width of the
proton rapidity density distribution. We have assumed that
this distribution is a Gaussian function that can be approx-
imated by the quadratic function in the midrapidity region.
This assumption is valid for central low-energy Au + Au col-
lisions. At higher energies (already slightly below 10 GeV),
the distribution has a bimodal shape. The aim of our pa-
per is to estimate the significance of the effect of width
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FIG. 5. The cumulant ratios, κ3/κ2 and κ4/κ2, calculated from the quadratic proton rapidity density distribution (2) with σ following
uniform distribution (28) (first row), triangular distribution (35) (second row), and lognormal distribution (41) (third row). “exact” is the exact
analytic result from Eqs. (13), (16), (20), (24), with mk given by Eq. (29), (36), and (43), respectively. “approx with Ĉ” is the result using the
leading-order terms in ε for the factorial cumulants (see main text). “approx with κ up to ε2” is the approximation using Eq. (49). The values
of Nt , Y , and σ0 roughly correspond to the STAR measurements in central Au + Au collisions at 7.7 GeV.

fluctuations rather than give precise results. We have studied
the width σ fluctuations following three qualitatively differ-
ent distributions, uniform, triangular, and lognormal (which
approximates normal distribution). Obviously, they do not
expend all the possibilities but we believe they constitute a
representative choice.

We find that for very different σ distributions, all the cu-
mulant ratios can be approximated by the universal function

(49) for small ε, where ε determines the strength of the σ

fluctuations, see Eq. (27). This indicates that the results are in-
dependent of a choice of p(σ ) when the width fluctuations are
small. This approximation is equivalent to considering only
the leading-order terms of the first and second factorial cumu-
lants which indeed are the same for any σ distribution with
the same mean and standard deviation. Hence, at small ε, the
cumulant ratios are governed by the two-particle correlations.
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FIG. 6. The cumulant ratios, κ2/κ1, κ3/κ2, and κ4/κ2 calculated from the quadratic proton rapidity density distribution (2). The solid line
assumes σ fluctuations following lognormal distribution (same as in Figs. 4 and 5) whereas the dashed line corresponds to the truncated normal
distribution with the mk calculated numerically. The values of Nt , Y , and σ0 roughly correspond to the STAR measurements in central Au + Au
collisions at 7.7 GeV.

FIG. 7. The scaled variance κ2/κ1 calculated from the quadratic
proton rapidity density distribution (2) with σ following uniform
(28), triangular (35), and lognormal distribution (41), using exact
formulas and values of Nt and σ0 corresponding to central Au + Au
collisions at 3 GeV. The results are compared for the wider (y ∈
[−0.5, 0.5]) and narrower (y ∈ [−0.5, 0]) rapidity range. For a given
rapidity interval, all three distributions give very similar results.

In Table I, we present the STAR Collaboration data
[38,39]. We note that the cumulant ratios from the width
fluctuations for ε < 0.05 are of the same order of magnitude
as measured experimentally. Hence, we have shown that the
distribution width fluctuations due to fireball density fluctu-
ations may have a measurable contribution to the cumulant
ratios in heavy-ion experiments. Therefore, they should be
further studied and taken into account in the search for the
predicted first-order phase transition and critical point be-
tween the hadronic matter and quark-gluon plasma. A direct
comparison with data is rather challenging because there are
other sources of correlations, e.g., the global baryon number
conservation [40–47]. It would be interesting to investigate the
fluctuations in width of the rapidity distribution using various
Monte Carlo models. The application of our method to the
bimodal rapidity distribution (superposition of two Gaussians)
would extend our results for much broader collision energy
spectrum.

We have also demonstrated that the cumulant ratios mea-
sured in a symmetric and an asymmetric rapidity range might
result in very different values. Therefore, one should be very
careful when comparing the cumulant ratios measured in dif-
ferent rapidity intervals.
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FIG. 8. The cumulant ratios κ3/κ2 and κ4/κ2 calculated from the quadratic proton rapidity density distribution (2) with σ following uniform
(first row), triangular (second row), and lognormal (third row) distribution using exact formulas and values of Nt and σ0 corresponding to central
Au + Au collisions at 3 GeV. The results are compared for the wider (y ∈ [−0.5, 0.5]) and narrower (y ∈ [−0.5, 0]) rapidity range.

TABLE I. Cumulant ratios measured by the STAR Collaboration at the lowest energies [38,39].

√
sNN 3 GeV y ∈ [−0.5, 0] 7.7 GeV y ∈ [−0.5, 0.5]

κ2/κ1 1.218 ± 0.001(stat.) ± 0.019(syst.) 0.928 ± 0.005(stat.) ± 0.005(syst.)

κ3/κ2 0.954 ± 0.005(stat.) ± 0.06(syst.) 0.824 ± 0.08(stat.) ± 0.032(syst.)

κ4/κ2 −0.85 ± 0.09(stat.) ± 0.80(syst.) 1.8 ± 1.2(stat.) ± 0.4(syst.)
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We note that the longitudinal fluctuations have already
been studied by the expansion into orthogonal polynomials
[4,27,28,30]. In this formalism, the width fluctuation is re-
flected in the second-order coefficient. In this paper, we have
proposed another approach that focuses directly on the rapid-
ity density distribution width fluctuations originating from the
longitudinal fluctuations of the fireball density.

The goal of this work is to stimulate further research on
longitudinal fluctuations. In principle, not only it can con-
tribute to the important probes of a critical point such as the

proton multiplicity cumulants but also improve our under-
standing of the fireball longitudinal dynamics.
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APPENDIX: THE HIGHER-ORDER CORRELATION FUNCTIONS AND FACTORIAL CUMULANTS

The subsequent n-particle rapidity density distributions follow the same pattern (n = 5, 6) as in Eqs. (14), (18), and (22).
Namely,

�meas,5(y1, y2, . . . , y5) =
(

Nt√
2π

)5[
m5 − 1

2
m7

5∑
i=1

y2
i + 1

4
m9

∑
j>i

y2
i y2

j − 1

8
m11

∑
k> j>i

y2
i y2

j y
2
k

+ 1

16
m13

∑
l>k> j>i

y2
i y2

j y
2
ky2

l − 1

32
m15y2

1y2
2 · · · y2

5

]
, (A1)

�meas,6(y1, y2, . . . , y6) =
(

Nt√
2π

)6[
m6 − 1

2
m8

6∑
i=1

y2
i + 1

4
m10

∑
j>i

y2
i y2

j − 1

8
m12

∑
k> j>i

y2
i y2

j y
2
k

+ 1

16
m14

∑
l>k> j>i

y2
i y2

j y
2
ky2

l − 1

32
m16

∑
n>l>k> j>i

y2
i y2

j y
2
ky2

l y2
n + 1

64
m18y2

1y2
2 · · · y2

6

]
. (A2)

The five-particle correlation function and the corresponding factorial cumulant read10

C5(y1, y2, . . . , y5) =
(

Nt√
2π

)5 1

25

[
32A5,0 − 16A5,1

5∑
i=1

y2
i + 8A5,2

∑
j>i

y2
i y2

j − 4A5,3

∑
k> j>i

y2
i y2

j y
2
k − 2A5,4

∑
l>k> j>i

y2
i y2

j y
2
ky2

l

− A5,5y2
1y2

2y2
3y2

4y2
5

]
, (A3)

Ĉ5 = N5
t Y 5

(2π )5/2

[
32A5,0 − 80

3
A5,1Y

2 + 80

9
A5,2Y

4 − 40

27
A5,3Y

6 − 10

81
A5,4Y

8 − 1

243
A5,5Y

10

]
, (A4)

where

A5,0 = 24m5
1 − 60m3

1m2 + 30m1m2
2 + 20m2

1m3 − 10m2m3 − 5m1m4 + m5,

A5,1 = 24m4
1m3 − 36m2

1m2m3 + 6m2
2m3 + 8m1m2

3 − 24m3
1m4 + 24m1m2m4 − 5m3m4 + 12m2

1m5

− 6m2m5 − 4m1m6 + m7,

A5,2 = 24m3
1m2

3 − 18m1m2m2
3 + 2m3

3 − 36m2
1m3m4 + 12m2m3m4 + 12m1m2

4 + 12m1m3m5

− 6m4m5 − 6m3
1m6 + 6m1m2m6 − 3m3m6 + 6m2

1m7 − 3m2m7 − 3m1m8 + m9,

A5,3 = −2m1m10 + m11 + 24m2
1m3

3 − 6m2m3
3 − 36m1m2

3m4 + 12m3m2
4 + 6m2

3m5 − 18m2
1m3m6

+ 6m2m3m6 + 12m1m4m6 − 3m5m6 + 12m1m3m7 − 6m4m7 − 3m3m8 + 2m2
1m9 − m2m9,

A5,4 = m1m12 − m13 + 4m10m3 − 24m1m4
3 + 24m3

3m4 + 36m1m2
3m6 − 24m3m4m6 − 6m1m2

6

− 12m2
3m7 + 6m6m7 − 8m1m3m9 + 4m4m9,

A5,5 = m15 − 5m12m3 + 24m5
3 − 60m3

3m6 + 30m3m2
6 + 20m2

3m9 − 10m6m9. (A5)

10They are calculated according to formulas given in Ref. [27].
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The six-particle correlation function and the factorial cumulant are given by

C6(y1, y2, ..., y6) =
(

Nt√
2π

)6 1

26

⎡⎣−64A6,0 + 32A6,1

6∑
i=1

y2
i + 16A6,2

∑
j>i

y2
i y2

j + 8A6,3

∑
k> j>i

y2
i y2

j y
2
k

+4A6,4

∑
l>k> j>i

y2
i y2

j y
2
ky2

l + 2A6,5

∑
n>l>k> j>i

y2
i y2

j y
2
ky2

l y2
n + A6,6 y2

1y2
2 · · · y2

6

⎤⎦ ,

(A6)

Ĉ6 = N6
t Y 6

(2π )3

[
−64A6,0 + 64A6,1Y

2 + 80

3
A6,2Y

4 + 160

27
A6,3Y

6 + 20

27
A6,4Y

8 + 4

81
A6,5Y

10 + 1

729
A6,6Y

12

]
, (A7)

where

A6,0 = 120m6
1 − 360m4

1m2 + 270m2
1m2

2 − 30m3
2 + 120m3

1m3 − 120m1m2m3 + 10m2
3 − 30m2

1m4

+ 15m2m4 + 6m1m5 − m6,

A6,1 = 120m5
1m3 − 240m3

1m2m3 + 90m1m2
2m3 + 60m2

1m2
3 − 20m2m2

3 − 120m4
1m4 + 180m2

1m2m4

− 30m2
2m4 − 50m1m3m4 + 5m2

4 + 60m3
1m5 − 60m1m2m5 + 11m3m5 − 20m2

1m6 + 10m2m6 + 5m1m7 − m8,

A6,2 = m10 − 120m4
1m2

3 + 144m2
1m2m2

3 − 18m2
2m2

3 − 24m1m3
3 + 192m3

1m3m4 − 144m1m2m3m4

+ 18m2
3m4 − 72m2

1m2
4 + 24m2m2

4 − 72m2
1m3m5 + 24m2m3m5 + 48m1m4m5 − 6m2

5

+ 24m4
1m6 − 36m2

1m2m6 + 6m2
2m6 + 24m1m3m6 − 9m4m6 − 24m3

1m7 + 24m1m2m7

− 6m3m7 + 12m2
1m8 − 6m2m8 − 4m1m9 ,

A6,3 = −6m2
1m10 + 3m1m11 − m12 + 3m10m2 + 120m3

1m3
3 − 72m1m2m3

3 + 6m4
3 − 216m2

1m2
3m4

+ 54m2m2
3m4 + 108m1m3m2

4 − 12m3
4 + 54m1m2

3m5 − 36m3m4m5 − 72m3
1m3m6

+ 54m1m2m3m6 − 12m2
3m6 + 54m2

1m4m6 − 18m2m4m6 − 18m1m5m6 + 3m2
6 + 54m2

1m3m7

− 18m2m3m7 − 36m1m4m7 + 9m5m7 − 18m1m3m8 + 9m4m8 + 6m3
1m9 − 6m1m2m9 + 4m3m9 ,

A6,4 = 2m2
1m12 − 2m1m13 + m14 − m12m2 + 16m1m10m3 − 4m11m3 − 120m2

1m4
3 + 24m2m4

3

− 8m10m4 + 192m1m3
3m4 − 72m2

3m2
4 − 24m3

3m5 + 144m2
1m2

3m6 − 36m2m2
3m6

− 144m1m3m4m6 + 24m2
4m6 + 24m3m5m6 − 18m2

1m2
6 + 6m2m2

6 − 72m1m2
3m7

+ 48m3m4m7 + 24m1m6m7 − 6m2
7 + 12m2

3m8 − 6m6m8 − 24m2
1m3m9 + 8m2m3m9

+ 16m1m4m9 − 4m5m9 ,

A6,5 = m1m15 − m16 − 10m1m12m3 + 5m13m3 − 20m10m2
3 + 120m1m5

3 + 5m12m4 − 120m4
3m4

+ 10m10m6 − 240m1m3
3m6 + 180m2

3m4m6 + 90m1m3m2
6 − 30m4m2

6 + 60m3
3m7

− 60m3m6m7 + 60m1m2
3m9 − 40m3m4m9 − 20m1m6m9 + 10m7m9 ,
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9 . (A8)

In the case of the uniform σ distribution, Eq. (28), the approximated formulas (leading-order terms of the power series
expansion about ε = 0) read

Ĉ5 ≈ −
(

Nt z√
2π

)5 192ε6

7
(2 − z2)4(1 − z2), (A9)

Ĉ6 ≈
(

Nt z√
2π

)6 48ε6

7
(2 − z2)6. (A10)

For the triangular distribution, Eq. (35), we have

Ĉ5 ≈ −
(

Nt z√
2π

)5 216ε6

7
(2 − z2)4(1 − z2), (A11)

Ĉ6 ≈
(

Nt z√
2π

)6 12ε6

7
(2 − z2)6. (A12)
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FIG. 9. κ5/κ2 and κ6/κ2 for σ following the uniform distribution. The left-hand side plots show a wider ε range [0, 0.1] whereas the
right-hand side plots show details at small ε ∈ [0, 0.03].

For the lognormal distribution, Eq. (41), we obtain

Ĉ5 ≈
(

Nt z√
2π

)5

5ε8(2 − z2)2
(
200 − 1172z2 + 1694z4 − 675z6

)
, (A13)

Ĉ6 ≈
(

Nt z√
2π

)6

48ε10(2 − z2)2(432 − 3664z2 + 8728z4 − 7636z6 + 2187z8). (A14)

The cumulant ratios, κ5/κ2 and κ6/κ2, with σ following the uniform, triangular, and lognormal distributions are presented in
Figs. 9–11.

In Figs. 12–14, we compare the cumulant ratios, κ5/κ2 and κ6/κ2, obtained in the symmetric (y ∈ [−0.5, 0.5]) and asymmetric
(y ∈ [−0.5, 0]) rapidity interval for all three analytically studied σ distributions with Nt and σ0 corresponding to the STAR
measurements at 3 GeV.
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FIG. 10. Same as Fig. 9 but for σ following the triangular distribution.

FIG. 11. Same as Fig. 9 but for σ following the lognormal distribution.
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FIG. 12. κ5/κ2 and κ6/κ2 for σ following the uniform distribution. The left-hand side plots show wider ε range [0, 0.1] whereas the
right-hand side plots show details at small ε ∈ [0, 0.03].

FIG. 13. Same as Fig. 12 but for σ following the triangular distribution.
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FIG. 14. Same as Fig. 12 but for σ following the lognormal distribution.
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