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A new energy-dependent fit strategy, independent of any specific microscopic theory, is applied to kaon
photoproduction data with center-of-mass energies ranging from 1625 MeV to 2296 MeV. Experimental data
are fitted in terms of a modified Laurent expansion (Laurent+Pietarinen expansion) which previously has been
successfully applied to multipoles. The present aim is to extract resonance pole parameters directly from the data,
rather than from sets of multipoles. A constrained single-energy fit is then used to search for missing structures.
In this proof-of-principle study, the data are well described by the initial L+P fit, and it is shown that only a
moderate amount of structure, mostly in higher multipoles, is missing from the original fit. Problems due to an
unmeasurable overall phase, plaguing single-channel multipole analyses, are mitigated by implementing a form
of phase limitation, fixing the initial values of fit parameters using a multichannel analysis.
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I. INTRODUCTION

Measurements of meson-nucleon scattering and photopro-
duction, with polarized beams, targets, and recoil particles,
have a long history, largely motivated by the search for baryon
resonances and their properties. The resulting data have been
analyzed and reanalyzed as new measurements and analysis
techniques have become available. Most current studies em-
ploy elaborate multichannel formalisms that cannot easily be
reproduced by experimental groups providing the data. Anal-
ysis groups can obtain partial-wave amplitudes and continue
these to poles in the complex energy plane but experimental
groups, seeking to determine the influence of their measure-
ments, must often rely on less-elaborate methods or fits taken
from another group. Differences in these models also in-
troduce systematic errors, complicating the confirmation or
comparison of different results. It would be useful to have
a single-channel technique available to perform this task. In
practice, some minimal phase information from a multichan-
nel analysis is required to avoid the continuum ambiguity
in a single-energy analysis. Some ways to implement this
multichannel constraint have been explored in Refs. [1,2].

In the present study, a more direct connection between
pole parameters and data is developed. This method avoids
the construction of an explicit model for the process,
instead employing analyticity properties of complex func-
tions in the vicinity of poles and cuts. This approach, the
Laurent+Pietarinen (L+P) expansion, provides an approxi-
mation to the analytic function under consideration using the
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Laurent theorem, and represents the regular background term
as a fast-converging series in a conformal variable with chosen
branch points [3–6]. This method was at first applied to the
extraction of poles from partial waves or multipoles [7,8] with
notable success [9–12].

However, the main problem with this approach is that it
requires having partial waves (multipoles) already at one’s
disposal. The source may be some theoretical model, or the
result of a single-energy partial-wave analysis (SE PWA)
which is constrained to be reasonably continuous.1 Here, the
L+P analysis technique is extended to analyze experimental
data. Instead of analyzing single multipoles individually, all
multipoles are fitted simultaneously. An L+P decomposition
of a finite set of multipoles was made and used to recon-
struct all available observables. The L+P parameters were
then fitted directly to measured data. In this way, complica-
tions of a theoretical model were replaced by the selection
of terms in the L+P decomposition, the relevant singularities
(poles and branch points) of each partial wave. While this
is, in principle, a single-step procedure, fitting available data
sets with a sufficient number of parameters, the goodness
of fit will depend on where one cuts off the L+P expan-
sion. To address this issue, the single-energy fit method is
used to search for structure missing in the L+P expansion.
As a first proof-of-principle study, a minimal L+P expan-
sion is fitted to kaon photoproduction data, followed by a
single-energy fit.

1It is well known that any unconstrained single-channel, single-
energy partial-wave analysis (SC SE PWA) has discontinuities due
to the continuum ambiguity [13,14].
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In the next section, the formalism used in the L+P and
single-energy fits is outlined. Particular attention is paid to
the cutoff in L+P expansion terms and the starting point
and constraints used in the fit. Results are then presented to
show the fit quality for observables and consistency of the
L+P and single-energy amplitudes. Prospects for an enhanced
analysis, utilizing a more complete set of L+P parameters,
is considered. Finally, some conclusions from this study are
listed.

II. FORMALISM

A. Laurent+Pietarinen partial-wave analysis

In Refs. [7,8], a method to analyze the analytic structure
of any complex function was formulated. The function, in
particular a partial-wave or multipole amplitude, was locally
represented in terms of a Laurent decomposition where the
regular (nonpole) part was expanded in a sum of finite, rapidly
converging power series in a conveniently defined conformal
variable (one series per branch point). The most general form
used to analyze an analytic function of interest was given
by [15]

T (W ) =
N∑

i=1

ui + ı vi

W − Wi
+

M∑
j=1

n j
max∑

n=0

c j
n

(
α j − √

x j − W

α j + √
x j − W

)n

,

(1)

where W is center-of-mass energy, N is the number of poles,
Wi, ui, vi are pole positions and residues, M is the number
of Pietarinen expansions, n j

max is the number of coefficients
in the jth Pietarinen expansion, c j

n is the real expansion co-
efficient, and xi and αi are branch-point positions and the
Pietarinen expansion strengths, respectively. For analyses of
Refs. [7,8], we have used three Pietarinen expansions (M = 3)
with maximum number of Pietarinen coefficients up to six
(n j

max = 6), and up to three resonances per partial wave. With
these choices, there was very good agreement with the input
function, and reliable pole positions and residues could be
obtained.

For each partial wave, exactly this form of the expansion
could be used to fit experimental data from kaon photopro-
duction measurements. However, all multipoles should be
minimized at the same time, as observables are given as func-
tions of all multipoles. In the Appendix, the relevant formulas
for pseudoscalar meson photoproduction are given. Replacing
E�± and M�± of Eqs. (A1)–(A4) with the L+P parametrization
given in Eq. (1), for each multipole, there exists a well-defined
system of equations ready to be fitted to data, using formulas
given in Table III. The cutoff in partial-wave angular momen-
tum is always an open issue, as each considered process may
have a different number of significant partial waves. However,
to aid comparison in this work, we take Lmax = 5, the number
of partial waves fitted in the theoretical approach of the Bonn-
Gatchina (BG) group [16,17].

In principle, the formalism is well defined with a clear ad-
vantage that the pole-fitting parameters are physical quantities
for which, from other processes and/or other analyses, one
has approximate values. In addition, one knows which branch

points could be important for a particular partial wave, and
what the threshold behavior should be. However, in reality,
fitting the full database with the number of free parameters
listed above is not straightforward. For a typical fit of a mul-
tipole in pseudoscalar photoproduction in Refs. [7,8], three
Pietarinen expansions were used with up to 6 terms each,
and up to three resonances. That amounts to as many as
27 + 12 = 39 parameters per multipole. For a realistic fit, one
has to include waves up to least to L = 5. Knowing that one
has to fit J = L + 1/2 and J = L − 1/2 electric and magnetic
multipoles, this requires 20 multipoles (recalling that M0+
and E1− multipoles are unphysical) to get a good fit. Taking
into account that certain multipoles couple to the same JP

(EL± and ML±), and hence have the same pole position, one
is still left with typically 800 free parameters. There does
exist a sufficient number of measurements in the database to
obtain a reliable fit (approximately 8000 data points, includ-
ing many single- and double-polarization quantities), but the
complicated nonlinear structure of the fitted formulas results
in excessive CPU time [18]. Recalling that one goal is a useful
tool for experimentalists, a less CPU-intensive problem was
solved for the present proof-of-principle study.

In the simplified L+P PWA, one Pietarinen expansion per
multipole was used, instead of three, retaining the dominant
background contribution associated with the K� threshold.
The inclusion of resonances was restricted to 4* states quoted
in the baryon summary tables of the Particle Data Group
(PDG) [15]. This simplifies the background, a quantity which
is generally the hardest to fully calculate, and which is usu-
ally simplified in a model. The pole complexity remains
unchanged. The number of poles contributing to a multipole
is generally less than three; often only a single pole is in-
cluded in Eq. (1). This simplified form of Eq. (1) is used for
T ∈ {E�+, E�−, M�+, M�−}.

With these approximations, the number of multipole back-
ground parameters was reduced from 27 to 9 and, with the
reduction of pole terms, the number of utilized parameters
was about 300. To further accelerate testing, an interpolation
method was used on the database. The fit at interpolated
values of all observables was performed, using 36 interpolated
instead of 121 measured energy points. The interpolation was
done in both variables (energy and angle) simultaneously, as
described in Refs. [1,2]. This reduced the number of mini-
mization points from 8000 to about 3000, reducing fit times
to a manageable 12 CPU hours.

B. Combining simplified energy-dependent and single-energy
partial-wave analysis

Experience gained in Refs. [1,2] was used to estimate how
much the simplified L+P PWA actually differed from the full
solution. In these previous studies, the best single-channel,
single-energy multipoles were obtained using constrained
PWA in a two-step procedure. In the first step, we obtained
reaction amplitudes which fit the data at all energies where
measurements were done, and these amplitudes were taken
as constraining functions for a constrained SE PWA in the
second step. The essential equations governing our two-step
amplitude analysis (AA) method from Ref. [1,2] are given be-
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low. It has long been known that unconstrained single-energy
PWA is discontinuous, because of continuum ambiguities, and
so fails to give useful results (discussed in detail in Ref. [14]).
Constraints must be applied. A standard approach of con-
straining a partial wave analysis is to penalize partial waves
that stray too far away from each other while simultaneously
fitting the set of measured observables:

χ2(W ) =
Ndata∑
i=1

wi
[Oexp

i (W,�i) − Oth
i (Mfit (W ),�i )

]2

+ λpen

Nmult∑
j=1

∣∣Mfit
j (W ) − Mth

j (W )
∣∣2

, (2)

where

M def= {M0,M1,M2, . . . ,MNmult

}
,

statistical weight wi is defined as the inverse square of ob-
servable uncertainties, and Nmult is the number of partial
waves (multipoles). Here Mfit are fitting parameters and
Mth are continuous partial waves (multipoles); Oexp and Oth

are respectively the measured and calculated observables.
The drawback of such an approach is that one has to use
smooth partial waves usually originating from some theoreti-
cal model.

The possibility to make the penalty function independent
of a particular model was first formulated in the Karlsruhe-
Helsinki elastic pion-nucleon scattering analysis, by Höhler
in the 1980s [19]. There, partial waves, which are inherently
model dependent, are replaced by a penalty function con-
structed from reaction amplitudes which can be more directly
linked to experimental data without any model in the ampli-
tude reconstruction procedure, a point revisited in the next
section. This leads to a change from Eq. (2) to

χ2(W ) =
Ndata∑
i=1

wi
[Oexp

i (W,�i ) − Ofit
i (Mfit (W ),�i )

]2 + P,

P = λpen

Ndata∑
i=1

Namp∑
k=1

∣∣Ak (Mfit (W ),�i )

− Ak (Mpen(W ),�i )
∣∣2

, (3)

where Ak is the generic name for a reaction amplitude (invari-
ant, helicity, or transversity), which is a function of multipoles
M and angles �i. In the present study, we take the penalty
functions Ak (Mpen(W ),�i ) to be transversity amplitudes,
obtained using multipoles from the simplified L+P PWA. The
constraining function in the second step serves to avoid the
continuum ambiguity, which makes unconstrained SE PWA
discontinuous. It need not be exact; it is enough that it is
smooth, and close to the true value. However, it is very dif-
ficult to quantify the penalty function coefficient λpen. If it is
too small (λpen = 0) the result will be discontinuous; if it is
too large, the results will too closely follow the constraining
value. To find an optimum value, we start with very low
values, which still give discontinuous results, and increase
gradually until these discontinuities disappear. We elaborate
on this point below.

This formalism enabled us to develop criteria for improv-
ing simplifications made in L+P PWA. To determine how
the simplified L+P PWA differs from the full solution, the
formalism developed in Refs. [1,2] was modified by replacing
SE amplitude-analysis constraining functions with the sim-
plified L+P PWA amplitudes, which are energy dependent
and smooth, but do not reproduce the experimental data ex-
actly. Then, using the proposed formalism, we obtain the best
SE result. Differences between the energy-dependent (ED)
constraining partial waves, obtained by a simplified L+P
PWA, and the final SE result, obtained in a constrained PWA,
reveal where the analytic simplifications used in simplified
L+P PWA are too crude. These differences can be quanti-
fied by performing full L+P PWA of obtained multipoles,
as given in Refs. [7–12], and then repeating the L+P PWA
with improved analytic content. This process could be re-
peated iteratively to produce an ED solution which is
consistent with the SE values.

C. Remarks on phase ambiguity and initial parameters

Observe that the overall energy- and angle-dependent
phase remains unconstrained in step 1 of this method. How-
ever, the overall phase weakly enters through the choice of
initial parameters in the simplified L+P fit of step 1, and
is carried on into step 2 via the constraining function. Es-
tablishing reasonable initial parameters will impose some
restrictions on an otherwise free phase and reasonable initial
parameters are extremely important in complicated nonlinear
fits. One already has some prior knowledge of the pole pa-
rameters entering the L+P fit (it is assumed that they are not
far from the PDG [15] values), but the background param-
eters (thresholds and Pietarinen coefficients) are numerous
and less-well determined. Therefore, one must determine the
initial values of the remaining Pietarinen coefficients in some
way to constrain the phase; otherwise the fit would tend to
produce a final phase which disagrees significantly with the
phase coming from multichannel unitarity. We do this by fit-
ting the transversity amplitudes obtained from Bonn-Gatchina
multipoles [16,17] using the L+P PWA model. These ob-
tained coefficients (Pietarinen and pole parameters) are then
used as initial values in the ED L+P fit of experimental data.
In this way one starts with a solution whose overall phase
is close to the multichannel phase of the BG model [16,17].
This phase will change in the final solution, but only as much
as is needed to improve the fit to polarization data which
depend on the interference of reaction amplitude phases, and
find one out of many possible solutions which is closer to
the data than the initial L+P ED fit. As an aside, this is very
similar to the phase treatment in the Karlsruhe-Helsinki fixed-
t PWA [19–22]. In that fit to elastic pion-nucleon scattering,
the overall phase is not mentioned, but is implicitly introduced
as the phase of the solution whose Pietarinen parameters are
taken as starting values in a fixed-t analysis of data.

D. The γ p → K+� database

The γ p → K+� database, used in this study, is identical to
one fitted in Ref. [2]. In Table I our database is summarized. It
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TABLE I. Experimental data from CLAS and GRAAL used in our PWA. Note that the observables Cx and Cz are measured in a rotated
coordinate frame [25]. They are related to the standard observables Cx′ and Cz′ in the center-of-mass (c.m.) frame by an angular rotation:
Cx = Cz′ sin(θ ) + Cx′ cos(θ ) and Cz = Cz′ cos(θ ) − Cx′ sin(θ ); see Ref. [17].

Observable N Ec.m. (MeV) NE θc.m. (deg) Nθ Reference

dσ/d� ≡ σ0 3615 1625–2295 268 28–152 5–19 CLAS(2007) [25], CLAS(2010) [26]
� 400 1649–2179 34 35–143 6–16 GRAAL(2007) [27], CLAS(2016) [28]
T 408 1645–2179 34 31–142 6–16 GRAAL(2007) [27], CLAS(2016) [28]
P 1597 1625–2295 78 28–143 6–18 CLAS(2010) [26], GRAAL(2007) [27]
Ox′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [27], CLAS(2016) [28]
Oz′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [27], CLAS(2016) [28]
Cx 138 1678–2296 14 31–139 9 CLAS(2007) [25]
Cz 138 1678–2296 14 31–139 9 CLAS(2007) [25]

has been taken, in numeric form, from the Bonn-Gatchina and
George Washington University (SAID) web pages [23,24];
for general details related to the 2-dimensional interpola-
tion and its implementation, see Refs. [1,2]. However, the
interpolating/extrapolating stability in the present study is
significantly improved with respect to Refs. [1,2]. Observe
that, in angular range, not all observables overlap, and for
some data groups extrapolations are needed. However, this
extrapolation at extreme forward and backward angles can
become rather ambiguous if it is completely determined by
the fitting software. Therefore, we have introduced additional
kinematical constraints to the measured data at the angular
limits:

� = P = T = Ox′ = Oz′ = Cx = 0 and Cz

= 1 at cos θ = ±1. (4)

For the differential cross section dσ/d�, the Bonn-Gatchina
theoretical values were used as a constraint at these angles.
This stabilizes the extrapolations at low and high angles sig-
nificantly, and enables us to increase the angular range from
experimentally measured −0.7 < cos θ < 0.8 to a broader
−0.9 < cos θ < 0.9, and this notably increases the reliability
of partial-wave reconstruction.

E. The fit procedure

We propose a two-step procedure. Step 1 is the simplified
L+P PWA ED fit of the data which obtains an energy-
dependent overall representation of the data in terms of partial
waves with well known poles and cuts, and step 2 is the crite-
ria for finding missing resonances and/or improving analytic
complexity of the background terms by using the constrained
SE PWA technique, and finding where simplified analytic
structure is insufficient.

The step 1 fit procedure (simplified L+P PWA ED fit) con-
stitutes a proof-of-principle study, utilizing fewer parameters
than have been used in previous pole extractions involving
single multipoles. However, this simplification still retains a
realistic complexity of the analytic structure, but reduces the
number of free parameters. As far as background is concerned,
the simplification procedure takes only one L+P expansion
point, instead of three, and this branch point is fixed to the pion
production threshold. With the intention to keep a minimal
number of poles, we retained only one pole per multipole,

with the exception of those multipoles where the presence
of the second pole is clearly established in the multichannel
fits of the Bonn-Gatchina group (S-wave only) PDG [15]. The
chosen selection of poles is listed in Table II.

As a large number of parameters is used, we have to
carefully select initial parameters for poles and Pietarinen
coefficients as this is essential for the success of the fit. To
accomplish this, Bonn-Gatchina transversity amplitudes were
fitted with the simplified analytic structure described above.
To simplify the problem further, all poles which showed signs
of having little influence, or even being redundant2 (negative
width, small residue, ...), were disregarded. Very good and
stable results in this preliminary fitting of Bonn-Gatchina
results were obtained. The obtained parameters, which almost
perfectly reproduce Bonn-Gatchina multipoles, were used as
initial values in the simplified L+P PWA. The fit to the de-
scribed experimental database, in the energy range 1625 MeV
< W < 2296 MeV and angular range −0.9 < cos θ < 0.9, re-
quired acceptable CPU times of about 12–14 hours. The result
of this simplified L+P minimization is a set of multipoles
which fit the data better than the ED theoretical model, and
are by definition smooth.

As a step 2, the procedure to constrain single-channel,
single-energy partial-wave analysis, defined in Refs. [1,2],
was applied with the aim to gauge the influence of simpli-
fications to the L+P analysis. Transversity amplitudes were
obtained from the smooth multipoles of the simplified L+P
PWA, as given by Eqs. (A1)–(A8), and used as constraining
functions in the constrained SE PWA. The penalty factor λpen

introduced in Eq. (3) is optimized in a way to ensure that the
obtained multipoles are still smooth, and the penalty function
contribution to the total χ2 is no larger than 10% (for a full ex-
planation see Refs. [1,2]). This combination of requirements
resulted in λ = 150.

The final result, which is in quality identical to the
result given in Refs. [1,2], was obtained. A slightly dif-
ferent phase was found, as the constraining functions do
not have the exact Bonn-Gatchina phase that they did in

2The poles which Bonn-Gatchina reports are the result of a mul-
tichannel fit, so it is a realistic possibility that some of these poles
couple weakly to the K� channel, and so their influence in this
channel could be low.
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TABLE II. With ReMi and ImMi, i = 1, 2, 3, we denote pole parameters for simplified L+P PWA and full L+P PWA in GeV units. BPLP
1

and BPLP
2 denote the fixed πN threshold and the second, effective branch points of Pietarinen expansions, also in GeV units. Numbers in

parentheses denote the last digit uncertainty. Bolded numbers for each partial wave are Bonn-Gatchina values from the PDG (the value marked
with * denotes one resonance which is demanded by the final L+P PWA fit of the 2+ multipole and which is not given by the PDG [15]). The
second row is the result of fitting Bonn-Gatchina transversity amplitudes with the simplified L + P PWA. The third row shows the result of the
simplified L + P ED PWA fit, and the fourth row, where it exists, shows the results of the full L + P fit on the final SE AA/PWA amplitudes.

�± JP ReM1 ImM1 ReM2 ImM2 ReM3 ImM3 BPLP
1 BPLP

2

0+ 1
2

−
BG poles 1.658 0.051 1.906 0.05

Fitted BG amp. 1.667(3) 0.044(3) 1.881(5) 0.088(4) 1.086

L+P ED PWA 1.667(4) 0.044(2) 1.880(5) 0.041(5) 1.086

Full L+P 1.688(2) 0.073(1) 1.869(1) 0.043(1) 1.086

1+ 3
2

+
BG poles 1.660 0.250 1.945 0.077

Fitted BG amp. 1.904(5) 0.105(5) 1.086

L+P ED PWA 1.933(8) 0.067(8) 1.086

Full L+P 1.930(1) 0.063(1) 1.086 1.608

2+ 5
2

−
BG poles 1.654 0.075 2.040 0.195

Fitted BG amp. 2.063(4) 0.256(5) 1.086

L+P ED PWA 2.098(14) 0.093(13) 1.086

Full L+P 1.671(4) 0.318(4) 2.070(10) 0.093(16) 1.888(16)* 0.072(31)* 1.086 1.562

3+ 7
2

+
BG poles 2.030 0.12

Fitted BG amp. 2.056(10) 0.059(10) 1.086

L+P ED PWA 2.059(20) 0.040(20) 1.086

4+ 9
2

−
BG poles 2.195 0.235

Fitted BG amp. 2.113(105) 0.196(114) 1.086

L+P ED PWA 2.017(100) 0.180(111) 1.086

1− 1
2

+
BG poles 1.697 0.042 1.875 0.0165

Fitted BG amp. 1.717(3) 0.051(3) 1.086

L+P ED PWA 1.710(11) 046(12) 1.086

Full L+P 1.694(5) 0.057(3) 1.883(6) 0.056(6) 1.086 1.461

2− 3
2

−
BG poles 1.770 0.21 1.860 0.1 2.11 0.17

Fitted BG amp. 2.109(30) 0.195(30) 1.086

L+P ED PWA 2.015(23) 0.094(23) 1.086

Full L+P 1.691(1) 0.016(1) 1.806(2) 0.013(9) 2.158(5) 0.088(9) 1.086 0.94

3− 5
2

+
BG poles 1.675 0.056 1.830 0.125 2.03 0.24

Fitted BG amp. 2.013(12) 0.135(11)

L+P ED PWA 2.187(227) 0.274(300) 1.086

4− 7
2

−
BG poles 2.150 0.165

Fitted BG amp. 1.829(80) 0.154(81) 1.086

L+P ED PWA 1.862(889) 0.322(808) 1.086

5− 9
2

+
BG poles 2.150 0.22

Fitted BG amp. 1.969(20) 0.105(20) 1.086

L+P ED PWA 2.163(220) 0.273(200) 1.086

Refs. [1,2]. In spite of being close to the smooth result of
the simplified L+P minimization, the obtained discrete set of
multipoles is an improvement, in terms of the agreement with
data.

In comparing discrete multipoles of AA/PWA with the
smooth values obtained in simplified L+P PWA (see Figs. 1

and 2) one sees that some discrete sets have more structure
than the present simplified L+P version, so the simplified
L+P PWA can be improved. This difference is quantified by
applying the full L+P PWA of Refs. [7–12] to the obtained SE
solutions. As a result, we obtained quantitative information
about the effect of missing poles, and multipoles where the
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FIG. 1. The multipoles for the L = 0, 1, and 2 partial waves. Red discrete symbols correspond to our step 2 SE AA/PWA solution, the
black full line gives the result of the step 1 L+P ED PWA, and the full orange line gives the BG2017 ED solution for comparison. The thin
vertical black line marks the energy beyond which only 4 observables are measured instead of 8 (cf. Table I).
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FIG. 2. The multipoles for the L = 2 and 3 partial waves. Red discrete symbols correspond to our step 2 SE AA/PWA solution, the black
full line gives the result of the step 1 L+P ED PWA, and the orange full line gives the BG2017 ED solution for comparison. The thin vertical
black line marks the energy beyond which only 4 observables are measured instead of 8 (cf. Table I).
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FIG. 3. Comparison of experimental data for σ0 (red discrete symbols) with results from our SE AA/PWA (red full line), with our L+P
ED PWA (black full line), and with the BG2017 fit (orange line) at representative energies.

background structure is inadequate. This is summarized in
Table II, where differences in the number of poles in rows
denoted by L+P ED PWA and Full L+P indicate multipoles
where improvement is needed.

In future studies, a development can be imagined where
faster minimization software is used (MINUIT in FORTRAN 90,
for example, instead of the presently used Mathematica 11.0,
which is known not to be ideal for minimizations) and applied
with improved hardware. This would reduce CPU time and
enable the introduction of more complex analytic forms (more
poles, more Pietarinen expansions having more terms than
were used in the simplified L+P expansion). In principle, the
present iterative two-step procedure could then be replaced by
a more elaborate single-step L+P fit.

F. Error analysis

In the present study, the emphasis is centered on a “fit” to
find L+P parameters. However, a quantification of the uncer-
tainty associated with these parameters is extremely important
and also required as knowing the best-fit values is only a

part of parameter estimation. In the present approach, the
error analysis is limited to obtaining statistical errors only.
These are fairly reliable, as measured data with realistic errors
are fitted. In Table II the last digit uncertainty is given in
parentheses. One can see that the confidence level of our result
(row denoted by L+P ED PWA) is fairly high for the lowest
resonances, but drops notably for higher ones. However, the
large number of parameters suggests that we may be facing a
situation where local minima are very often encountered. This
cannot be controlled within the present approach. However,
there are other methods which could be eventually applied like
standard techniques such as bootstrapping and Markov chain
Monte Carlo (MCMC) (for recent application see Ref. [29]).
Currently, parameters found in a Bonn-Gatchina PWA are
used as starting points, but these could as well be the starting
points of MCMC sampling. However, due to the complexity
of formula and large CPU usage, the computational aspects
of these attempts could be quite demanding. So, this re-
mains to be done when the calculational improvements are
implemented.
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FIG. 4. Comparison of experimental data for � (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

III. RESULTS FROM THE SIMPLIFIED L+P ED
AND SE AA/PWA ANALYSES

In Figs. 1 and 2, we show the final results for multipoles
over the full set of energies. Red symbols give the values of
multipoles for our step 2 SE AA/PWA solution, which scatter

around the black full line produced using the simplified ED
L+P fit. Note that this scatter of the SE points is limited by
the penalty function and results in a better fit to data. The
SE and ED multipoles show better agreement in Fig. 1 for
the lower and dominant multipoles; more variation is seen
in the higher multipoles of Fig. 2. For comparison, the full
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FIG. 5. Comparison of experimental data for T (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

orange line gives the BG2017 solution [23] used to initialize
the L+P fit parameters. For lower multipoles, the orange and
black lines show qualitative agreement, apart from the real
part of M1+. Closer agreement should not be expected as
the Bonn-Gatchina fits simultaneously account for channels
beyond kaon photoproduction. Note that the vertical black

line in Fig. 1, indicating the energy where the number of
measured observables drops from 8 to 4, is not reflected in
jumps to equivalent solutions for the SE AA/PWA points,
ostensibly due to the penalty function constraint. Some dis-
continuities do begin to appear in the higher multipoles of
Fig. 2.
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FIG. 6. Comparison of experimental data for P (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

In Figs. 3–10, the fits to measured observables resulting
from our simplified L+P PWA (black line) and SE AA/PWA
method (red full line) are given, as well as predictions from the
ED BG2017 solution [23] (full orange line) at representative
energies only. All further energies are available upon demand.
Red symbols represent the actually measured data points as
given in references collected in Table I, and cyan symbols
denote the interpolated values obtained with the procedure
described in Sec. II D. Here we see that all curves give a
good representation of the data, where it has been measured.
Some small deviations exist mainly at extreme forward and
backward angles where experimental coverage is incomplete.
Sharp structures in these regions are influenced by higher
partial waves and may be linked to some deviations seen in
the multipoles of Fig. 2.

IV. FULL L+P ANALYSIS OF THE (STEP 2) SE
AA/PWA MULTIPOLES

It is natural to explore the full analytic structure of the
improved SE solutions displayed in Figs. 1 and 2. This can

be done if the full L+P method of Refs. [7–12] is applied. In
Table II and in Figs. 11 and 12 we show the results.

We see that, for the lowest multipole E0+, the pole posi-
tions and the general shape of the multipole, comparing Fig. 1
and Fig. 11, do not change significantly; they are well repro-
duced with the simplified L+P ED PWA. However, already
for the 1− and 1+ multipoles, the shape of the function in
Fig. 11 is slightly different from the shape given in Fig. 1. For
multipoles 1+, a second Pietarinen expansion has been added
to compensate, and for multipole 1−, a second resonance and
a second Pietarinen expansion have been added. All results are
collected in Table II and in Fig. 11. Note that here, effective
branch points are employed to represent all branch-cut contri-
butions simultaneously (see Refs. [7–12]).

V. SUMMARY AND CONCLUSIONS

For the first time, pole parameters have been used directly
as fitting parameters in an ED L+P analysis of photopro-
duction data. Previous L+P fits have been applied to sets
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FIG. 7. Comparison of experimental data for Ox′ (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

of multipoles obtained in independent analyses of data. As
a proof-of-principle calculation, a simplified ED L+P PWA
formalism was used, having a reduced number of nonpole
parameters and dropping weakly coupled poles. Phase infor-
mation from the multichannel Bonn-Gatchina analysis was
used to weakly mitigate the continuum ambiguity, plaguing

single-channel fits. Here we have used the Bonn-Gatchina
analysis to initialize the L+P parameters used in the fit to
data. To search for missing structure, as a second step, a
constrained SE AA/PWA was performed with the result of
an L+P ED PWA fit used as a constraint. A comparison of
multipoles, from the ED and constrained SE fits, to those from
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FIG. 8. Comparison of experimental data for Oz′ (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

Bonn-Gatchina, showed reasonable agreement for the largest
multipoles but significant deviations from the Bonn-Gatchina
analysis in other cases. Closer agreement should not be ex-
pected.

To quantify the difference between our simplified L+P
ED PWA and the constrained step 2 discrete SE AA/PWA

multipoles, which fit the data notably better, we have per-
formed a full L+P analysis of the latter using the formalism
of Refs. [7–12] and compared the obtained poles. We con-
clude that for the dominant E0+ multipole no corrections are
needed; however all other multipoles are consistent with hav-
ing at least one more pole and required one extra Pietarinen
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FIG. 9. Comparison of experimental data for Cx (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.

expansion. Thus, some improvement of analytic structure of
simplified L+P ED PWA is needed in future studies.

In the full L+P analysis we encountered one surpris-
ing result: In 2+ multipoles, the final fit required an
extra resonance with parameters 1.888 + i 0.072 GeV, not
listed by the PDG. However, this could disappear once the
above-mentioned improvements to the L+P structure are
implemented.

Some problems of principle remain to be fully addressed.
The number of measurements required for a “complete ex-
periment” or a truncated partial-wave analysis continues to be
discussed. This has some impact on the ability to perform SE
analyses, though arguments generally must ignore the effect
of experimental uncertainties. Here, by using a penalty func-
tion, our SE results are relatively smooth and tied to an ED
solution. However, some indications of a discontinuity where

FIG. 10. Comparison of experimental data for Cz (red discrete symbols are measured values and cyan symbols are interpolated values) with
results from our SE AA/PWA (red full line), with our L+P ED PWA (black full line), and with the BG2017 fit (orange line) at representative
energies.
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FIG. 11. Multipoles obtained from full L+P PWA of SE AA/PWA solutions. Red symbols are SE AA/PWA final results, and full blue
line is the L+P fit. Pole results are given in Table II.

the number of observables changes from 8 to 4 may be visible
in the higher multipoles shown in Fig. 2. The main problem
of SC methods is that a phase ambiguity [13] remains, but
is “hidden” in the choice of initial parameters of our step 1
fit (fitting an analytically simplified L+P expansion of multi-
poles to the experimental data). Being an overall phase, having
no effect on observables, it is difficult to study. However, it
can change the appearance of multipoles and therefore is an
added problem in comparing the results of different groups.
In future, an upgrade of this proof-of-principle calculation
will be implemented. As is commonly known, the presently
used Mathematica software is notoriously inefficient for the
minimization tasks, as the process involves inverting very

large matrices, requiring a large amount of memory and CPU
time. Other, faster minimization software will be used (MINUIT

in FORTRAN90, for example), and applied with the new, better
hardware. This will reduce CPU time, and will enable the in-
troduction of more complex analytic forms (more poles, more
Pietarinen expansions, and more Pietarinen terms in a sin-
gle expansion). Hence, the proposed iterative procedure will
be fully implemented to formulate the final, full-scale model
with the inclusion of error uncertainties and data consistency.
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FIG. 12. Multipoles obtained from full L+P PWA of SE AA/PWA solutions. Red symbols are SE AA/PWA results, and full blue line is
the full L+P fit. Pole results are given in Table II.
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APPENDIX: FORMALISM FOR K� PHOTOPRODUCTION

Partial-wave decompositions are introduced through Chew,
Goldberger, Low, and Nambu (CGLN) amplitudes:

F1(W, θ ) =
∞∑

�=0

{[�M�+(W ) + E�+(W )]P′
�+1(cos θ )

+ [(� + 1)M�−(W ) + E�−(W )]P′
�−1(cos θ )},

(A1)
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TABLE III. The definitions of the 16 polarization observables of pseudoscalar meson photoproduction are given here in terms of
transversity amplitudes b1, . . . , b4 (cf. Ref. [30]; sign conventions are consistent with [31]). Expressions are given both in terms of real and
imaginary parts of bilinear products of amplitudes and in terms of moduli and relative phases of the amplitudes. Furthermore, the phase-space
factor ρ has been suppressed in the given expressions (i.e., we have set ρ = 1). The four different groups of four observables each are indicated
as well.

Observable Group

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) S

�̂ = 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2) S

T̂ = 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2) S

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2) S

Ê = Re[−b∗
3b1 − b∗

4b2] = −|b1||b3| cos φ13 − |b2||b4| cos φ24 BT
F̂ = Im[b∗

3b1 − b∗
4b2] = |b1||b3| sin φ13 − |b2||b4| sin φ24 BT

Ĝ = Im[−b∗
3b1 − b∗

4b2] = −|b1||b3| sin φ13 − |b2||b4| sin φ24 BT
Ĥ = Re[b∗

3b1 − b∗
4b2] = |b1||b3| cos φ13 − |b2||b4| cos φ24 BT

Ĉx′ = Im[−b∗
4b1 + b∗

3b2] = −|b1||b4| sin φ14 + |b2||b3| sin φ23 BR
Ĉz′ = Re[−b∗

4b1 − b∗
3b2] = −|b1||b4| cos φ14 − |b2||b3| cos φ23 BR

Ôx′ = Re[−b∗
4b1 + b∗

3b2] = −|b1||b4| cos φ14 + |b2||b3| cos φ23 BR
Ôz′ = Im[b∗

4b1 + b∗
3b2] = |b1||b4| sin φ14 + |b2||b3| sin φ23 BR

L̂x′ = Im[−b∗
2b1 − b∗

4b3] = −|b1||b2| sin φ12 − |b3||b4| sin φ34 T R
L̂z′ = Re[−b∗

2b1 − b∗
4b3] = −|b1||b2| cos φ12 − |b3||b4| cos φ34 T R

T̂x′ = Re[b∗
2b1 − b∗

4b3] = |b1||b2| cos φ12 − |b3||b4| cos φ34 T R
T̂z′ = Im[−b∗

2b1 + b∗
4b3] = −|b1||b2| sin φ12 + |b3||b4| sin φ34 T R

F2(W, θ ) =
∞∑

�=1

[(� + 1)M�+(W ) + �M�−(W )]P′
�(cos θ ),

(A2)

F3(W, θ ) =
∞∑

�=1

{[E�+(W ) − M�+(W )]P′′
�+1(cos θ )

+ [E�−(W ) + M�−(W )]P′′
�−1(cos θ )}, (A3)

F4(W, θ ) =
∞∑

�=2

[M�+(W ) − E�+(W ) − M�−(W )

− E�−(W )]P′′
� (cos θ ). (A4)

Transversity amplitudes are defined as

b1(W, θ ) = −b3(W, θ ) − 1√
2

sin θ

× [
F3(W, θ )e−ı θ

2 + F4(W, θ )eı θ
2
]
, (A5)

b2(W, θ ) = −b4(W, θ ) + 1√
2

sin θ

× [
F3(W, θ )eı θ

2 + F4(W, θ )e−ı θ
2
]
, (A6)

b3(W, θ ) = ı√
2

[
F1(W, θ )e−ı θ

2 − F2(W, θ )eı θ
2
]
, (A7)

b4(W, θ ) = ı√
2

[
F1(W, θ )eı θ

2 − F2(W, θ )e−ı θ
2
]
. (A8)

All 16 polarization observables can be expressed in terms
of transversity amplitudes; see Table III.
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