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The understanding of the mechanisms for the production of weakly bound clusters, such as a deuteron
d , in heavy-ion reactions at mid-rapidity is presently one of the challenging problems which is also known
as the “ice in a fire” puzzle. In this study we investigate the dynamical formation of deuterons within the
parton-hadron quantum molecular dynamics (PHQMD) microscopic transport approach and advance two micro-
scopic production mechanisms to describe deuterons in heavy-ion collisions from energies available at the GSI
Schwerionensynchrotron (SIS) to those at the BNL Relativistic Heavy Ion Collider (RHIC): kinetic production
by hadronic reactions and potential production by the attractive potential between nucleons. Differently from
other studies, for the “kinetic” deuterons we employ the full isospin decomposition of the various πNN ↔ πd ,
NNN ↔ Nd channels and take into account the finite-size properties of the deuteron by means of an excluded
volume condition in coordinate space and by the projection onto the deuteron wave function in momentum
space. We find that considering the quantum nature of the deuteron in coordinate and momentum space reduces
substantially the kinetic deuteron production in a dense medium as encountered in heavy-ion collisions. If we
add the “potential” deuterons by applying an advanced minimum spanning tree (aMST) procedure, we obtain
good agreement with the available experimental data from SIS energies up to the top RHIC energy.

DOI: 10.1103/PhysRevC.108.014902

I. INTRODUCTION

Quantum Chromodynamics (QCD), the theory describing
the strong interaction between quarks and gluons, the elemen-
tary components of hadrons, has important features that are
not yet understood. To study this QCD matter under extreme
conditions of temperature and density is the primary purpose
of heavy-ion collisions (HICs) at ultrarelativistic energies
[1,2], which are performed at the BNL Relativistic Heavy-ion
Collider (RHIC) and at the CERN Large Hadron Collider
(LHC). At very high energies the energy deposited during
the initial stage of the collisions creates an almost net-baryon-
free hot medium consisting of deconfined quarks and gluons,
which is called quark-gluon plasma (QGP). On the theoretical
side the knowledge of the QCD phase diagram, describing the
pressure as a function of temperature T and baryon chemical
potential μB, is limited to the region of high T and almost
zero μB. There QCD calculations on lattices (lQCD) [3,4]
predict a smooth crossover between the QGP phase and a gas
of hadrons.

The ongoing Beam Energy Scan (BES) program at RHIC,
as well as the future experiments at the Nuclotron based Ion

Collider (NICA) and at the Facility for Antiproton and Ion Re-
search (FAIR), under construction in Dubna and Darmstadt,
respectively, will extend the study of strongly interacting mat-
ter to lower collision energies. The aim is to explore the QCD
phase diagram at high net-baryon density and to search for
the existence of a critical end point (CEP) at the end of a first-
order phase boundary at nonzero μB, predicted by effective
theories [5,6].

To explore this transition from QCD matter to hadrons
the study of the production of light nuclei, such as d , t ,
3He, 4He, and hypernuclei, is an important issue because the
production of composite clusters depends on the correlations
and fluctuations of the nucleons. The interest in light nuclei
comes from both experiments and theory. From the experi-
mental side, the observation of light nuclei began with the
first heavy-ion experiments at the Bevalac accelerator [7–9]
(after some low statistics bubble chamber data [10]). It contin-
ued at the Alternating Gradient Synchrotron (AGS) [11–15],
the GSI Schwerionensynchrotron (SIS) facility [16], and the
Super Proton Synchrotron Collider (SPS) collider [17,18].
Nowadays, the measurements of light nuclei and hypernuclei
at mid-rapidity represent an important research program for
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the STAR Collaboration [19] at RHIC and for the ALICE
Collaboration [20,21] at LHC. At low (SIS) beam energies
between 30% and 50% of protons are bound in deuterons,
tritons, and 3He, while this fraction decreases with increasing
beam energy to values around 1% at the LHC (see, for in-
stance, Ref. [22]). Collective variables, like the directed or the
elliptic flow, are different for clusters and nucleons, indicating
that clusters test different phase-space regions than nucleons.
Therefore, bound nucleons represent an interesting probe to
study the dynamics of heavy-ion collisions.

From the theoretical side, the reason is even more funda-
mental since the mechanism of cluster formation in nucleus-
nucleus collisions is not well understood. The deuterons with
a binding energy of |EB| � 2 MeV appear to be fragile objects
compared to the average kinetic energy of hadrons which
surround them. At freeze-out, when the QGP is converted
into hadrons, the kinetic freeze-out parameters indicate a tem-
perature of T � 100–150 MeV. It is surprising that they can
survive in such an environment without being destroyed by
collisions with the surrounding hadrons. Hence, it is puzzling
that light nuclei are observed in central HICs at mid-rapidity
at all, and it is even more puzzling that their multiplicity
is well described by statistical model calculations [23]. This
observation has been portrayed as “ice cubes in a fire” [24],
or “snowballs in hell” [25]. The presence of light clusters one
may consider as a hint that they do not come from the same
phase-space regions as nucleons, which makes them interest-
ing for the study of the reaction dynamics. The formation of
light nuclei at mid-rapidity at beam energies above 2A GeV
has been modeled by three main approaches:

(i) In the statistical model hadrons at mid-rapidity are as-
sumed to be emitted from a common thermal source,
which is characterized by the temperature T , the
chemical potential μB, and a fixed volume V [26,27].
All three quantities are determined by fitting the mul-
tiplicity of a multitude of hadrons. Surprisingly, the
observed cluster multiplicities are also described with
the same fit variables T , V , and μB [23,28]. The
assumption of the statistical model approach is that
the hadronic expansion of the system does not change
the number of clusters.

(ii) In the coalescence approach it is assumed that a pro-
ton and a neutron form a deuteron if their distance
in momentum and coordinate space is smaller than
the coalescence parameters (rcoal, pcoal ) [29,30]. This
distance is measured when the last nucleon of the pair
undergoes its last elastic or inelastic collision. Several
variations of the coalescence model are being used.
Some of them project the phase-space distribution
function of the nucleons to the Wigner density of the
relative coordinates of the nucleons in the deuteron.
This distribution is usually approximated by a Gaus-
sian form [31,32]. However, the coalescence approach
neglects that a deuteron is a bound object, which can-
not be formed by a simple “fusion” of two nucleons,
since it would violate energy-momentum conserva-
tion. The formation of a deuteron is only possible
if it interacts with the environment by a potential or

via scattering processes. Nevertheless, this approach
reproduces well the pT spectrum of deuterons, as
well as their multiplicity for a large range of beam
energies. For the most recent studies on deuteron
production with the coalescence approach we refer to
Refs. [33–35].

(iii) The minimum spanning tree (MST) approach was
originally advanced in Ref. [36] to study fragments
which come from the projectile and target region, and
later it was also employed to study mid-rapidity clus-
ters [37]. It assumes that at the end of the heavy-ion
reaction two nucleons are part of a cluster if their dis-
tance is smaller than a radius rclus which is of the order
of the range of the nucleon-nucleon interaction. As
investigated in a successive study [38], this model re-
produces well the pT and dN/dy spectra not only for
deuterons, but also for all clusters, observed at mid-
rapidity, in the energy range from AGS to top RHIC.

Recently, a fourth approach was advanced. In
Refs. [25,39,40] it has been claimed that deuterons can also
be created by elementary collisions: pnπ ↔ dπ , pnN ↔ dN ,
NN ↔ dπ . Based on [41–43], where the production
(disintegration) of deuterons by pnN ↔ dN (nucleon
catalysis) was studied at low energy HICs, it was proposed
in Ref. [25] that at relativistic HICs the pion catalyis,
i.e., pnπ ↔ dπ , becomes more dominant at mid-rapidity
due to the large abundance of pions. To demonstrate this,
dπ inelastic scatterings and the inverse processes have
been implemented in the transport approach SMASH
[44], which describes the hadronic stage of HICs. In the
study [25] the catalysis reactions pnπ (N ) ↔ dπ (N ) were
approximated as simple two-step processes of pn ↔ d ′
and π (N )d ′ ↔ π (N )d ′, where d ′ is a fictitious dibaryon
resonance with mass and width determined by fitting the
experimental total inclusive cross section for dπ inelastic
scattering. With this approach the deuteron multiplicity and
pT spectra at mid-rapidity could be reproduced for LHC
Pb+Pb collisions

√
s = 2.76 TeV and for Au+Au collisions

in the energy range of the RHIC BES (
√

s = 7.7–200 GeV)
[39]. Later, in Ref. [40], the numerical artifact of employing
the intermediate d ′ state was replaced by the treatment of
multiparticle reactions within the covariant rate formalism,
first developed in Ref. [45]. In both studies the deuteron was
treated as a pointlike particle.

In this work we revise and improve two of the above
mentioned dynamical processes for deuteron production in
HICs—the “kinetic” production by hadronic collisions and
the “potential” mechanism, where bound nucleons form
deuterons and heavier clusters by potential interactions—and
combine them to obtain a comprehensive approach for the
description of the experimental measurements at mid-rapidity.
For this study we use the parton-hadron quantum molecular
dynamics (PHQMD) transport approach [37].

Concerning the first approach, we include, in contradistinc-
tion to [25,39,40], all possible isospin channels for NNπ ↔
dπ reactions, which enhances the production rate compared
to the pnπ ↔ dπ case. Following Ref. [46], in this “kinetic”
mechanism we also take into account the distribution of the
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relative momentum of the two nucleons inside a deuteron.
Regarding the second approach, we overcome the problem
discussed in Ref. [37] that a choice has to be made at which
time the cluster analysis with MST takes place. We will show
that an asymptotic distribution of stable clusters, which are
also “bound” in the sense that they have negative binding
energies EB < 0, can be obtained, independently of the time
when the clusters are identified. In order to do so, we present
a novel cluster recognition procedure based on the MST algo-
rithm used in point (iii), which is further developed in order to
trace the entire dynamical evolution of the baryons which are
bound into a stable cluster. It is the purpose of this paper to
show that the combination of such an advanced MST (aMST)
approach and the production of deuterons by collisions gives
a very good description of the total multiplicity, pT , and the
dN/dy spectra of deuterons from SIS (

√
s = 2.5 GeV) up to

the highest RHIC energy (
√

s = 200 GeV).
This paper is organized as follows: After the introduction

given in Sec. I, in Sec. II A we recall the basic ideas of the
PHQMD transport approach. The identification of deuterons
bound by potential interaction by means of the MST clus-
terization algorithm is the subject of Sec. II B. In particular,
after discussing in Sec. II B 1 the basis of the original MST
model employed in previous PHQMD studies (see Ref. [37]),
we present in Sec. II B 2 our new “advanced” MST (aMST)
approach. The theoretical formulation of the main hadronic
reactions for the production of “kinetic” deuterons is the topic
of Sec. III. In Sec. IV we test such deuteron reactions in a
“box” and verify their correct numerical implementation by
comparing with analytic rate results. In Sec. V we investigate
the main physical effects of production and disintegration
of deuterons by hadronic reactions in heavy-ion simulations
within the PHQMD approach. The details on how the two
“kinetic” and “potential” mechanisms are combined within
the PHQMD framework are reported at the end of this section.
In Sec. VI we confront our final results with combined kinetic
and potential deuterons with the existing experimental data for
rapidity and transverse momentum distributions in HICs from
invariant center-of-mass collision energies of

√
sNN = 2.52

GeV to
√

sNN = 200 GeV. Finally, we outline our conclusions
in Sec. VII.

II. MODEL DESCRIPTION

A. PHQMD

Parton-hadron quantum molecular dynamics (PHQMD)
was recently conceived as a new type of microscopic transport
approach which combines the characteristics of baryon prop-
agation from the quantum molecular dynamics (QMD) model
[36,47–49] and the dynamical properties and interactions in
and out of equilibrium of hadronic and partonic degrees of
freedom of the parton-hadron-string dynamics (PHSD) ap-
proach [50–54].

In this section we provide a short summary of these two
building blocks. For more details of the PHQMD model we
refer to Ref. [37].

I. In QMD the baryons are described by single-particle
wave functions of Gaussian form with a time independent

width. The Wigner density of each particle is obtained by
a Fourier transformation of the density matrix. Then, the
n-body Wigner density is constructed by the direct product
of the single-particle Wigner densities and its propagation
is determined by a generalized Ritz variational principle
[55]. Contrary to mean-field approaches, where the n-body
phase-space correlations are integrated out and the dynamics
is reduced to a single-particle propagation in a mean-field
potential, in QMD these correlations are preserved and the
fluctuations not suppressed. This allows one to investigate
the dynamical formation of clusters, which are correlations
between nucleons.

In PHQMD a baryon i is represented by the single-particle
Wigner density, which is given by

f (ri, pi, ri0, pi0, t ) = 1

π3h̄3 e− 2
L [ri−ri0(t )]2

e− L
2h̄2 [pi−pi0(t )]2

, (1)

the Gaussian width L is taken as L = 8.66 fm2.
The QMD equations of motion (EoMs) for the centroids

(ri0, pi0) are similar to those of the Hamilton equations for a
classical particle [36]

ṙi0 = ∂〈H〉
∂pi0

, ṗi0 = −∂〈H〉
∂ri0

, (2)

where the difference lies in the fact that on the right-hand side
of both equations the expectation value of the quantum Hamil-
tonian of the many-body system appears. We note in passing
that for a non-Gaussian form of the wave function the time
evolution equations are different. The Hamiltonian is the sum
of the kinetic energies of the particles and of their (density
dependent) two-body interaction. The expectation value can
be written as

〈H〉 =
∑

i

〈Hi〉 =
∑

i

⎛
⎝〈Ti〉 +

∑
j �=i

〈Vi, j〉
⎞
⎠. (3)

The potential interaction consists of two parts: the Coulomb
interaction and a local density dependent Skyrme potential
Vi, j = VCoul + VSkyrme. The expectation value of the Coulomb
interaction can be calculated analytically. The expectation
value of the Skyrme part contains terms ∝ ρ2 and ∝ ργ ,
where ρ is the local density. Their weights, as well as the
exponent γ , are tuned to the equation of state (EoS) of infi-
nite nuclear matter, E (T = 0, ρ/ρ0 = 1) = −16 MeV, where
ρ0 = 0.16 fm−3 is the saturation density at zero temperature.
This fixes two of the three parameters. In PHQMD two pa-
rameter sets have been introduced, which yield a “soft” and
a “hard” EoS, respectively. For details on the realization of
the QMD dynamics and the impact of different EoS on bulk
and cluster observables, we refer to Ref. [37]. For bulk and
strangeness particle production in PHQMD with a “hard”
and a “soft” EoS at low energy HICs and the comparison
with other transport models see also Ref. [56]. In our present
study of the deuteron production mechanisms, we employ the
PHQMD in its “hard” EoS setup as in Ref. [38].

Finally, we want to stress two aspects: (i) in this study, as
in the previous PHQMD publications, we employ a “static,”
i.e., momentum independent, Skyrme potential. A form of
the Skyrme interaction which contains also a momentum
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dependent part will be reserved for future work. (ii) The
PHQMD approach aims to provide a dynamical description of
cluster formation in HICs at low-energy, as well as at relativis-
tic energies. The discussed QMD model uses nonrelativistic
quantum wave functions. The relativistic formulation of QMD
dynamics as a n-body theory was developed in Refs. [57,58]
by introducing extra constraints in order to reduce the 8N-
dimensional phase space to the (6N + 1)-dimensional phase
space in which particle trajectories can be defined. However,
this method is computationally extremely expensive, requir-
ing the inversion of a matrix of size N × N in each time
step, and thus it is presently not applicable for high statistics
simulations.

Therefore, in PHQMD the original framework of QMD
is extended to relativistic energies by introducing a modified
single-particle Wigner density for each nucleon i:

f̃ (ri, pi, ri0, pi0, t ) = 1

π3
e− 2

L [rT
i (t )−rT

i0(t )]2
e− 2γ 2

c.m.
L [rL

i (t )−rL
i0(t )]2

× e− L
2 [pT

i (t )−pT
i0(t )]2

e
− L

2γ 2
c.m.

[pL
i (t )−pL

i0(t )]2

,

(4)

which accounts for the Lorentz contraction of the nucleus
in the beam z direction in coordinate and momentum space
by including γc.m. = 1/

√
1 − v2

c.m., where vc.m. is the velocity
of projectile and target in the computational frame, which is
the center-of-mass system of the heavy-ion collision. Accord-
ingly, the interaction density modifies as

ρ̃int (ri0, t ) → C
∑

j

( 1

πL

)3/2
γc.m.e

− 1
L [rT

i0(t )−rT
j0(t )]2

×e− γ 2
c.m.
L [rL

i0(t )−rL
j0(t )]2

. (5)

We refer again to Refs. [37] and [36] for a more detailed
discussion and the explicit formulas. We note that in PHQMD
the nuclei are initialized in their rest frame with the Gaussian
distributions Eq. (1). The Lorentz squeezing of nuclei by the
gamma factor γc.m. is done after the initialization of the nuclei
in their rest frame, so it does not affect the initialization.

II. As in the PHSD (parton-hadron-string dynamics) ap-
proach [50–54], in PHQMD the strongly interacting medium
is described by off-shell hadrons and off-shell massive quasi-
particles representing the deconfined quarks and gluons of
the QGP phase, which is created if the local energy density
is larger than a critical value of εc ≈ 0.5 GeV/fm3. The
propagation of these off-shell degrees of freedom, includ-
ing their spectral functions, is based on the Kadanoff-Baym
transport theory [59] in first-order gradient expansion from
which the Cassing-Juchem generalized off-shell transport
equations [51,60,61] in test-particle representation are derived
(see Ref. [62]). The hadronic part is taken from the early
development of the hadron-string dynamics (HSD) approach
(see Ref. [63] for a detailed description of the baryon, meson
and resonance species implemented).

The elementary baryon-baryon (BB), meson-baryon (mb),
and meson-meson (mm) reactions for multiparticle production
are realized according to the Lund string model [64] via the
event generators FRITIOF 7.02 [64,65] and PYTHIA 7.4 [66].
Both generators are “tuned” for a better description of the

experimental data for elementary pp collisions at intermediate
energies [67].

The partonic part, which describes the QGP phase, follows
the description of the so-called dynamical quasiparticle
model (DQPM) [68–70]. In the DQPM quarks and gluons are
represented by massive, strongly interacting quasiparticles.
They have spectral functions whose pole positions and
widths are defined by the real and imaginary terms of parton
self-energies. The parton masses and widths are functions of
the temperature T (and in the most recent extension [71] also
of the baryon-chemical potential μB) through an effective
coupling constant, which is fixed by fitting lQCD results from
Refs. [3,4,72–74]. These DQPM partons are evolved with
their self-energies according to the same off-shell transport
equations and scatter by microscopically computed cross
sections.

We recall that in PHQMD only the propagation of mesons
and partons relies on the PHSD approach, while the baryons
evolve according to the QMD dynamics. However, it is always
possible to run PHQMD in the “(P)HSD mode” by switching
the baryon propagation back to the mean-field dynamics of
HSD. Again we refer to Ref. [37] for a description and de-
tailed studies.

As already stated, in PHQMD the collision integral, which
encodes the main scattering/dissipative processes of hadrons
and partons, is adopted from the PHSD model. The main
hadronic reactions have been implemented for many observ-
ables, such as strangeness, dileptons, photons, heavy quarks,
etc. (cf. examples in the reviews [54,75]). It contains also
in-medium effects, such as a dynamical modification of vector
meson spectral functions by collisional broadening [76], and
the modification of strange degrees of freedom in line with
many-body G-matrix calculations [77,78], as well as chiral
symmetry restoration via the Schwinger mechanism for the
string decay [79,80] in a dense medium. The important and
pioneering development in the PHSD is related to the for-
mulation and development of the theoretical formalism in
order to realize detailed balance for m ↔ n reactions based
on covariant rates [45]. This formalism was implemented in
PHSD in Ref. [45] for the description of baryon-antibaryon
BB̄ annihilation of B = p,� and the inverse reaction of
multimeson fusion to B + B̄ pairs; an extension of this first
study accounting for all baryon-antibaryon combinations in
PHSD was presented in Ref. [81]. We also mention that the
implementation of detailed balance on the level of 2 ↔ 3
reactions is realized for the main channels of strangeness pro-
duction/absorption by baryons (B = N,�,Y ) and pions [78].

One of the main goals of this work is to extend this formal-
ism to the 2 ↔ 2 and 3 ↔ 2 processes, which are relevant for
the production and disintegration of deuterons. Therefore, we
dedicate a separate section to the detailed description of this
formalism and its application to deuteron reactions.

B. The “advanced” MST approach (aMST)

1. The original MST approach

The minimum spanning tree (MST) method was employed
in the PHQMD transport approach in Ref. [37] to identify
clusters at different stages of the dynamical evolution of the
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system. We stress that MST is a cluster recognition procedure,
not a “cluster building” mechanism, since PHQMD propa-
gates baryons, not clusters. The possibility of tracing back
in time the baryons, which combine to clusters due to their
potential interaction, allows one to investigate more quanti-
tatively the nature of cluster formation, and to answer some
fundamental questions, for example how clusters can survive
the dense medium [38].

The principle of MST in its original version described in
Ref. [36] is to collect nucleons which are close in coordinate
space. At a given time t a snapshot of the positions and mo-
menta of all nucleons is recorded and the MST clusterization
algorithm is applied: two nucleons i and j are considered as
“bound” to a deuteron or to any larger cluster A > 2 if they
fulfill the condition

|r∗
i − r∗

j | < rclus, (6)

where on the left-hand side the positions are boosted in the
center of mass of the i j pair. The maximum distance between
cluster nucleons rclus = 4 fm corresponds roughly to the range
of the (attractive) NN potential. Additional momentum cuts
do not change the result because the trajectories of baryons,
which are not bound, diverge. Therefore the formation of
baryons in MST is a consequence of the attractive potential
interaction. A nucleon i belongs to a cluster A � 2 if it is
“bound” with at least one nucleon of that cluster, i.e., if there
exists a nucleon j for which the condition Eq. (6) is fulfilled.
Recently, MST has been developed into an independent tool,
which can be coupled to any theoretical transport approach or
to any theoretical framework for detector calibration [82].

We want to stress the fact that MST does not lead to the
formation of real deuterons. It rather marks only whether a
given nucleon is a part of a deuteron at times ti = t0 + i �t .
During the time step �t each nucleon continues to propagate
according to the QMD EoMs, Eq. (2). One can also identify
whether in the subsequent time steps the same nucleons form
a deuteron and at each time step the binding energy of the
deuteron can be calculated. In particular, the binding energy
of the produced cluster of size A is calculated in its center-
of-mass (rest) frame as EB = ∑A

i Ei − ∑A
i MN i + ∑

i �= j Vi j ;
where Ei (MNi) is the energy (mass) of the ith nucleon of the
cluster in the rest frame of the cluster. For its calculation the
energy and momentum of nucleons are boosted into this frame
from the calculational NN frame. Even if there are no elastic
collisions between one of the cluster nucleons and a third
hadron, the cluster binding energy can change its sign. This is
due to the fact that for the propagation the forces between the
nucleons are calculated at the same time in the computational
frame. On the other hand, to calculate the binding energy in
MST one has to take the positions of the baryons after Lorentz
boost into the cluster center of mass. However, in this frame
the baryons have different times, which in principle should be
corrected but can hardly be done in practice. The larger the
γ factor is between the computational frame and the cluster
center-of-mass frame, the more these time differences in the
cluster center-of-mass system become important.

In order to overcome this problem of the semiclassical
approach, we recall that in our previous study [38] we cal-

culated cluster observables at the “physical time” t , which
accounts for the time dilatation between the cluster rest frame
and the center-of-mass system of the heavy-ion reaction: t =
t0 cosh yc.m., where t0 is the cluster “freeze-out” time at mid-
rapidity and yc.m. is the rapidity of the center-of-mass of the
cluster in the calculational frame, the center-of-mass system
of the heavy-ion reaction. We called t the “physical time”
because it marks identical times in the rest systems. The time
t0 was determined such that we could reproduce the total ex-
perimental multiplicities of the clusters at mid-rapidity. Also
we verified that the choice of t affects only the multiplicity
and neither the form of the rapidity distribution nor that of the
transverse momentum distribution.

2. “Advanced” MST

This numerical artifact can be surmounted by freezing the
internal degrees of freedom of the cluster when it is no longer
in contact (neither by collisions nor by potential interactions)
with fellow hadrons, which are not part of the cluster. This
freezing can be applied to the “collision history” file which
contains the positions and momenta of the baryons as a func-
tion of time. Therefore, it does not influence the dynamics of
the reaction. This so-called stabilization procedure works as
follows and the results are presented in Fig. 1:

(1) Nucleons can be part of a cluster only after they have
had their last elastic or inelastic collision. At each time
step ti = t0 + i �t the positions and momenta of all
nucleons are recorded and clusters are identified by
means of the MST algorithm. This is the standard MST
method shown as dashed lines in Fig. 1, for A = 2
(green line) and A = 3 (red).

(2) Clusters have to have a negative binding energy EB <

0. Applying this selection on the clusters identified by
MST after point (1), the result is shown by dash-dotted
lines in Fig. 1. Shortly after the collision starts until ki-
netic freeze-out, unbound nucleons with quite different
momenta can be found at the same position in coordi-
nate space. If time proceeds their trajectories diverge
and they do not form a cluster anymore. Indeed, only
if the clusters are bound are the nucleons forced to stay
together. Therefore, at late times each dashed line joins
the corresponding dash-dotted line.

(3) PHQMD conserves energy strictly and the cluster
nucleons are maximally separated from the other
nucleons with a MST radius of 4 fm. Due to the nonrel-
ativistic Skyrme potential, the time shift between the
nucleons in the cluster center-of-mass system (where
the binding energy is calculated), and an approxima-
tion used to extrapolate the interaction density to the
relativistic case [36], it may happen that the sign of
the binding energy EB (which is tiny as compared to
the total energy of the cluster) changes from negative
to positive between the time ti and the next time step
ti + �t (although the cluster is composed of the same
nucleons) and the cluster starts to disintegrate. This
disintegration is artificial and, therefore, we preserve
the cluster by freezing the internal degrees of freedom.

014902-5



G. COCI et al. PHYSICAL REVIEW C 108, 014902 (2023)

10-3

10-2

10-1

100

101

20 40 60 80 100 120

(c) Au+Au √s=200 GeV , 0-10%

|y|<0.5

dN
/d

y

t [fm]

10-2

10-1

100

101

102
(b) Au+Au √s=7.7 GeV , 0-10%

dN
/d

y

A=2
A=3

10-2

10-1

100

101

102
(a) Au+Au √s=2.52 GeV , 0-10%

dN
/d

y

before stabilization
EB<0 before stabilization

after stabilization
EB<0 after stabilization

FIG. 1. Multiplicity of A = 2 and A = 3 clusters at mid-rapidity,
|y| < 0.5, in PHQMD simulations of Au+Au central collisions at
three different energies: (a)

√
sNN = 2.52 GeV (top), (b)

√
sNN =

7.7 GeV (middle), (c)
√

sNN = 200 GeV (bottom). The dashed lines
(green for A = 2, red for A = 3) are the results obtained with the
standard MST, while the dash-dotted lines indicate the MST iden-
tified clusters which are bound, i.e., with EB < 0. The solid lines
with same color coding are the results of the advanced MST (aMST),
whose difference from MST is explained in the text. The solid lines
with filled squares show the aMST bound clusters, i.e., with EB < 0.

(4) Due to the semiclassical nature of our approach, it may
happen that a “bound” cluster A > 2 with EB < 0 at
time step ti spontaneously disintegrates between ti and
ti + �t , because the available kinetic energy is given
to one nucleon which then can leave the cluster. In
a quantum system, where the energy of the ground
state is larger than in a semiclassical system (because
the wave function cannot have zero momentum), this
process is much less probable. Therefore, we consider
this evaporation as artificial and restore the cluster of
the previous time step ti. The result, if we include (3)
and (4), is shown by the full lines in Fig. 1. We see
that at large times the fragment yield becomes stable.
Due to the larger γ factor the freeze-out of the internal
cluster degrees of freedom is important at high beam
energies. At SIS energies it is almost negligible.

In Fig. 1 the multiplicity of A = 2 (green lines) and A = 3
(red lines) clusters at mid-rapidity, |y| < 0.5, from PHQMD

simulations of central Au+Au collisions are shown as a func-
tion of time for three different collision energies from upper to
lower panels, (a)

√
sNN = 2.52 GeV, (b)

√
sNN = 7.7 GeV, (c)√

sNN = 200 GeV. The dashed lines correspond to the clusters
identified by the original MST as in Ref. [37] according to
the description (1) from above. The dash-dotted lines denote
those clusters which are effectively bound, having a binding
energy EB < 0, corresponding to case (2) from above. The
solid lines show the cluster yield obtained with the advanced
MST (aMST), i.e., employing after the MST identification the
stabilization procedure according to the points (3) and (4). It
is clearly visible that MST and aMST give the same cluster
multiplicity at low beam energies (top panel) while at higher
energies (center and bottom panels), where the relativistic
effects discussed above play a major role, aMST stabilizes
the cluster multiplicity. Therefore, it is no longer necessary to
define a time at which the cluster analysis is performed. This
represents a remarkable improvement of our previous study
in Ref. [38], where we still had to select such a time. This
procedure can be applied to any type of cluster of any size, in-
cluding light nuclei and hypernuclei. In this study we present
only the results for deuterons. The study of hypernuclei and
heavy clusters we reserve for a future publication.

III. KINETIC APPROACH FOR DEUTERON REACTIONS

Collision integral

As described, the collision processes involving the for-
mation and the breakup of a deuteron are implemented in
PHQMD by means of a covariant rate formalism which was
first developed in Ref. [45] and applied within the PHSD
microscopic approach in order to study the baryon-antibaryon
production by multimeson fusion [81,83]. Following the steps
of Ref. [45], we start by writing the covariant Boltzmann
transport equation for the single phase-space distribution
function of an on-shell hadron fi(x, p),

pμ∂μ
x fi(x, p) = I i

coll, (7)

using the notation x = (t, 
x) and p = (E , 
p) with the on-shell
condition p2 = m2

i (mi is the rest mass). The left-hand side
of Eq. (7) contains only the free streaming term because
we neglect for simplicity any mean-field interaction. On the
right-hand side the collision integral I i

coll encodes all the multi-
particle transitions which involve the hadron i either in the
initial or in the final state. Hence, I i

coll can be written as a
sum over all scattering processes with increasing number of
participant particles:

I i
coll =

∑
n

∑
m

Ii
coll[n ↔ m]. (8)

Each collision term I i
coll[n ↔ m] accounts for a particular

forward scattering process (→) with n particles in the initial
state and m particles in the final state, as well as for the
corresponding backward reaction (←). The forward and back-
ward reactions can be grouped together and in collision theory
one usually distinguishes a gain and loss term. Therefore, the
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on-shell collision term I i
coll[n ↔ m] becomes

I i
coll[n ↔ m] = 1

2

1

Nid !

∑
ν

∑
λ

(
1

(2π )3

)n+m−1
⎛
⎝ n∏

j=2

∫
d3 
p j

2Ej

⎞
⎠
⎛
⎝ n+m∏

k=n+1

∫
d3 
pk

2Ek

⎞
⎠

×(2π )4δ4

⎛
⎝pμ

1 +
n∑

j=2

pμ
j −

n+m∑
k=1

pμ

k

⎞
⎠Wn,m(p1, p j ; i, ν | pk; λ)

×
⎡
⎣ n+m∏

k=n+1

fk (x, pk ) − fi(x, p1)
n∏

j=2

f j (x, p j )

⎤
⎦. (9)

In Eq. (9) there are n + m − 1 integrals over the initial 
p j and final 
pk momenta of all particles, excluding the tagged hadron i
(the deuteron) whose momentum is denoted as p1.

The quantity Wn,m(p1, p j ; i, ν | pk ; λ) is called transition amplitude and is related to the square of the scattering matrix for
the transition p1 + ∑n

j=2 p j → ∑n+m
k=n+1 pk , where ν and λ denote a particular set of allowed discrete quantum numbers for the

particles (except the hadron i) in the initial and final states. The δ function guarantees the energy and momentum conservation
in each individual reaction. Finally, the single-particle distribution functions of the hadrons appear, in particular the functions
f1 and f j for the forward/loss term n → m and the function fk for the backward/gain term n ← m. We assign the arbitrary ±
sign to distinguish between the gain and the loss term such that in our study the reaction which leads to the production of a
deuteron (playing the role of the tagged hadron i) is associated to the backward/gain term, while the inverse reaction, where
the deuteron is destroyed, is associated to the forward/loss term. This choice agrees with the original formulation in Ref. [45].
In the collision integral of Eq. (9) we have also neglected the quantum statistical corrections, i.e., the Pauli-blocking or Bose-
enhancement factors, which multiply the product of the phase-space distribution functions, as well as any antisymmetrization
procedure in the transition amplitude for the fermions involved in the reactions. Only the statistical factor 1/Nid !, which counts
the number of identical particles (either bosons or fermions) in the initial and final states, survives. The expression Eq. (9)
can be straightforwardly generalized to the off-shell case by including an additional integration over the energy of each single
hadron weighted by the associated spectral function (cf. Ref. [45]). In PHQMD/PHSD such an off-shell version of the collision
integral is adopted for the dynamical interaction of other baryons and mesons, which are propagated with self-consistent off-shell
transport equations.

The covariant collision number for the n(i) → m scattering process is the number of forward reaction events in the covariant
four-volume d4x = dV dt and, therefore, the covariant collision rate is obtained by dividing the loss term in Eq. (9) by the energy
E1, followed by the integration over the momentum d3 
p1/(2π )3 and and a summation over the quantum numbers τ (i) of the
tagged hadron i in the initial state of the transition:

dNcoll[n(i) → m]

dt dV
= 1

Nid !

∑
τ (i),ν

∑
λ

(
1

(2π )3

)n ∫ ⎛
⎝ n∏

j=1

d3 p j

2Ej
f j (x, p j )

⎞
⎠∫ ⎛

⎝ n+m∏
k=n+1

1

(2π )3

d3 pk

2Ek

⎞
⎠

× (2π )4δ4

⎛
⎝ n∑

j=1

pμ
j −

n+m∑
k=n+1

pμ

k

⎞
⎠Wn,m(p j ; τ (i), ν | pk ; λ). (10)

Similarly, the covariant collision rate of the backward reaction n(i) ← m is obtained from the gain term of Eq. (9):

dNcoll[m → n(i)]

dt dV
= 1

Nid !

∑
τ (i),ν

∑
λ

(
1

(2π )3

)m ∫ ⎛
⎝ n+m∏

k=n+1

d3 pk

2Ek
fk (x, pk )

⎞
⎠∫ ⎛

⎝ n∏
j=1

1

(2π )3

d3 p j

2Ej

⎞
⎠

× (2π )4δ4

⎛
⎝ n∑

j=1

pμ
j −

n+m∑
k=n+1

pμ

k

⎞
⎠Wn,m(p j ; τ (i), ν | pk; λ). (11)

The transition amplitude Wn,m in Eqs. (10) and (11) is
the same because of the equivalence of the scattering ma-
trix under the detailed balance condition for forward and
backward processes. Therefore, both expressions can be an-
alytically or numerically solved knowing the dependence of

the transition amplitude Wn,m on the kinematic variables.
This was suggested in Ref. [45], where, in particular, it was
shown that the collision probabilities of forward and back-
ward reactions can be written in terms of the corresponding
many-body phase-space integrals (cf. Appendix C) if one
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assumes that the transition amplitude Wn,m is a function only
of the invariant energy of the collision,

√
s = (

∑n
j=1 p j )2 =

(
∑n+m

k=n+1 pk )2. We apply this procedure for deuteron
reactions.

The goal of this work is to implement in the PHQMD
transport approach the following deuteron reactions: (i) the
elastic dπ → dπ and dN → dN reactions, as well as 2 ↔ 2
inelastic dπ ↔ NN reactions; (ii) the 2 ↔ 3 inelastic reac-
tions dπ ↔ NNπ and dN ↔ NNN with all pion species
π = π+, π0, π− and N = p, n.

Employing the covariant expressions in Eq. (10) and (11)
with n = m = 2 and i = d , the collision rate for the elastic
and inelastic dπ ↔ NN reactions can be written as

dNcoll[2(d ) ↔ 2]

dt dV
=
∫ ⎛
⎝ 2∏

j=1

d3 p j

(2π )3
f j (x, p j )

⎞
⎠vrelσ

2,2
tot , (12)

where σ 2,2
tot is the total cross section for a two-to-two scattering

process which is defined from the W2,2 transition amplitude by
the well known definition

σ 2,2
tot (

√
s) = 1

4Iflux

∑∫
d3 p3

(2π )32E3

∫
d3 p4

(2π )32E4

×W2,2(
√

s)(2π )4δ4(p1 + p2 − p3 − p4), (13)

with the flux factor Iflux being related to the (relativistic) rel-
ative velocity vrel of the incident on-shell particles of masses
m1 and m2:

Iflux =
√

(p1 p2)2 − m2
1m2

2 = E1E2vrel. (14)

In Eq. (13) the sum is performed over the quantum numbers
involved in the reaction and it includes also the statistical
factor 1/Nid !, which we absorb in the cross section.

The PHQMD/PHSD collision integral for the deuteron re-
actions is solved numerically by dividing the coordinate space
in a grid of cells of volume �Vcell and sampling the on-shell
single-particle distribution function f (x, p) at each time step
�t by means of the test-particle ansatz [51]

f (x, p) = (2π )3

�Vcell

Ntest∑
j=1

δ(
r j (t ) − 
x)δ( 
p j (t ) − 
p), (15)

where 
r j (t ) and 
p j (t ) are, respectively, the position and the
momentum of the particle j at time t . By inserting Eq. (15)
in Eq. (12) we obtain the collision probability for the 2 ↔ 2
reactions in the unit volume �Vcell and unit time �t :

P2,2(
√

s) = σ 2,2
tot vrel

�t

�Vcell
, (16)

which depends on
√

s through vrel and σ 2,2
tot . Employing

sufficiently small values of �Vcell and �t , we solve numeri-
cally the 2 ↔ 2 collisions for the deuterons by the stochastic
method, i.e., by calculating the invariant energy

√
s of each

possible reaction and then the associated probability P2,2,
which is confronted with a random number between 0 and
1. To calculate P2,2 for the inelastic dπ ↔ NN process we
use parametrized expressions for the total cross section σ 2,2

tot ,
which are reported in Appendix A. Now we describe the

inelastic reactions dπ ↔ NNπ and dN ↔ NNN and, in
particular, how the backward reaction 2 ← 3 can be fully
implemented within the covariant rate formalism adopted in
our PHQMD approach. On the one hand, this is physically
motivated by the fact that these are the dominant reactions
for the production of deuterons in HICs due to their large
cross sections, σtot � 200 mb, compared to the subdominant
channel NN → dπ with σtot � 10 mb. On the other hand, it
provides an effective method to describe reactions with more
than two particles in the entrance channel, which cannot be
formulated in terms of cross sections as in Eq. (13). For the
forward reaction, the breakup of deuterons by an incident
N or π , the definition of the covariant collision rate follows
straightforwardly and is given by Eq. (10) with n = 2, m = 3,
and i = d:

dNcoll[2(d ) → 3]

dt dV
=
∫ ⎛
⎝ 2∏

j=1

d3 p j

(2π )3
f j (x, p j )

⎞
⎠σ 2,3

tot vrel, (17)

where σ 2,3
tot is the total inelastic cross section for either the

dπ → NNπ or the dN → NNN scattering process, which is
defined similarly to Eq. (13) with an extra integration over the
momentum of the third particle in the final state. The sum over
the internal quantum numbers appearing in Eq. (17) is also
absorbed in σ 2,3

tot . In Appendix A we provide the parametrized
expressions of such inelastic cross sections as a function of√

s and we describe in detail how they are obtained from
the experimental measurements of the total inclusive cross
section for dπ and dN collisions. Employing again the test-
particle ansatz in Eq. (17), we derive the collision probability
for the forward reaction,

P2,3 = σ 2,3
tot vrel

�t

�Vcell
, (18)

which is a function of
√

s, and we sample stochastically the
collisions in the unit volume �Vcell and the unit time �t
for each PHQMD/PHSD parallel ensemble event. When a
collision occurs, we construct the final state of three particles
in the center of mass of the incident pair by means of standard
kinematic routines [84,85].

The covariant rate for the backward NNπ → dπ and
NNN → dN reactions follows from Eq. (11), but we cannot
write it in terms of a cross section. However, what is important
for us is to obtain a collision probability P3,2 in order to apply
the stochastic method. With the assumption W3,2 = W2,3 =
W (

√
s) [45] the transition amplitude can be moved outside the

integration over the momenta of the two particles in the final
state. As a result, these integrations can be combined with the
δ function into the two-body phase space R2(

√
s, m1, m2) (cf.

Appendix C), so that we can write as an intermediate step

dNcoll[3 → 2(d )]

dt dV
=

∫ (
5∏

k=3

d3 pk

(2π )32Ek
f j (x, pk )

)

×
∑

W (
√

s)R2(
√

s, m1, m2), (19)

with the sum running over the quantum numbers and taking
into account also the statistical factor for identical parti-
cles. Next, we introduce the σ 2,3

tot of the forward process by
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inverting its definition from the transition amplitude and use
again the condition W (

√
s) to isolate the three-body phase

space R3(
√

s, m3, m4, m5) of the initial particles. Hence,

∑
W (

√
s) = FspinFiso

4E f
1 E f

2 σ 2,3
tot

R3(
√

s, m3, m4, m5)
, (20)

where Fspin and Fiso denote the factors coming from the sum
over the spin and isospin quantum numbers in the transition
matrix. For the spin contribution we have

Fspin =
(

gf
1gf

2

g3g4g5

)
, (21)

where in NNπ (N ) → dπ (N ) reactions the particles are or-
dered as follows:

gf
1 = gd , gf

2 = g5 = gπ (N ), g3 = g4 = gN . (22)

For the isospin part a separate discussion is given at the end
of the section.

Combining Eqs. (19) and (20) with the test-particle ansatz,
we finally obtain the collision probability for the backward
3 → 2 process in the unit volume �Vcell and the unit time �t ,

P3,2 = FspinFiso
E f

1 E f
2

2E3E4E5

P2,3

�Vcell

R2(
√

s, m1, m2)

R3(
√

s, m3, m4, m5)

= FspinFiso
E f

1 E f
2

2E3E4E5

σ 2,3
tot vrel�t

�V 2
cell

R2(
√

s, m1, m2)

R3(
√

s, m3, m4, m5)
,

(23)

where in the second line we employ the collision probability
for the forward 2 → 3 reaction from Eq. (23). We notice that
on the right-hand side of Eqs. (20) and (23) the energies of
the produced particles E f

1 and E f
2 appear. That means that in

our numerical implementation we have to sample the possible
kinematics of the final state before the collisions take place.
If the collision occurs, we reconstruct the kinematics of the
emitted particles in the center of mass of the three interact-
ing initial particles according to our previous sampling. In
this sense, we can implement the forward and the backward
reactions consistently within the same stochastic model. In
Ref. [25] the deuteron reactions π pn → πd and N pn → Nd
were implemented in the SMASH transport approach for rel-
ativistic HICs. To do this numerically a fictitious d ′ resonance
was introduced and the 3 → 2 process was divided into two
2-to-2 steps. Later on, in Ref. [40] the same multiparticle
production mechanisms were described according to the co-
variant rate formalism of Ref. [45]. In particular, Eq. (6) of
Ref. [40] shows the same probability for the stochastic treat-
ment of the 3-to-2 process as the one we have just derived
in Eq. (23). Comparing both expression, we can make some
comments:

(i) The two- and three-body phase spaces R2 and R3 ap-
pear in both equations as a function of

√
s and particle

masses. For R2 we employ the well known analytic
expression, while for R3 we adopt the parametrization
of Ref. [83]. We collect all formulas in Appendix D.
In Ref. [40] it is done similarly, so we do not expect
any discrepancy due to this part.

TABLE I. Reactions for deuteron production by π -catalysis im-
plemented in the PHQMD collision integral. In the first column the
initial πNN states, which are allowed to form the final dπ state in
the second column, are collected by increasing total electric charge
Qtot written in the third column. When the final state is a ∅ it means
that deuteron production is not possible for the specific πNN state.
The probability for each transition depends on the isospin factors Fiso

which are calculated in Appendix C.

(i) π + N + N ( f ) d + π Qtot

n + n + π− ∅ −1
n + n + π 0 d + π− 0
p + n + π− d + π− 0
n + n + π+ d + π 0 1
p + n + π 0 d + π 0 1
p + p + π− d + π 0 1
p + p + π 0 d + π+ 2
p + n + π+ d + π+ 2
p + p + π+ ∅ 3

(ii) The probability is proportional to the total cross
section for the inverse 2-to-3 process. For deuteron
disintegration into three particles by π and N scat-
tering we employ a parametrization of the cross
section as a function of

√
s, as reported in Ap-

pendix A, which is fitted to the available experimental
data in the peak region. At high

√
s we let our cross

section to tend to zero because the 2-to-3 phase space
closes and other inelastic processes with final par-
ticles m > 3 open. In Ref. [40] cross sections from
Ref. [25] are used which differ only for a constant
behavior at high

√
s. We investigated the possible

difference arising from the different asymptotic be-
haviors of the cross sections and we did not find any
impact on deuteron yields and the pT spectra.

(iii) Our spin factor Fspin is the same as the one in
Ref. [40], while the isospin coefficient Fiso does not
appear there. This represents the novelty of our work.

In Ref. [40] as from Ref. [25] the π catalysis is consid-
ered only for the channel where there is no charge difference
between the initial and the final pions, i.e. πd ↔ π pn. We
extend the deuteron production to all possible πNN channels
which fulfill the conservation of total isospin. We list all
implemented channels in Table I.

Since the deuteron has isospin zero, the state πd is a
state with defined isospin 1 provided by the pion. In general,
a three-particle state πNN has not a definite value of total
isospin (i.e., it is not an eigenstate of this quantum num-
ber), rather it is formed by a superposition of eigenstates.
Therefore, for each channel of the table the Fiso represents
the projection of the state πNN on the isospin 1 state. We
perform the calculation in detail in Appendix C. For the in-
verse reaction πd → πNN the initial state has total isospin
1. The total cross section σ 2,3

tot describes the reaction of dπ

to any of the possible πNN channels. In order to correctly
evaluate the disintegration reaction, we weight the transition
to one specific channel with the corresponding isospin factor
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calculated in Appendix C. Similarly we calculate the isospin
factors Fiso for the N catalysis, where in this case there are
no multiple channels available, i.e., NNN ↔ dN does not
account for other channels with respect to N pn ↔ dN .

IV. BOX VALIDATION AND ANALYTIC RESULTS

We first study deuteron reactions in the static “box” frame-
work where we can compare the results from our stochastic
multiparticle approach with expectations from so-called rate
equations. Rate equations differ from the transport approach
because they involve the solution of chemical rates of a ki-
netically equilibrated gas. They have been used for example
in Ref. [86] to study the dynamical evolution of baryon-
antibaryon annihilation and regeneration by solving fugacity
equations and in Ref. [87] where the time evolution of
light cluster abundancies was investigated in an expanding
medium. In this sense they represent an alternative approach
to the covariant rate formalism of Refs. [45,81].

In a static medium at equilibrium with temperature T the
rate equations can be taken as an analytic reference to verify
the correct implementation of the numerical collision criteria.
Here we follow a one-by-one comparison with Section B of
the work done by the SMASH group in Ref. [40] and check
the agreement of our results.

As a model we consider the π -catalysis reaction with no
isospin factors. Using the same notation of Ref. [40] we in-
troduce the fugacities λi(t ) for the particle species involved in
πd ↔ π pn reactions. Without isospin factors the initial and
final pions have the same charge. Therefore, we can see im-
mediately that the number of pions remains constant. Hence,
we can write the system of rate equations for d and N = p, n
as follows:

λ̇d =
∑

〈vrelσπd〉
(

gd gπ

g2
N gπ

λ2
N − λd

)
neq

π λπ ,

λ̇N = −
∑

〈vrelσπd〉
(

gd gπ

g2
N gπ

λ2
N − λd

)
neq

π λπ ,

λ̇π = 0,

(24)

in units of fm−1 and denoting the time derivative dλi
dt as λ̇i.

In Eq. (27) the sum runs over all pions which are initialized
in the system according to an equilibrium density at given
temperature T times a constant fugacity,

ρπ = λπneq
π (T ) = λπgπ

m2
πT

2π2
K2

(mπ

T

)
. (25)

The factors gi are the spin degeneracies with values

gd/3 = gN/2 = gπ = 1. (26)

Finally, σπd is the cross section for 2 → 3 deuteron breakup
by an incident pion, reported in Appendix A, and the thermal
average 〈vrelσ 〉 is calculated using the formula

〈vrelσi j〉 = 1

4m2
i m2

j T K2
(mi

T

)
K2
(mj

T

)
×
∫ ∞

mi+mj

d
√

s
[(

s − m2
i − m2

j

)2 − 4m2
i m2

j

]

× K1

(√
s

T

)
σi j, (27)
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FIG. 2. Time evolution of particle densities from box simulations
for dπ ↔ pnπ reactions compared to solutions of rate equations (see
text). The box is initialized with temperature T = 0.155 GeV,
equal densities of protons and neutrons, ρN (0) = 2ρp(0) = 2ρn(0) =
0.12 fm−3, and pion density ρπ (0) = 0.09 fm−3 for the three isospin
states. The initial density of deuterons is set to zero, i.e., ρd (0) = 0.

which generalizes the expression in Ref. [88] for different par-
ticle masses. The time evolution of the nucleon and deuteron
density can be directly calculated from the fugacities by

ρi(t ) = neq
i (T )λi(t ),

where neq
i (T ) are the densities at equilibrium at tempera-

ture T . We set as initial values ρN (0) = 2ρp(0) = 2ρn(0) =
0.12 fm−3 and ρd (0) = 0. Provided with these initial con-
ditions, Eq. (24) is a system of coupled first-order ordinary
differential equations (ODEs) which can be solved applying
Runge-Kutta methods.

We prepare a cubic box of volume V = (10 fm)3 in which
particles are initially distributed uniformly in coordinate space
with a density ρN (0) = 0.12 fm−3 for nucleons and a density
ρπ (0) = 0.09 fm−3 for pions and in momentum space accord-
ing to a Boltzmann distribution with temperature T . Then, we
divide the box volume into unit cells �Vcell = (2.5 fm)3 where
deuteron reactions are sampled numerically at each time step
�t = 0.2 fm. We set the parameters �Vcell and �t in order to
fulfill the main conditions of the stochastic method [89,90].
In particular, in each unit cell there are sufficient particles
to perform 2 ↔ 3 collisions with probabilities (18) and (23),
which must be always smaller than unity.

In Fig. 2 we show the evolution of particles densities
ρi(t ) = Ni(t )/V as function of time in a static medium at
temperature T = 0.155 GeV due to the reactions dπ ↔ pnπ .
The labels and the colors in the plot identify the differ-
ent particles species: red for nucleons N = p, n, green for
deuterons, and orange for pions. The solid lines are the solu-
tions from the system of Eq. (24) for nucleons and deuterons
using our parametrized form for the σ 2,3

πd cross section plotted
in Appendix A. The dashed black line is the expectation
value for the deuterons derived with the same rate equations,
but employing the parametrized cross section taken from
the SMASH study [25]. The symbols represent the results
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FIG. 3. The differential collision rate as a function of the invari-
ant center-of-mass energy

√
s is shown for all deuteron reactions

implemented in PHQMD. The forward direction, i.e., deuteron disin-
tegration, for each channel is represented by an empty symbol, while
the backward direction, i.e., deuteron production, is represented by
the corresponding full symbol. The various processes are shown
using different symbols and line styles: inelastic Nd ↔ pnN (upside-
down triangles and solid lines); inelastic πd ↔ NN (squares with
dash-dotted lines); inelastic πd ↔ NNπ (circles with solid lines).
The different isospin channels are displayed using different colors.

obtained from box simulations. In particular, for deuterons we
show two cases: (i) the case where the 2 ↔ 3 reactions are
solved numerically by means of the multiparticle stochastic
approach in both directions (filled circles); (ii) the second case
where the forward 2 → 3 channel is performed by means of
the geometric criterion where the deuteron collides with a pion
and it is disintegrated into the final π pn system if it fulfills the
condition

dT < bmax =
√

σπd

π
. (28)

Here dT is the distance of closest approach as defined in
Ref. [91] (see also Ref. [92]). The geometric criterion is used
to describe many reactions in the original PHSD collision
integral, which is also employed within PHQMD. As fol-
lows from Fig. 2, both methods—stochastic and geometric
criterion—give the same equilibrium values for 2 → 3 reac-
tions. We note that more details of the box simulations for the
other deuteron reactions, i.e., Nd ↔ pnN and πd ↔ NN , are
reported in Appendix B.

In Fig. 3 the detailed balance condition is verified by
checking the differential collision rate as a function of the
invariant energy

√
s for each implemented scattering pro-

cess: inelastic Nd ↔ pnN (upside-down triangles and solid
lines); inelastic πd ↔ NN (squares with dash-dotted lines);
inelastic πd ↔ NNπ . The symbols, lines and colors for each
channel are described in the figure legend. As follows from
Fig. 3, the reaction rate for the forward direction is equal
to the reaction rate of the backward direction for all chan-
nels. Thus, detailed balance is fulfilled in our calculations
for all isospin channels. The static box calculations show

that (i) the numerically computed densities of protons and
deuterons are in a good agreement with analytical results for
the equilibrium values; (ii) the stochastic and geometrical
methods for 2 → 3 reactions agree; (iii) at equilibrium the
detailed balance is verified for 2 ↔ 3 and 2 ↔ 2 reactions.
This ensures the validity of our implementation of the 2 ↔ 3
and 2 ↔ 2 reactions for deuteron production and absorption
within the static box study. We note also that our box results
agree with the SMASH calculations [40] when considering
the same isospin reaction channel with the same cross section.
After the box tests all deuteron reactions are implemented in
the PHQMD framework. In particular, the deuteron produc-
tion by πNN → πd and NNN → Nd reactions are sampled
stochastically within each PHQMD/PHSD parallel ensemble,
while the inverse processes πd → πNN , Nd → NNN and
the sub-dominant NN ↔ dπ and elastic reactions are per-
formed by means of the geometric criterion described above,
in order to speed up the computations. In contrast to the
“box” model, for the stochastic method in realistic HICs with
PHQMD we simulate the phase-space evolution of the fire-
ball on an expanding three-dimensional grid which we divide
into cells of volume �Vcell = �x �y �z, where �x = �y =
2.5 fm and �z = 2.5/γc.m. fm, and the longitudinal expansion
of the fireball is taken into account through the factor γ −1

c.m. =√
1 − v2

c.m., where vc.m. is the velocity of a projectile or target
in the c.m. frame. Inside each cell there are sufficient particles
to sample stochastically the deuteron reactions at each time
step �t . Moreover, the time step �t is initially increasing
with time as �t ∼ 1/γc.m. in order to let particles in each
cell evolve smoothly at the beginning of the nucleus-nucleus
collision. However, we employ the condition �t � 0.1 fm/c
at later times in order to keep the collision probability below
unity.

V. KINETIC DEUTERONS IN HICs

We start this section by showing in Fig. 4 the collision rates
for all inelastic processes for deuteron production (solid green
lines) and disintegration (dashed red lines) implemented in
PHQMD for two different HIC systems. The top panels (I)
show the reaction rates for Au+Au collisions at Elab = 1.5A
GeV (impact parameter b = 2 fm), while the bottom panels
(II) show the reaction rates for Pb+Pb collisions at Elab = 40A
GeV (impact parameter b = 3.5 fm). Confronting (I) and (II)
we clearly see that at the lower collision energy the formation
and breakup of deuterons is mainly driven by the NNN ↔ dN
channel, involving only nucleons, while at higher energies the
reaction πNN ↔ dπ becomes dominant because pions are
more abundant. The two-body inelastic reaction NN ↔ dπ

(right panels) has a much lower rate compared to three-body
inelastic NNπ ↔ dπ (left panel) and NNN ↔ dN (middle
panel) channels because the cross section is smaller.

A. Effect of charge exchange reactions

Before showing our final results, we study the impact of
the different isospin channels on deuteron production in rela-
tivistic HICs. The reaction dπ ↔ NNπ is important only in
the case where the pion catalysis is dominant compared to the
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FIG. 4. Collision rates for deuteron production (solid green lines) and breakup (dashed red lines) reactions at mid-rapidity |y| < 0.5 as a
function of evolution time are shown for two different HICs setups: (I) top panels show, respectively, the reaction rates for N + N + π ↔ d + π

(a), N + N + N ↔ d + N (b), and N + N ↔ d + π (c) in Au+Au collisions at Elab = 1.5A GeV at fixed impact parameter b = 2 fm; (II)
bottom panels show the reaction rates for the same channels in Pb+Pb collisions at Elab = 40A GeV at fixed impact parameter b = 3.5 fm.

nucleon catalysis. Therefore, we select Au+Au central colli-
sions at the energy

√
sNN = 7.7 GeV to study the production

of deuterons through all the implemented reactions.
Moreover, for this system we can also compare our results

with those obtained recently by the SMASH collaboration
[40], where for deuteron production by multiparticle reactions
the same covariant rate formalism is applied. This substitutes
the previous SMASH work, where the 3 → 2 channel was
simulated numerically by a sequence of two 2 → 2 processes
passing through the formation of a fictitious d ′ resonance
(Ref. [25] for the LHC energy, [39] for RHIC BES).

In SMASH studies only the kind of reactions πd ↔ π pn,
where the isospin degrees of freedom are not taken into ac-
count, were considered within the pion catalysis. However,
isospin conservation allows for two types of pion catalyzed
reactions: π+d ↔ π+ pn, in which the π charge is conserved,
and the charge exchange reaction π+d ↔ π0 pp. As discussed
in the previous section, a goal of this work is to study the
impact of including all the charge exchange reaction channels
on the production of “kinetic” deuterons in HICs.

In Fig. 5 the mid-rapidity (|y| < 0.5) multiplicity of
deuterons in Au+Au collisions at

√
sNN = 7.7 GeV for a fixed

impact parameter b = 3.5 fm is shown as a function of time.
The full black circle is the STAR measurement [19] and the
full black line is the PHQMD result if we include both types
of π catalyzed channels.

It is useful to compare our results with those of SMASH
in which only the π+d ↔ π+ pn channel (and similar for
π− and π0) is included and displayed as red dashed line
(taken from Fig. 4(a) in Ref. [40]). If we omit the π charge
exchange reaction and retain only what is also employed
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by SMASH, we find the dash-dotted orange line. Our re-
sult gives a slightly smaller number of deuterons and shows
also a different time behavior. The small difference of the
order of 10% is not surprising because SMASH and PHQMD
are completely different transport approaches. In SMASH,
a hydrodynamical evolution of the fireball is followed by
a particlization at the hypersurface of an energy density of
ε ≈ 0.26 GeV/fm3. Then particles propagate without poten-
tial interaction (cascade) and collide in the hadronic phase
until chemical and kinetic freeze-out is achieved. Therefore,
in SMASH the kinetic production of deuterons is limited
to the latest stages and, more importantly, it is not affected
by the potential interactions among nucleons. In contrast, in
PHQMD the deuteron reactions are embedded in a transport
environment in which the baryons are propagated after their
creation by the QMD equations, which include potential inter-
actions. If the local energy density exceeds the critical value
εc ≈ 0.5 GeV/fm3, the hadrons dissolve into the partons,
which follow the description of the dynamical quasiparticle
model (DQPM) implemented within the PHSD framework
(see Sec. II and references therein). Deuteron formation is
therefore only possible in regions in which the energy density
is smaller than εc, where hadrons are the degrees of freedom
of the system.

Such a different description of the expanding system makes
it difficult to disentangle the differences of these two ap-
proaches. We mention that, just for test purposes, we have
implemented in PHQMD an additional energy density cut for
deuteron production, ε < 0.26 GeV/fm3, mimicking the tran-
sition from the hydro to the hadronic phase as in the SMASH
approach; however, the results are similar within statistical
uncertainties.

Comparing the full black and the orange dot-dashed curve,
we observe that the π charge exchange reaction increases the
deuteron yield by 50% (for the isospin factors we refer to
Appendix C) at this beam energy and brings the complete
calculation outside of the experimental error bars. To com-
plete our study, we made a similar check for collisions at
lower energies. In particular, we confirm that at the energy of
the GSI-SIS accelerator, Elab = 1.5A GeV, i.e.,

√
sNN = 2.52

GeV, where the production of deuterons occurs mainly by
NNN → dN (see the collision rate in Fig. 4) the contribu-
tion of π catalyzed deuteron production is negligible, while
at

√
sNN = 3 GeV, the energy of the STAR FiXed Target

(FXT) experiment, the π charge exchange channel increases
the deuteron production by 20%.

B. Modeling of finite size of deuteron

In dense nuclear matter the binding energy of a deuteron
is reduced and becomes eventually positive because (for a
deuteron at rest and a zero temperature environment) the
quantum states with the lowest energy are occupied by protons
and neutrons up to the Fermi momentum, which is related to
the density ρN of nuclear matter by

pF = (3π2ρN )1/3. (29)

Therefore, only the momentum components above the Fermi
surface can contribute to the deuteron binding energy and the

expectation value of the deuteron Hamiltonian with respect to
the pn pair wave function �(p1, p2) is given by∫ ∞

pF

d3 p1

∫ ∞

pF

d3 p2 〈�(p1, p2)| Ĥd |�(p1, p2)〉 = Ed (pF ),

(30)
where Ed (pF ) is the binding energy of the deuteron in nu-
clear matter. If ρN increases Ed (pF ) becomes positive and
the deuteron becomes unbound. The value of the nuclear
density ρ at which the deuteron binding energy vanishes is
known as Mott density [93,94]. However, only the case of
low-density cold (T � 0) infinite nuclear matter Ed (pF ) can
be calculated analytically. In the hot fireball (T � 100 MeV),
created in relativistic HICs at mid-rapidity, deuterons are in
addition destroyed by collisions with fellow particles (mostly
pions), which scatter with a thermal transverse momentum
p � T � Ed , which is much larger than the deuteron binding
energy.

1. Excluded volume

In collision integrals the final-state particles are considered
as pointlike particles. In vacuum this is the proper description,
but in matter, where the final-state hadrons are surrounded
by other hadrons, modifications are necessary if the produced
particles have a finite extension. A deuteron with an rms radius

of about
√

〈r2
d〉 � 2.1 fm cannot be formed if between the p

and the n other hadrons are located. One possibility to take
this into account is to include in our covariant rate formalism
an excluded volume condition. As discussed in Sec. III, for the
dominant production channels NNπ → dπ and NNN → dN
the probability P3,2 that the collision occurs and the deuteron
is formed is given by Eq. (23). We include the excluded vol-
ume condition in our calculation in the following way. When,
according to the collision rate, a deuteron should be produced
at time t , we compute the position and momentum of the
center of mass of the “candidate” deuteron d . Subsequently,
we loop over all hadrons, which exist at that time t , and for
each particle i we check the condition

|ri − rd | > Rd , (31)

where the parameter Rd is the radius of the excluded volume.
The particle positions, ri and rd , are calculated in the center-
of-mass frame of the candidate deuteron. In order to produce
a deuteron at the final state of the reaction the condition (31)
must be fulfilled by all the surveyed particles. Otherwise, the
candidate deuteron is considered not formed and the system
is restored to the initial state, as if the participant hadrons had
never scattered. Thus, as for the MST condition for cluster
formation, Eq. (6), we use also here a geometrical criterion
to take into account the finite extension of the deuteron. How-
ever, both criteria work differently: (i) in MST i and j can only
be baryons, while for the excluded volume we account for all
spectator hadrons in the fireball, i.e., those particles which do
not participate in the initial stage of the deuteron reaction; (ii)
the excluded volume condition, which excludes deuteron for-
mation if a third hadron is too close, works oppositely to the
MST clustering, where two baryons form a cluster if they are
sufficiently close. The excluded radius Rd in Eq. (31) is related
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FIG. 6. The square modulus of the deuteron wave function
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to the root-mean-square (rms) radius rm of the deuteron by

R2
d � 〈

r2
m

〉 = ∫ ∞

0
dr r2|φd (r)|2, (32)

where φd (r) is the deuteron wave function (DWF) in co-
ordinate space, which is obtained by solving the radial
Schrödinger equation using a phenomenological parametriza-
tion of the nucleon-nucleon potential VNN , which correctly
reproduces its ground state properties. In particular, the func-
tion φd (r) takes into account the fact that the deuteron ground
state is a mixture of a S and a D states, with assigned real
functions u(r)/r and v(r)/r respectively, and it is normalized
so that the total probability of finding the deuteron in one of
the two states is 1,∫ ∞

0
dr|φd (r)|2 =

∫ ∞

0
dr[u2(r) + v2(r)] = 1. (33)

More specifically, we employ the DFW parametrization from
Ref. [95], where the functions u(r) and v(r) can be expressed
as discrete superpositions of Hankel functions. Similar calcu-
lations were performed by the Paris group [96,97] using their
own parametrization of the VNN potential.

In Fig. 6 the DWF from Ref. [95] is represented by the
solid blue line. The dashed blue line is the result employing
the Paris potential from Ref. [96,97]. The two results show the
same behavior. Inserting this function in Eq. (32) and solving
the integral numerically we find Rd = 1.803 fm (red vertical
line).

In Fig. 7 we study the impact of the excluded volume con-
dition on deuteron production for central (b = 3.5 fm) Au+Au
collisions at

√
sNN = 7.7 GeV. The full circle is the measured
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value of the STAR experiment [19] at mid-rapidity. The lines
represent the time evolution of the deuteron yield in PHQMD
for the rapidity range |y| < 0.5. The black solid line is the re-
sult if all production channels are included, which was already
shown in Fig. 5. The red lines are the results if we include the
excluded volume condition. Here we present the results for
two excluded volume radius parameter values, Rd = 1.8 fm
(red thick solid line) and Rd = 2.1 fm (red dashed line). As
seen from Fig. 7, the inclusion of the excluded volume condi-
tion has a large impact on the formation of deuterons: at the
considered energy it reduces their abundance at mid-rapidity
by a factor of about 3. This is due to the high density of
hadrons at mid-rapidity in the initial phase of the reaction. The
final abundance of deuterons depends on Rd . Two choices of
the excluded radius, Rd = 1.8 fm and Rd = 2.1 fm—two val-
ues around the rms radius of the deuteron—give a difference
of the final number of deuterons of 15%.

2. Momentum projection

As we have seen, the excluded volume condition models
the fact that the deuteron is an extended object in coordi-
nate space with a root-mean-square radius determined from
Eq. (32), where |φd (r)|2 is the square of its ground state wave
function represented in Fig. 6 with the colored lines. The
square of the relative momentum 〈p2〉 of the bound pn pair can
be obtained from the deuteron wave function represented in
momentum space, which can be derived by taking the Fourier
transforms of the S- and D-state components. The square
of the DWF in momentum space |φd (p)|2 ∝ 4π p2[u2(p) +
v2(p)], calculated using the Paris potential [97], is presented
in Fig. 8 as a solid red line, and its integral is normalized to
unity. Using the uncertainty principle, we can calculate the
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expected relative momentum of the bound pn pair√
〈p2〉 � 1√〈

r2
m

〉 = 1

Rd
. (34)

For Rd = 1.8 fm, we obtain
√

〈p2〉 � 0.1 GeV, a value very
close to the value calculated using the DWF in Fig. 8, which
is about 0.13 GeV.

The probability amplitude that a proton and a neutron
collide and form a deuteron is given by 〈φd (p)|φ(p)〉 where
φd (p) is the DWF, whose square is shown in Fig. 8, while φ(p)
is the wave function of the relative momentum p of a proton
and a neutron just after the collision occurred. In both cases,
the relative momentum p is calculated in the center-of-mass
frame of the deuteron. This indicates that a proton and a
neutron have the highest chance to form a deuteron in the
region where their wave function φ overlaps most with φd ,
which happens if their relative momentum is of the order of
0.1 GeV.

The covariant collision rate for 3 → 2 reactions derived in
Eq. (19) assumes that the transition amplitude depends only
on the center-of-mass energy,

√
s. For the deuteron case, this

is an oversimplified assumption because nucleons with a very
large relative momentum have a small probability of forming
a deuteron. In order to relax this assumption, we assume that
the momentum transfer of the third body is small and that,
therefore, in the πNN → πd and NNN → Nd reactions, the
initial relative momentum of the nucleons is close to that
of the two nucleons bound in a deuteron. This allows one
to determine the probability that a deuteron is produced in
these reactions by weighting the initial relative momentum
with |φd (p)|2 (which is normalized to unity). Consequently,
a pair with a smaller relative momentum in its center-of-mass
system has a higher chance to produce a deuteron than a pair
with a larger relative momentum.

In the transport calculations we employ a Monte Carlo
procedure to decide whether or not a deuteron is produced.

FIG. 9. Number of deuterons at mid-rapidity as function of time
from PHQMD simulations for central Au+Au collisions at

√
sNN =

7.7 GeV. The different lines correspond to different models of finite-
size effects: (i) with excluded- volume from Fig. 7 (red solid), (ii)
with momentum projection only (dashed blue), (iii) including both
effects (thick dashed green line with full squares). The case of all
production channels without finite-size effects is taken again from
Fig. 5 (black solid).

If three nucleons are in the entrance channel we randomly
determine which of the possible pairs is considered as a pos-
sible deuteron candidate. Here we study the effect of this
momentum projection on the deuteron production in HICs.
In Fig. 9 we display the time evolution of the number of
deuterons at mid-rapidity in PHQMD simulations for central
Au+Au collisions at

√
sNN = 7.7 GeV, as compared to STAR

data at mid-rapidity (black point). The black solid line and
red solid line are those from Fig. 7 and represent the deuteron
yield including all possible channels, respectively without
and with the excluded volume condition with a parameter
Rd = 1.8 fm. The dashed blue line is the result applying
the momentum projection only. One can see that momen-
tum projection strongly suppresses the deuteron production
at the initial stage of Au+Au collisions where dominantly
the collisions of energetic nucleons take place. Moreover, we
find that the momentum projection and the excluded volume
condition give for large times the same suppression at mid-
rapidity. They both lead to a strong suppression of deuteron
formation at mid-rapidity at the time of 10–20 fm, due to the
presence of the dense medium populated by many particles
(especially pions) which can exist in the volume occupied
by the deuteron. At later times deuteron production becomes
important, but asymptotically the production is only 30% of
that without projection.

As a next step, we investigate the case where the two
finite-size effects, namely the excluded volume in coordinate
space and the momentum projection in momentum space, are
simultaneously applied to the production of kinetic deuterons.
This scenario is shown in Fig. 9 as the thick dashed green
line with full squares. One can see that the inclusion of both
conditions produces a suppression which is about a factor
2 stronger than the case where the excluded volume or the
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momentum projection are applied individually, which means
an overall suppression factor of 6 with respect to the case
where no finite-size effects are considered (Fig. 9 solid black
line).

We studied the impact of finite-size effects on kinetic
deuterons at mid-rapidity for different collision systems and
found that the amount of suppression is quite similar at all
collision energies. Only for top RHIC energy did we notice a
larger factor—about an order of magnitude between the case
without and with both effects—which we could explain by the
higher density of particles (pions) at the initial stages which
makes the excluded volume condition more effective. It is also
interesting to study this effect in different rapidity intervals.

In Figure 10 we present the rapidity distributions of kinetic
deuterons from PHQMD simulations in central nucleus-
nucleus collisions for four different collision systems, which
are reported in the legend. The color coding is the same as in
Fig. 9. At the lowest energy,

√
s = 2.52 GeV, corresponding

to Elab = 1.5A GeV, where projectile and target decelerate
almost completely and form a mid-rapidity source, the max-
imum of the proton distribution as well as the maximum
of the deuteron distribution are peaked at mid-rapidity. At
higher energies projectile and target pass each other and the
proton as well as the deuteron distributions have a minimum at
mid-rapidity.

It is remarkable that the excluded volume and the mo-
mentum projection approaches lead at all beam energies to
an almost identical rapidity distribution around mid-rapidity.
Only towards the edge of the rapidity interval, which we
investigated here, does momentum projection lead to a larger
suppression of the deuteron yield because at this rapidity the
relative momentum of the nucleons is larger. The suppression
of the deuterons is always of the order of 3 at mid-rapidity.
At finite rapidities the momentum projection gives always
a larger suppression than the excluded volume approach. If
we apply the excluded volume and momentum projection
simultaneously we obtain an additional suppression, which is,
however, at mid-rapidity small compared to the suppression
due to the individual application of one of these finite-size
corrections. This is a sign that the relative distance and mo-
mentum of the proton-neutron pair are correlated. The form of
dN/dy is close to the one obtained for momentum projection
only and is shallower than the distribution without finite-size
effects. We studied also the slope of the pT spectra of the
kinetic deuterons and found that it is not changed by finite-size
effects. Before moving to the results, we want to mention that

(i) Currently, the kinetic deuterons, which are created in
collisions, are treated in PHQMD as pointlike particles
which stream freely until they eventually disintegrate
due to collisions with pions or nucleons. This means
that they have no potential interaction with other
nucleons.

(ii) The nucleons of the kinetic deuterons do not enter
into the MST algorithm, otherwise they would be dou-
ble counted. One could argue that nothing prevents a
deuteron from interacting with a surrounding nucleon
and getting bound into a larger cluster. However, this
cannot happen when applying the excluded volume

FIG. 10. PHQMD rapidity distributions dN/dy of kinetic
deuterons in central nucleus-nucleus collisions for four different
colliding systems: (a) Au+Au at

√
sNN = 2.52 GeV (top panel),

(b) Pb+Pb at
√

sNN = 7.73 and (c)
√

sNN = 17.32 GeV (middle
panels), (d) Au+Au at

√
sNN = 200 GeV (bottom panel). The dif-

ferent models for finite-size effects implemented in kinetic deuteron
reactions are denoted by various lines with the same color coding of
Fig. 9: excluded volume condition (solid red), momentum projection
only (dashed blue), both conditions (thick dashed line with full
squares), without any effect (solid black).
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FIG. 11. Scaled rapidity distributions, dN/dy0, with y0 = y/yproj, of deuterons in central Au+Au collisions at Elab = 1.5A GeV measured
by the FOPI Collaboration [16]. Experimental data (open circles) are compared with the rapidity distributions from PHQMD simulations. The
kinetic deuterons (solid red line) and potential deuterons identified by aMST (dashed green line) are added together to give the solid blue line.
The three plots correspond to three different models of finite-size effects in the kinetic production. From left to right are (I) excluded volume
only, (II) momentum projection only, (III) sum of both effects.

condition, as the presence of another nucleon close by
would not allow the formation of the kinetic deuteron
itself.

VI. RESULTS

In this section we compare, from SIS to top RHIC ener-
gies, the rapidity and transverse momentum distribution of
deuterons, calculated with PHQMD, with the experimental
data. As mentioned in the previous sections we consider two
sources of deuteron production:

(1) Deuterons produced by collisions (kinetic deuterons).
Kinetic deuterons can be produced by the inelastic
reactions πNN ↔ πd , NNN ↔ Nd, and NN ↔ dπ .
We include all possible charge exchange channels in
the π catalysis. The quantum properties of deuterons
are modeled through the three finite-size corrections,
discussed in the last section:

(I) by the excluded volume condition choosing the
radius Rd = 1.8 fm;

(II) by the momentum projection on the DWF
|φd (p)|2;

(III) by taking into account simultaneously I+II.
(2) Deuterons produced by potential interaction (poten-

tial deuterons).The deuterons, which are produced
due to the potential interactions between baryons are
identified by the “advanced” minimum spanning tree
(aMST) algorithm during the fireball evolution and
reconstructed as “bound” clusters (EB < 0) according
to the stabilization procedure described in Sec. II B.

A. Au+Au at SIS Elab = 1.5A GeV

We start by presenting in Fig. 11 the PHQMD results
for central Au+Au collisions at Elab = 1.5A GeV (

√
s = 2.52

GeV) the scaled rapidity distribution dN/dy0 as function of
y0 = y/yproj, where yproj is the projectile rapidity in the center-
of-mass frame of the colliding nuclei. Kinetic deuterons are

presented by a thin red line, potential deuterons by a dashed
green line, and the sum of both as a blue line. The three
panels display three different approaches to finite-size effects
in the kinetic production via NNN → Nd , πNN → πd, and
NN → dπ . From left to right we display (I) deuterons ob-
tained when applying the excluded volume condition, (II)
deuterons obtained when the momentum projection is em-
ployed, and (III) deuterons if both finite-size corrections are
simultaneously considered. The results are compared with the
FOPI experimental data [16], displayed as open circles. We
see in Fig. 11 that the aMST deuterons alone give less than
40% of the measured yield for all scenarios, while the con-
tribution of the kinetic deuterons varies strongly: the scenario
(II) with “momentum projection” only gives the best descrip-
tion of the experimental data, while an additional application
of the excluded volume leads to a strong suppression of the
deuteron production. At this energy a baryon rich, almost
equilibrated fireball is created at mid-rapidity which makes
both finite-size corrections very effective. Even together with
the aMST deuterons, the deuteron yield is underpredicted.

We note that the underprediction of the cluster multiplicity
at mid-rapidity for low beam energies was already observed
in nonrelativistic isospin-dependent QMD (IQMD) calcula-
tions [98]. At this low energy the mid-rapidity region is very
complex because it contains decelerated projectile and target
nucleons as well as fireball nucleons and is characterized by
a high baryon density. Indeed, it seems that in our approach
some correlations, which contribute to deuteron formation, are
absent. We think that further improvement of cluster recogni-
tion algorithm as well as improvement of the QMD dynamics
(e.g., by using a momentum-dependent potential instead of the
simple Skyrme potential used in this study) might improve the
situation.

B. Au+Au at Elab = 11A GeV

The PHQMD results for the 10% most central
Au+Au collisions at a laboratory energy Elab = 11A GeV,
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FIG. 12. The invariant rapidity distributions (2π pT )−1d2N/d pT dy of deuterons in 10% most central Au+Au collisions at Elab = 11A GeV
(
√

s = 4.9 GeV). The lines correspond to the PHQMD calculations for deuterons coming from the two production processes: kinetic by
hadronic reactions (solid red line) and potential (dashed green line), where in the latter mechanism the stable and bound (EB < 0) deuterons
are identified via the aMST procedure. The three panels display the three different approaches to finite-size effects in the kinetic production.
From left to right are (I) deuterons obtained applying the excluded volume condition, (II) deuterons obtained when the momentum projection
is introduced, (III) deuterons obtained when both effects are taken into account. The experimental measurements in Au+Pb central collisions
at AGS taken from the E864 Collaboration [15] are shown with open circles. To compare the PHQMD results with these data the same cut
0.2 < pT < 0.4 GeV, is applied, as reported in each plot.

corresponding to
√

s = 4.9 GeV, are displayed in Figs. 12–14.
This system will be explored by the future Compressed
Baryonic Matter (CBM) experiment at GSI FAIR. Therefore,
our results can be considered as predictions until experimental
data will be available. However, it is possible to compare our
results with the measurements performed at the AGS acceler-
ator for the asymmetric Au+Pb collisions at the same beam
energy.

We note that in our previous study [38] the multiplicity
and pT -spectra of the light nuclei d , t , 3He were presented in
Au+Pb collisions for the same beam energy and compared to
the same data from the E864 experiment [15]. As mentioned
above the clusters were identified by the original MST ap-
proach described in Sec. II B 1. In that case the number of
clusters was shown to decrease as a function of time due to
the instabilities originating from the semiclassical nature of
the QMD approach. Therefore, it was necessary to introduce
a physical time for the identification of clusters, which was
around 50 fm/c for deuterons and 60 fm/c for tritons and 3He.

In Fig. 12 the rapidity distributions (2π pT )−1d2N/d pT dy
of kinetic deuterons (solid red line), potential deuterons iden-
tified with aMST (dashed green line), and the sum of the two
contributions (solid blue line) are compared to the data from
the E864 Collaboration [15] (open circles). For the PHQMD
results we apply the same selection in transverse momen-
tum, 0.2 < pT < 0.4 GeV, as in the experiment. Similarly
to Fig. 11, the different approaches to model the finite size
of the deuteron for the kinetic deuterons are separated in
three different panels. The excluded volume condition [left
panel (I)] and momentum projection [center panel (II)] give
about the same amount of kinetic deuterons at mid-rapidity
in agreement with the experimental yield, but they start to
overestimate them at larger rapidities. When both effects are
applied [right panel (III)], the shape of the rapidity distribution
agrees better with the data points, even though the total yield

is slightly underestimated. This is due to the aMST deuterons,
which have a shallower distribution.

In Fig. 13 we show the transverse momentum distribution
(2π pT )−1d2N/d pT dy of deuterons as function of pT for the
same collision system and at three different rapidity intervals
indicated in each plot. The color coding is the same as in
Fig. 12. We observe that the pT slope of kinetic deuterons
is insensitive to the modeling of finite-size effects, and,
combined with the potential deuterons, gives a good descrip-
tion of the trend of the experimental data.

To conclude the analysis at this collision energy we calcu-
late the covariant coalescence function Bd , which is defined
by the formula

B2 = Bd = Ed
dNd
d3Pd

Ep
dNp

d3pp
En

dNn
d3pn

(35)

for deuterons with momentum Pd = 2pp = 2pn, where pp =
pn is the momentum of the free nucleon. B2 we present in
Fig. 14 as function of the transverse momentum pT /2 and
confront it with the experimental data from the E864 Collab-
oration [15]. We refer to Ref. [38] for the details.

As in our previous calculations in Ref. [38] the coalescence
function of deuteron B2 shows a quite flat behavior as function
of pT , which is also observed in the experimental data, apart
from the strong increase at large pT in the interval 0.4 � y �
0.6. Moreover, the obtained B2 from PHQMD simulations
seems to be quite independent of the modeling of finite-size
effects in the kinetic production. In particular, when either
excluded volume condition (solid lines) or NN-pair momen-
tum projection (dotted lines) are applied separately, the results
are practically the same, while when both effects are simul-
taneously taken into account (dashed lines) a smaller B2 is
observed due to the stronger suppression of kinetic deuterons
at large rapidities. In Fig. 14 the PHQMD calculations
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FIG. 13. The transverse momentum distribution of deuterons in 10% central Au+Au collisions at Elab = 11A GeV (
√

s = 4.9 GeV)
obtained from PHQMD calculations are compared with the experimental data from the E864 Collaboration [15], shown as open circles.
The lines denote the different deuteron contribution in PHQMD from kinetic and potential mechanisms with the same color coding as in
Fig. 12 and described also in the legends. In each column we present the pT spectra of one of the three models of finite-size effects in kinetic
production. From left to right column, respectively, are (I) excluded volume condition, (II) momentum projection, (III) both effects are taken
into account. The rows display the results for each scenario in three different rapidity intervals: 0.0 < y < 0.2 (top), 0.4 < y < 0.6 (middle),
0.8 < y < 1.0 (bottom).

refer to the sum of the contribution of kinetic and potential
deuterons. The latter are identified via the advanced MST
(aMST).

C. SPS energies

We step up in energy and present the results of the PHQMD
approach for heavy-ion collisions in the CERN SPS en-
ergy range. The rapidity distributions dN/dy of kinetic and

potential deuterons in central Pb+Pb collisions are shown in
Fig. 15. The columns represent our three different options to
model finite-size effects in the collisional deuteron produc-
tion. From left to right we display (I) excluded volume, (II)
momentum projection, (III) both together. The color coding
is the same as in Fig. 11. The rows collect results for the full
energy range of the SPS facility; from top (a) to bottom (e) we
see Elab = 20, 30, 40, 80, 158 GeV per nucleon. The dots are
the experimental data from the NA49 Collaboration [18].

014902-19



G. COCI et al. PHYSICAL REVIEW C 108, 014902 (2023)

FIG. 14. The coalescence parameter of deuterons, B2, from
PHQMD simulations in Au+Au central collisions at beam energy
Ekin = 11A GeV (

√
s = 4.9 GeV center-of-mass energy) is shown as

colored lines as function of transverse momentum pT /A, scaled by
the deuteron baryon number A = 2 in several rapidity intervals re-
ported in the legend. The trend of PHQMD results is confronted with
the experimental data from the E864 Collaboration [15] displayed
with the colored full dots. In order to allow for such a comparison, a
neutron to proton ratio of 1.19 is assumed, as explained in detail in
[38]. The different lines are described in the text.

By comparing the first and the second columns, we observe
that even though the excluded volume and the momentum pro-
jection give similar suppressions of deuterons at mid-rapidity
(Fig. 9), at target-projectile rapidity their effect on deuteron
dN/dy is quite different. There mostly spectator nucleons are
localized, whose density in central collisions is not very high.
Their momentum distribution is close to the Fermi distribution
because these baryons have not scattered or scatter with a
small momentum transfer. Therefore, the excluded volume
prescription of deuteron production gives less suppression
than the projection on the deuteron wave function. Combin-
ing both prescriptions lowers the deuteron production further
[column (III)]. The rapidity distribution of kinetic deuterons
is narrower at mid-rapidity than the experimental data. If
one adds the deuterons created by potential interactions (the
sum is presented by the full blue line), whose distribution
is wider than that of the kinetic deuterons, the experimental
multiplicity as well as the rapidity distribution of deuterons,
measured by the NA49 Collaboration [18], are nicely
reproduced.

The transverse momentum distributions d2N/d pT dy of
deuterons at mid-rapidity are shown in Fig. 16 with the same
color coding and panel structure as in Fig. 15. For each en-
ergy Elab the rapidity interval for the pT spectra is indicated
in the right column and taken in correspondence with the
NA49 experimental data [18]. While the excluded volume

(left column) and the momentum projection (middle column)
give roughly the same suppression of kinetic deuterons, both
effects combined yield an additional suppression factor of 2,
as already seen in the rapidity distribution. The form of the
pT spectra is the same for all three approaches to modeling
the finite-size effects.

D. RHIC BES energies

PHQMD is designed to describe clusters also at higher
energies. Therefore, we can study the deuteron production in
the full energy range of the RHIC Beam Energy Scan (BES).
The STAR Sollaboration has measured in this energy region
the multiplicity at mid-rapidity, as well as the mid-rapidity
pT distribution [19]. Here we present the results for model
(III), which accounts for both finite-size effects: in coordi-
nates by an excluded volume with radius Rd = 1.8 fm and
in momentum space by the projection on the DWF. The ki-
netic deuterons are supplemented by the potential deuterons,
calculated with the advanced MST (aMST) method. We start
out by showing the excitation function of the deuteron yield
dN/dy at mid-rapidity, which was already studied in [38]
for the standard MST deuteron recognition algorithm. It is
displayed in Fig. 17 for central Au+Au collisions as a function
of

√
sNN . The black points represent the data at mid-rapidity,

measured by the STAR experiment [19]. The lines are the
PHQMD results for the same rapidity interval, |y| < 0.3.
The color coding is the same as in Fig. 11. The combined
PHQMD results are in quite good agreement with the data,
giving slightly less deuterons at the lowest RHIC BES energy√

sNN = 7.7 GeV and slightly more deuterons at the top RHIC
energy

√
sNN = 200 GeV, compared to experimental data

points.
It is visible that at these energies the kinetic contribution

is small compared to that of aMST (roughly by a factor
of 3 less) and, therefore, the multiplicity is dominated by
potential deuterons. The STAR Collaboration has also mea-
sured the d/p ratio at mid-rapidity and, hence, the fraction of
mid-rapidity protons which is bound in the lightest cluster.
It is shown in Fig. 18 as a function of the NN center-
of-mass energy. Again we separate kinetic and potential
deuterons. In this energy regime, as we have already seen,
the kinetic deuterons contribute only around 30% to the to-
tal yield. It is remarkable and unexpected that the form of
the excitation function for kinetic and potential deuterons is
very similar. If we add kinetic and potential deuterons we
overpredict above

√
s = 10 GeV this ratio by about 30%,

which represents almost exactly the contribution of kinetic
deuterons.

In Fig. 19 we present the transverse momentum distri-
bution of deuterons as function of pT for the same central
Au+Au collisions and for the same mid-rapidity interval |y| <

0.3. The color and symbol coding is identical to the one used
in Fig. 17. Again the combined deuteron yield overpredicts the
experimental result by roughly 30%. One can observe that the
pT spectra of kinetic (thin solid red line) and aMST (dashed
green line) deuterons have a quite similar shape and the total
pT spectra (thick solid blue line) is in good agreement with
the measured spectra in the wide energy range of RHIC BES.
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FIG. 15. The rapidity distributions dN/dy of deuterons for Pb+Pb central collisions (impact parameter interval b = 0 − 5 f m) in the full
beam energy range of the SPS: from top (a) to bottom (e) panels Elab = 20, 30, 40, 80, 158 AGeV. The full dots are the experimental data from
the NA49 collaboration [18] (the empty dots are mirrored around mid-rapidity). The lines correspond to the PHQMD results with the same
color coding as in Fig. 11: kinetic d (thin red), potential d from aMST, i.e. MST followed by the stabilization procedure (dashed green), total
d (thick solid blue). The three columns correspond to the PHQMD calculations for the three different models of finite-size; from right to left:
(I) only excluded volume, (II) only momentum projection, (III) both effects.
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FIG. 16. The transverse momentum distributions dN/d pT dy of deuterons for Pb+Pb central collisions (impact parameter interval b =
0 − 5 f m) in the full beam energy range of the SPS: from top (a) to bottom (e) panels Elab = 20, 30, 40, 80, 158 AGeV. The full dots are the
experimental data from the NA49 collaboration [18]. The style and color coding of the lines representing the PHQMD results is the same as
for the rapidity distributions, Fig. 16, as well as the ordering of the three columns, which denote the different finite-size models for kinetic
deuterons; from right to left: I) only excluded volume, II) only momentum projection, III) both effects. The PHQMD results for the pT -spectra
are calculated for the same experimental rapidity interval which is indicated in the right panels for each collision energy.
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FIG. 17. The mid-rapidity |y| < 0.3 excitation function for
dN/dy of deuterons as a function of

√
sNN for Au+Au 0 − 10%

central collisions in comparison with the experimental data from the
STAR collaboration [19]. The different lines indicate the different
deuteron contributions: kinetic production with modelling of finite-
size effects in coordinate and momemtum space (solid red), potential
from MST with stabilization, i.e. advanced MST (dashed green), sum
(blue). The rapidity interval of the PHQMD results is the same as that
measured by STAR.

VII. CONCLUSIONS

In this study we have investigated the production of
deuterons in nucleus-nucleus collisions within the PHQMD
microscopic transport approach. We have focused on the
description of deuteron rapidity and transverse momentum
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FIG. 18. The mid-rapidity |y| < 0.3 deuteron to proton d/p ratio
for Au+Au central collisions as a function of

√
sNN . The different

lines indicate the different deuteron contributions: kinetic produc-
tion with finite-size effects (solid red), advanced MST identification
(dashed green), sum (blue). The experimental data from the STAR
collaboration [19] are indicated with the full circles. The PHQMD
results are scaled in order to account for the protons from weak decay
feed-down, which is included in the STAR data. The PHQMD d/p
result without feed-down contribution is shown with the dot-dashed
blue line.

distributions around mid-rapidity from SIS Elab = 1.5A GeV
up to top RHIC

√
s = 200 GeV, covering essentially the

whole energy range of relativistic HICs. In the PHQMD
framework we have studied two possible mechanisms for the
dynamical formation of deuterons: by collisions and by poten-
tial interaction. The results can be summarized as follows:

(1) “Kinetic” mechanism:
(i) We have implemented πNN ↔ πd , NNN ↔

Nd , and the subdominant NN ↔ πd by means
of the covariant rate formalism [45] in the
PHQMD collision integral. The numerical im-
plementation of the 2 ↔ 3 and 2 ↔ 2 reactions
has been tested by the stationary “box” calcu-
lation in comparison with the solutions of the
rate equations. Moreover, it has been verified
that the detailed balance condition is fulfilled
for each isospin channel.

(ii) Differently from the previous study by the
SMASH group [40], we have accounted in the
main πNN ↔ πd and NNN ↔ Nd reactions
for all possible reaction channels which are
allowed by the conservation of total isospin.
We have found that the inclusion in the π

catalysis—which at high collision energies is
more dominant than N catalysis due to the large
pion abundance—of all π charge exchange re-
actions enhances the production of “kinetic”
deuterons by about 50% at mid-rapidity for√

s = 7.7 GeV STAR BES energy, while at√
sNN = 3 GeV, the energy of the STAR FXT

experiment, the π charge exchange channels
increase the deuteron yield by 20%.

(iii) The deuteron, being an extended quantum ob-
ject in coordinate space with a small relative
momentum, cannot be produced as a point-ike
hadron. We have taken this into account by two
approaches: (I) an excluded volume condition
which suppresses the formation of deuterons in
the presence of surrounding hadrons and (II) a
projection of the relative momentum of the NN
pairs on the deuteron wave function. We have
shown that the inclusion of each of these finite-
size effects leads to a significant but similar
suppression of deuterons at mid-rapidity. Ap-
plying both effects together the deuteron yield
is suppressed by an additional factor of 2.

(2) “Potential” mechanism: We have extended our study
of deuteron formation by “potential” interaction be-
tween nucleons in Refs. [37,38], where we had to
determine a time at which the cluster recognition by
the minimum spanning tree (MST) approach has been
performed. The newly developed “advanced” MST
(aMST) method stabilizes the clusters, which in semi-
classical approaches are not stable and whose stability
suffers from the Lorentz transformation between the
cluster center-of-mass system (where the binding en-
ergy is determined) and the nucleus-nucleus center of
mass, i.e., the computational frame. In aMST, clusters,
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FIG. 19. Transverse momentum distributions of deuterons in Au+Au central collisions at all RHIC BES energies from
√

sNN = 7.7 GeV
(a) to 200 GeV (h). The points are the experimental data from the STAR Collaboration [19]. The lines correspond to the PHQMD results for the
different production mechanisms: kinetic with finite size (solid red), potential from advanced MST identification (dashed green), and sum of
all contributions (thick solid blue). The PHQMD pT spectra are taken at the same mid-rapidity interval |y| < 0.3 as the STAR measurements.

which are bound, cannot disintegrate after the con-
stituents had their last collision and are outside the
range of the potential interaction of other clusters and
nucleons. In aMST the clusters are stable and therefore
no time has to be determined at which we analyse
them.

(3) As found in our previous studies [38,99], the
clusters—produced via potential mechanisms—are
created after the fast hadrons have already escaped
from the reaction zone, i.e., clusters remain in trans-
verse direction closer to the center of the heavy-ion
collision than free nucleons. The “kinetic” deuterons
analyzed here follow the same tendency. Thus, since
the “fire” is not at the same place as the “ice,” clusters
can survive, which solves the “ice in the fire” puzzle.

We have found that the PHQMD approach with the two
mechanisms of deuteron production, consistently combined,

provides a good description of the large set of available ex-
perimental data from SIS [16], NA49 [18], and STAR [19]
Collaborations. Finally, we mention also that our results for
Au+Au collisions at AGS and RHIC BES energies are rele-
vant for the future experiments which will be carried out at
the FAIR and NICA facilities.
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APPENDIX A: CROSS SECTIONS

In this Appendix we make a collection of scattering cross
sections for the reactions of d production and breakup with
nucleons and pions which have been implemented in this
work.

I. Elastic processes Nd → Nd and πd → πd are char-
acterized by cross sections of the order of σel � 60 mb for
πd scattering [100]. We use the parametrization of elastic
cross sections as function of invariant center-of-mass energy√

s reported in Ref. [101] (see Appendix there and reference
therein). Deuterons can be inelastically produced in p + p
collision with projectile energy of the order of Tp � 1 GeV
and accompanied pion emission. Conversely, a projectile pion
with beam energy Tπ � 0.1 GeV hitting a deuteron target
can be absorbed and break up the deuteron into a final NN
pair without pion emission in the final state. The complete
reactions NN ↔ πd represent a two-body inelastic process
of d production and disintegration. The total cross sections for
this reaction in both directions have been extensively analyzed
within the isospin decomposition formalism [102–104] and it
has been proved that the detailed balance condition is fulfilled.
This allows one to relate cross sections of forward and back-
ward reactions as

σ (πd → NN ) = 2

3

(p∗
N )2

(p∗
π )2

σ (NN → πd ), (A1)

where p∗
N and p∗

π are respectively the nucleon and pion mo-
mentum computed in the center-of-mass frame of the particle
pair, which by simple kinematics can be written in terms of
masses and

√
s, respectively:

p∗
N =

√
s
(
s − 4m2

N

)
2
√

s
(A2)

for the nucleon momentum p∗
N and

p∗
π =

√
(s − (mπ + md )2)(s − (mπ − md )2)

2
√

s
(A3)

for the pion momentum p∗
π . In Fig. 20 the cross section for

pp → π+d as function of
√

s, which we also take from
Ref. [101], is shown (red dashed line) in comparison with
previous calculations [102] (black solid line) as a function of

the kinetic energy of the projectile proton Tp =
√

P2
lab + m2

N −
mN , where Plab is the beam momentum, which is used to cal-
culate the corresponding value of

√
s according to the formula

√
s = [2mN (2mN + Tp)]1/2, (A4)

in the laboratory frame where the target proton is at rest.
The black points refer to some experimental measurements
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FIG. 20. The total cross section for two-body inelastic
p(n)p(n) → π+(−)d for d formation (red dashed line) and
π+(−)d → p(n)p(n) for d disintegration (blue solid line) as a
function of the center-of-mass energy

√
s (in GeV) or converted

as a function of the proton laboratory kinetic energy Tp (in MeV)
taken from Ref. [101]. The black squares and the solid black line
are, respectively, experimental data and the result from isospin
decomposition taken from Ref. [102].

of pp → π+d in the Tp range of the peak [105,106]. Still in
Fig. 20 the cross section for the inverse process, i.e., inelastic
two-body d breakup by incident π+ into a pp pair with no
pion emission in the final state, obtained from detailed balance
condition (A1), is shown with the blue dash-dotted curve.
We can use the same arguments to implement the reaction
nn → π−d , but for the case pn → π0d we have to account
for an extra isospin factor and write

σ (pn → dπ0) = 1
2σ (pp → dπ+). (A5)

The factor 1/2 is due to the fact that in terms of the
isospin base the pn pair is an antisymmetric superposition
of an isospin triplet (T = 1) and singlet (T = 0) with three-
component projection T3 = 0, while on the other hand the
final π0d depends only on the pion isospin, hence it is a pure
triplet state.

As can be seen from Fig. 20 the experimental two-body
cross section for d breakup into an NN pair without pion
emission in the final state is quite small and of the order of
σ � 10 mb at the peak.

In Fig. 21 the measured inclusive total cross sections for
π±d scattering from the Particle Data Group [107] are shown,
respectively, with orange and red marks, as a function of

√
s.

We focus on the peak region where the cross section reaches a
value of the order of σpeak � 200 mb. Therefore, the inelastic
two-body channel πd → pp shown in Fig. 20 exhausts less
than 5% of the total inclusive cross section. This comparison
demonstrates the necessity to implement inelastic processes
for d breakup by energetic π involving more than two par-
ticles in the final state and consequently the inverse process
where a deuteron can be formed by the interaction of two
nucleons catalyzed by colliding pions. A theoretical study to
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FIG. 21. The inelastic cross section for the dominant πd →
NNπ inelastic scattering (squared-thick black line) as a function of√

s is compared to experimental data of total inclusive πd cross
section from the Particle Data Group (PDG) [107]. The cross sec-
tions for the elastic πd → πd (green dashed) and the two-body
inelastic πd → NN scattering (blue dash-dotted) with parametriza-
tion from Ref. [101] are also shown.

understand why the πd cross section is larger than the typical
inelastic hadronic cross section was conducted in Ref. [108].

II. In this work we consider the reaction NNπ ↔ dπ

within the PHQMD transport approach where two-body and,
more importantly, three-body processes are treated using the
covariant rate formalism [45]. In this formalism the only re-
quested input is a parametrization of the total cross section as
function of

√
s since the transition rate should depend only

on the invariant energy, which means assuming an isotropic
differential cross section. Here we describe the procedure to
extract such a phenomenological cross section.

The inclusive π±d cross section is strongly peaked at
√

s �
2.2 GeV due to excitation of the underlying T = 3/2 isospin
channel, which, as we have just said, is possible for both π−
and π+ due to the presence of a proton and a neutron in the
deuteron target. Referring to Fig. 21, we first perform a fit
(violet curve) of this total inclusive cross section using the
following piecewise expression:

σ =
{∑3

i=1 aie[−(s−bi )2/ci] + (d + f s),
√

s � 3.35,

(d0 + d1
√

s + d2s)e[−hsg/2], 3.35 <
√

s � 3.7.

(A6)
The center-of-mass energy

√
s is in GeV and the σ (πd ) is

given in mb. For
√

s > 3.7 GeV we simply take constant σ =
47 mb. The values of the fit parameters are reported in the
upper part of Table II.

In Fig. 21, subtracting the elastic πd (green dashed line)
and two-body inelastic πd → NN (blue dash-dotted line)
contributions, we can infer the inelastic cross section for
deuteron breakup into two baryons + n mesons, which we
assume can be only pions with n � 1:

σ (πd → BB + nπ ) = σ − σel(πd ) − σ (πd → NN ). (A7)

TABLE II. Upper part: fit parameters for the total inclusive π±d
scattering cross section (in mb) as a function of center-of-energy

√
s.

Lower part: the same fit parameters for the phenomenological cross
section for dπ → NNπ estimated by subtracting the elastic and two-
body dπ → NN contributions to the total inclusive cross section.

i ai bi ci

1 186.690 4.767 0.042
2 16.765 7.356 0.174
3 12.907 8.808 1.282
d = 42.586 f = 2.009

d0 d1 d2

15543.600 1145.460 504.896
h = 4.651 g = 0.203
i (inel.) ai bi ci

1 143.415 4.779 0.030
2 49.652 5.587 1.603

In particular, the two baryons can be regarded as only nu-
cleons B = N plus excitation of � resonances which further
decay into N + π , hence feeding the number n of final pi-
ons. Inelastic processes with increasing n bodies add up
subsequently with increasing value of

√
s � √

sth = ∑
f m f ,

where the sum runs over the masses of final produced par-
ticles. On the other hand, this causes the closure of the
phase space of few-body production at larger values of

√
s.

Keeping this in mind, we can estimate the behavior of the
leading inelastic process πd ↔ NNπ where the deuteron
breaks up by the incident pion into a pair of nucleons plus
a single emitted pion. The cross section for such a lead-
ing inelastic process is parametrized by the two-Gaussian
expression

σ (πd → NNπ ) =
∑
i=1,2

aie
[−(s−bi )2/ci]. (A8)

The values of the fit parameters are reported in the lower
part of Table II (inel.) with the cross section in Eq. (A8)
given in mb. Finally, the resulting inelastic πd → NNπ cross
section is shown in Fig. 21 by the squared thick black line.

III. Similarly to the πd → NNπ reaction which dominates
at relativistic energies due to the large pion abundance, we im-
plement also the three-body inelastic process for Nd ↔ NNN
which is more important at low energy heavy-ion collisions
[42,43]. We derive a parametrization of the total inclusive
cross section through a fit on experimental data, which are
shown in Fig. 3 for pd experimental data (black points) and
for some nd data (grey points) taken from the PDG database
[107] and from other references [109]. The lower horizontal
axis is the range of the proton beam momentum Plab, while the
upper one is the corresponding

√
s calculated by relativistic

kinematics. The total inclusive cross section is composed of
elastic and inelastic parts:

σ (Nd ) = σel(Nd ) + σinel(Nd → NNN + nπ ). (A9)

In this case the elastic and inelastic contributions are distinctly
separated in kinematics due to the existing energy thresh-
old for the dN → NNN + nM processes, which are always
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endothermic for any final number of pions n � 0. In particu-
lar, for the Nd → NNN reaction with n = 0, this threshold
corresponds to the difference Eth = 3mN − (mN + md ). Re-
placing the deuteron mass md = 2mN + EB, this threshold
energy corresponds to nothing else than the absolute value of
deuteron binding energy, |EB| = 2.2 MeV.

Our expression for the total inclusive cross section is de-
rived by applying a procedure similar to what is done for the
case of pp cross section. In the low energy regime we employ
a functional expression in terms of the projectile nucleon
momentum Plab which is used in Ref. [110] to parametrize the
NN inelastic scattering cross section. Then, our calculated ex-
pression is combined with a parametric function of

√
s which

we us in the high energy regime. In PHQMD this procedure is
applied also for parametrizing the pp scattering cross section.
The resulting curve for is depicted in Fig. 3 with an orange
line (dashed for the low energy regime, solid for the high one)
and it provides a good fit of the experimental pp data (blue
points) taken from PDG database [107]. In Fig. 3 this function
is denoted as “p + p PHSD parametrization,” because it is im-
plemented in PHQMD directly from the original (P)HSDcode
[50–54] where it is used to describe nucleon-nucleon colli-
sions. For the case of Nd scattering the complete expression
for the inclusive total cross section is reported below and the
resulting curve is shown in Fig. 3 with a solid green line:

σ (s) = (−0.316 + P0.46
lab

)/(
6.2 × 10−3 + (

P2
lab − 0.021

)2)
,

Plab < 0.208 GeV,

= 56.6413 + 117.547|1.1588 − Plab|4.348,

0.208 � Plab < 0.977 GeV,

= 28.0475 + 56.07

/[
1.0 + exp

(
−Plab−0.971

0.1665

)]
,

0.977 � Plab < 2.96 GeV,

= 78.736 + 15.31(Plab + 2.932) exp(−0.952Plab),

2.96 � Plab < 3.8 GeV,

= 93.66 + 1.6473 ln(Plab)2 − 11.301 ln(Plab),

3.8 � Plab < 19.9 GeV. (A10)

The low-energy parametrization of the total inclusive Nd
cross section (in mb) as a function of Plab is valid within
the range of Plab � 19.92 GeV, which corresponds to a value
of

√
s � 8.9 GeV. Instead, the high-energy parametrization

is valid for
√

s > 8.9 GeV and it is given by the following
formula:

σ (s) = 94.01s−0.555 − 30.7318s−0.4986

+69.2663 + 0.42055 ln2
( s

46.2745

)
. (A11)

Finally, in order to pass from the total inclusive cross sec-
tion σ (Nd ) to the total inelastic one σ (Nd → NNN ), we
perform a smooth cut of the expression Eq. (A11). This
is motivated by the fact that at high

√
s values inelastic

channels with final particles’ multiplicity larger than 3 (i.e.,
NNN + π, NNN + 2π, . . . ) start to contribute and the three-
body NNN phase space is suppressed. Therefore, similarly
to what we have done for the πd → NNπ reaction, we
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FIG. 22. The PHQMD parametrization of the three-body inelas-
tic cross section for Nd → NNN reactions (squared-thick black line)
as a function of

√
s is compared to experimental data of total inclu-

sive p(n)d scattering from the PDG database [107] shown with the
black (grey) points. The solid green line corresponds to the fit of the
total inclusive Nd scattering cross section which is constructed using
Eq. (A10) for

√
s � 8.9 GeV and Eq. (A11)

√
s > 8.9 GeV. The

orange line shows the PHQMD parametrization of the pp scattering
cross section taken from the original (P)HSD framework.

consider a Gaussian function A exp[−(s − B)2/C] with pa-
rameters A = 37.985, B = 28.343, C = 137.733 which we
attach to the inclusive cross section formula (A11) at

√
s �

5.0 GeV. The resulting curve is depicted in Fig. 22 (thick black
solid line). At lower values of

√
s the inelastic reaction cross

section σ (Nd → NNN ) equals the total inclusive σ (Nd ). as
is clearly visible in Fig. 22 where the two lines are superim-
posed.

APPENDIX B: BOX SIMULATIONS

Additionally to the pion catalysis πd ↔ pnπ process con-
sidered in Sec. IV, in this Appendix we present the box study
for other reactions for deuteron production: (i) 2 ↔ 3 reaction
of nucleon catalysis, Nd ↔ pnN , which plays a dominant
role at low collision energies where the nucleon density is
high (see Fig. 4); (ii) 2 ↔ 2 reaction πd ↔ NN , which is a
subdominant channel due to the small cross section.

In Figs. 23 and 24 we show the time evolution for the
density of nucleons N = p, n (red), deuterons (green), and
pions (orange) for simulations performed in a static box at
initial temperature T = 0.155 GeV and initial nuclear den-
sity ρN (0) = 2ρp(0) = 2ρn(0) = 0.12 fm−3 and pion density
ρπ (0) = 0.09 fm−3 in comparison with analytic results ob-
tained as solution of the rate equations. These two plots are
similar to Fig. 2 of Sec. IV, where we tested the correct
numerical implementation of the πd ↔ pnπ process.

In particular, in Fig. 23 we test the formation/breakup of
deuterons by nucleon catalysis Nd ↔ pnN by switching off
all other reactions, and we verify that the collisions inside the
box performed by stochastic method (circles) are in agreement
with analytic expectations (solid lines). Here the result for
pions is not shown, because they are not involved in the
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FIG. 23. The time evolution of particle densities for Nd ↔ pnN
reactions in a static hadronic box. The lines represent the solu-
tions obtained from the rate equations, while the symbols are the
results from box simulations. The dashed black line is the analytic
solution for the density of deuterons obtained using the cross sec-
tion σ (Nd → N pn) taken from Ref. [25], Fig. 2(a). This result is
equal to the same analytic expectation (solid green line) employing
the PHQMD parametrization of the cross section for Nd → NNN
inelastic scattering which is reported in Appendix A.

main reaction channel, but they can scatter elastically with
deuterons in order to drive them to faster equilibration.

In Fig. 24 we investigate the correct implementation of the
two-body inelastic πd ↔ NN process. The analytic expecta-
tions of densities as function of evolution time are represented
with the lines (red solid for N = p, n, green solid for d ,
and orange dash-dotted for π ). For nucleons and deuterons
we show box results obtained adopting either the geometric
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FIG. 24. The time evolution of particle densities for πd ↔ NN
reactions in a static hadronic box. The lines represent the solutions
obtained from the rate equations, while the symbols refer to box
calculations. For nucleons and deuterons, the full circles and the
open squares are the numerical results when the collision integral is
solved, respectively, by means of the stochastic method or adopting
the geometric criterion.

criterion dT �
√

σ 2,2/π (open squares) or the stochastic colli-
sion method P2,2 = σ 2,2vrel�t/�Vcell (full squares) with cross
section σ 2,2(

√
s) taken from Ref. [104]. For pions we show

only the results employing the latter collision method. In
this case the particle densities show a longer equilibration
time compared to the box results where either π catalysis
or N catalysis reactions are switched on. This is expected
because the cross section of πd → NN disintegration is much
smaller than those of other reactions. Consequently, the in-
verse process of NN fusion into πd final state, whose cross
section is experimentally proved to fulfill detailed balance [see
Eq. (A1)], slowly proceeds with an equilibration time about
ten times larger than that of π catalysis.

As follows from Figs. 23 and 24, the simulated density
distributions in the box are in a good agreement with the
analytic thermodynamic results.

We remind here that the “box” framework is just a toy
model to test in controlled conditions that detailed balance
as well as the agreement with the analytic solutions of the
rate equations (see Sec. IV) is fulfilled for all the imple-
mented “kinetic” deuteron reactions, in particular πNN ↔
πd , NNN ↔ Nd , and NN ↔ πd . In realistic HIC simula-
tions with PHQMD we describe the phase-space evolution of
the fireball on an expanding three-dimensional grid, where the
cells and the time-step parameters are described at the end of
Sec. IV.

APPENDIX C: ISOSPIN FACTORS IN DEUTERON
REACTIONS

In detail, we derive the isospin coefficients for the π -
catalysis reactions dπ k ↔ NNπ l listed in Table I. We look
first at the reaction in the forward direction, i.e., the deuteron
disintegration by incident π . Since the deuteron has zero
isospin and the pion has isospin 1, the two-particle state
|d, π k〉 is already an eigenstate of total initial isospin Ti = 1
and the projections along the quantized axis are related to the
pion charge indicated by the index k = −1, 0,+1. In short
notation we can write

|d, π k〉 = |Ti, Mi〉 = |1, sgn(k)δ|k|1〉. (C1)

To calculate the possible eigenstates of total final isospin
Tf from the three-particle state |N, N, π l〉, we use the rules
for summation of angular momentum in quantum mechanics
[111]. First we perform the summation of the 1/2 isospin of
the two nucleons, which—as is well known—generates the
singlet state

|TN = 0, MN = 0〉 = |p, n〉 − |n, p〉√
2

(C2)

and the triplet state

|TN = 1, MN = 1〉 = |p, p〉,

|TN = 1, MN = 0〉 = |p, n〉 + |n, p〉√
2

, (C3)

|TN = 1, MN = −1〉 = |n, n〉,
where TN indicates the eigenvalue of total isospin of the inter-
mediate two-nucleon system and MN its projection along the
quantized axis. Then we add the contribution of the isospin
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quantum numbers of the pion which we indicate with small
letters as tπ = 1 and mπ � |tπ |.

Therefore, the eigenstates of total isospin Tf are given by
the following expansion:

|TN , tπ ; Tf , M f 〉 =
TN∑

MN =−TN

tπ∑
mπ =−tπ

|TN , tπ ; MN , mπ 〉

× 〈TN , tπ ; MN , mπ ||TN , tπ ; Tf , M f 〉.
(C4)

On the right-hand side, the ket of the basis |TN , tπ ; MN , mπ 〉
represents the tensor product of the two-nucleon state with
defined isospin quantum numbers (TN , MN ) with the pion state
(tπ , mπ ). On the left-hand side, the new basis is formed by
the ket with defined quantum numbers (TN , tπ , Tf , M f ). The
angular momentum rules require that M f = MN + mπ , which
is encoded already in the Clebsch-Gordan coefficients of the
expansion (C4).

By construction, the new states of total isospin Tf will
remain eigenstates of the two-nucleon isospin TN . Hence,
formula Eq. (C4) must be separated into two orthogonal con-
tributions according to the two different values of TN from the
singlet Eq. (C2) and from the triplet state Eq. (C3):

(I) When the two nucleons are in the singlet case TN = 0,
the condition is similar to the two-particle state |d, π〉,
i.e., the total final isospin has eigenvalue Tf = 1 from
the pion contribution. In the same notation of Eq. (C1)
we can write

|TN = 0, tπ = 1; Tf = 1, M f 〉 = |0, 1; 1, M f 〉

= |p, n, π l〉 − |n, p, π l〉√
2

= |0, 1; 1, sgn(l )δ|l|1〉.
(C5)

(II) In the case where the two nucleons couple tp a triplet
state TN = 1, the addition of the pion isopsin tπ gen-
erates independent spaces of total final isospin with
eigenvalues given by the triangle rule,

|TN − tπ | � Tf � TN + tπ → Tf = 0, 1, 2. (C6)

Due to the conservation of total isospin in the strong
interaction, we are interested in the eigenstates of final
isospin Tf = Ti = 1. Using Eq. (C4) with the cor-
rect quantum numbers and taking the corresponding
Clebsch-Gordan coefficients from available tables, we
obtain

|TN = 1, tπ = 1; Tf = 1, M f = 1〉
= |1, 1; 1, 1〉

=
( |p, n, π+〉 + |n, p, π+〉√

2

)−1√
2

+ |p, p, π0〉 1√
2
, (C7)

|TN = 1, tπ = 1; Tf = 1, M f = 0〉

= |1, 1; 1, 0〉 = |n, n, π+〉−1√
2

+ |p, p, π−〉 1√
2
, (C8)

|TN = 1, tπ = 1; Tf = 1, M f = −1〉 = |1, 1; 1,−1〉

=
( |p, n, π−〉 + |n, p, π−〉√

2

)
1√
2

+ |n, n, π0〉−1√
2
. (C9)

Equatons (C5) and (C7)–(C9) express the Tf = 1 eigen-
states in terms of the three-particle states |N, N, π l〉. Com-
bining them, the associated isospin factors for the transition
|d, π k〉 → |N, N, π l〉 are nothing else than the Fourier coeffi-
cients of the following expansion:

|d, π+〉 → 1

2

[
|p, p, π0〉 +

(
−1 + 1√

2

)
|p, n, π+〉

−
(

1 + 1√
2

)
|n, p, π+〉

]
, (C10)

|d, π0〉 → 1
2 [|p, n, π0〉 − |n, p, π0〉
+ |n, n, π+〉 − |p, p, π−〉], (C11)

|d, π−〉 → 1

2

[
|n, n, π0〉 +

(
1 + 1√

2

)
|p, n, π−〉

+
(

−1 + 1√
2

)
|n, p, π−〉

]
. (C12)

An overall factor 1/2 is introduced in order to guarantee the
normalization of the corresponding final state |Tf = 1, M f 〉
to unity. Differently, in calculating the probability of each
transition allowed by isospin conservation one should divide
by the sum of the squares of all the Fourier coefficients.
Finally, the associated isospin probability Piso(dπ k → NNπ l )
for each channel is given by the square of such coefficients.
Moreover, since in PHQMD the isospin number is not stored
during the dynamical evolution of particles, we can make a
further simplification by adding the probabilities for those
three-particle states on the right-hand sides of Eqs. (C10)–
(C12), which differ only by the order of nucleons. Therefore,
we obtain

Piso(dπ+ → pnπ+) = 3
4 , Piso(dπ+ → ppπ0) = 1

4 ,

Piso(dπ0 → pnπ0) = 1
2 , Piso(dπ0 → p(n)p(n)π−(+) ) = 1

4 ,

Piso(dπ− → pnπ−) = 3
4 ; Piso(dπ− → nnπ0) = 1

4 ,

(C13)

which, as discussed in Sec. III, correspond to the factors
employed to select the final state of each collision where a
deuteron disintegrates by the inelastic 2 → 3 pion reaction
according either to the geometric criterion or to the stochastic
method, both depending on the total cross section σ 2,3(

√
s)

described in Appendix A. It is important that the sum of all
probabilities over the possible final state NNπ l , to which the
initial state dπ k can decay according to total isospin conserva-
tion, equals 1. This condition is clearly fulfilled by summing
the terms in each row of Eq. (C13).

In the backward direction, i.e., when an incident π cat-
alyzes the fusion of two nucleons to form a deuteron plus an
emitted pion, the transition from the three-particle state NNπ l

into the two-particle state dπ k can happen only if total isospin
is conserved. This means that only when the initial state NNπ l

finds itself in an eigenstate of total isospin 1 can it make the
transition to the final state dπ k . Formally, we need to invert
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the basis expansion Eq. (C4) and obtain

|N, N, π〉 =
∑

T

T∑
M=−T

|T, M〉〈T, M||N, N, π〉. (C14)

Physically, each three-particle state |N, N, π〉 is written as a
superposition over the eigenstates of total isospin |T, M〉 with
eigenvalues T again provided by the same triangle rule (C6)
and eigenvalue of the isospin three-component M � |T |. In
Eq. (C14) the same Clebsch-Gordan coefficients of Eq. (C4)
appear because

〈T, M||N, N, π〉 = 〈TN , tπ ; Tf , M f ||TM, tπ ; MN , mπ 〉
= 〈TN , tπ ; MN , mπ ||TN , tπ ; Tf , M f 〉.

Once we calculate all the eigenstates of total isospin, we
can look at the Fourier coefficient of each state |N, N, π〉
associated with the eigenavalue T = 1 and obtain the right
probability. We point out that the use of Eq. (C14) requires
also that the intermediate total isospin TN of the two-nucleons
system is a quantum number of the basis. Therefore, the con-
tributions which come from the singlet state and the triplet
state must be squared and independently summed without
mixing term.

Then, for example, the probability that the state |p, n, π+〉
has total isospin T = 1 is given by

|〈1, 0; 1, 1||p, n, π+〉|2 + |〈1, 1; 1, 1||p, n, π+〉|2

= 1
2 + 1

2
1
4 = 3

4 (C15)

where the first term comes from the singlet TN = 0 state and
the second one from the triplet TN = 1 state. Analogously
we can calculate for the other three-particle NNπ l states and
obtain the probabilities

Piso(pnπ± → dπ±) = 3
4 , Piso(npπ± → dπ±) = 3

4 ,

Piso(ppπ0 → dπ+) = Piso(nnπ0 → dπ−) = 1
2 ,

Piso(ppπ− → dπ0) = Piso(nnπ+ → dπ0) = 1
2 ,

Piso(pnπ0 → dπ0) = Piso(npπ0 → dπ0) = 1
2 , (C16)

which are abbreviated as Fiso in the formula (23) for the full
covariant probability of 3 → 2 for the reaction of deuteron
formation by π catalysis.

The isospin coefficients for the N-catalysis reactions
dN ↔ NNN can be calculated in a similar way. We em-
phasize only two differences. On the one hand, the final
state of the forward reaction, i.e., the deuteron disintegra-
tion, contains only nucleons. As mentioned previously, in
PHQMD the particle isospins are not propagated dynami-
cally during the system evolution. This means that we cannot
distinguish between those states of the reactions which dif-
fer by the order of protons and neutrons. Therefore, the
transition from dN to NNN reduces to one channel and
consequently

Piso(dN → NNN ) = Piso(dN → (pn)N ) = 1. (C17)

On the other hand, the isospin factors for the backward reac-
tion, i.e., the formation of a deuteron by two nucleons plus
a third nucleon as catalyzer, demands that the initial state

|N, N, N〉 finds itself in an eigenstate of total isospin T = 1/2.
We apply the addition rules of angular momentum and con-
struct the intermediate singlet and triplet states by summing
isospins of two nucleons and then add the 1/2 isospin of the
third one. The transition probabilities can be derived from
the square of the Fourier coefficients taking the contribution
of the singlet and the triplet without a mixing term. We
obtain

Piso(pnp → d p) = Piso(pnn → dn) = 1
3 , (C18)

which corresponds to the coefficient F 3,2
iso in Eq. (23) for the

deuteron production by N catalysis.

APPENDIX D: PHASE-SPACE INTEGRALS

In Eq. (23) the Lorentz invariant two-body and three-body
phase spaces appear. For R2(

√
s, m1, m2) we simply adopt its

analytic expression

R2(
√

s, m1, m2) =
√

λ
(
s, m2

1, m2
2

)
8πs

, (D1)

where on the right-hand side the kinematical function
is λ(s, m2

1, m2
2 ) = (s − m2

1 − m2
2 )2 − 4m2

1m2
2 and

√
s is the

center-of-mass energy. For R3(
√

s, m3, m4, m5) we use the
well known recursion relations [84,85] to write it in terms of
a factorized product of two-body phase-spaces:

R3(
√

s, m3, m4, m5)

=
∫ (

√
s−m5 )2

(m3+m4 )2

dM2
2

2π
R2(

√
s, m5, M2)R2(M2, m3, m4)

=
∫ (

√
s−m5 )2

(m3+m4 )2

dM2
2

2π

√(
s − m2

5 − M2
2

)2 − 4M2
2 m2

5

8πs

×
√(

M2
2 − m2

3 − m2
4

)2 − 4m2
3m2

4

8πM2
2

. (D2)

The integration is run over the invariant mass variable M2. It
was shown in Ref. [83] that such an expression can be fitted
by the following function:

f3(t ) = a1t a2

(
1 − 1

a3t + 1 + a4

)
, (D3)

where t = √
s − m3 − m4 − m5 and the parameter values de-

pend on the physical masses (m3, m4, m5) involved. For the
πNN and the NNN three-body phase spaces these parameters
are reported in Table III.

TABLE III. The values of the fit parameters for the three-body
πNN and NNN phase spaces using formula Eq. (D3)

m3 m4 m5 a1 a2 x = 2 − a2 a3 a4

π N N 0.000249 1.847779 0.152221 0.071509 9.973413
N N N 0.000350 1.781741 0.218259 0.052836 4.221995
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