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Dynamical mechanism of fusion hindrance in heavy ion collisions
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Background: In the fusion process, the investigation of the reaction dynamics in the time evolution of the
nuclear configuration is necessary. The neck parameter ε which is one of the parameters representing the nuclear
configuration in the two center shell model is important in fusion owing to the nucleons transferring through the
neck. The time evolution of the neck has not been discussed in detail, but is crucial for fusion cross section in
the assessment of new elements synthesis.
Purpose: The dynamical analysis for the fusion hindrance under the neck formation on the nuclear deformation
space has been done. The fusion probability PCN considering the different denecking motion and the fusion
hindrance are discussed.
Method: The calculations were performed using the dynamical model of nucleus-nucleus collisions based on
the multidimensional Langevin equations.
Results: The formation of the neck bridge at the approaching stage is found to be crucial to the fusion hindrance.
It is clarified that the inner barrier appears owing to the change in the degree of mass asymmetry α with the
relaxation of ε.
Conclusions: The fusion hindrance occurs because the inner barrier is formed by the early neck formation. The
role of the neck parameter ε is critically important for the fusion dynamics.
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I. INTRODUCTION

The heavy ion reaction has been categorized into sev-
eral processes. In the first step, the projectile and target
nucleus stick each other after overcoming the interaction bar-
rier mainly from the Coulomb potential (capture process).
Next, the system moves along the path toward forming the
compound nucleus (CN) (fusion process) and the dominant
part of the event evolves to the reseparation after exchanging
some amount of nucleons [quasifission (QF) or deep inelastic
collision (DIC) processes].

The capture cross section is defined as a sum of the QF,
DIC, and CN cross section, and is a measurable quantity by
experiments. Theoretically, the capture-cross section can be
defined by the total sum of the transport coefficient of the
interaction barrier weighting the angular momentum factor
(2l + 1) corresponding to the impact parameter. The im-
portant thing is the identification of the fusion phenomena
competing with QF and DIC. The estimation of the CN cross
section is crucial for the prediction of the synthesis of super-
heavy elements. Because the superheavy element is identified
as the evaporation residue (ER) of CN surviving from the
dominant process of fission.

Many attempts to separate the capture cross section from
QF and DIC, and to identify the CN cross section have
been reported. In the early macroscopic dynamical model
by Swiatecki [1], the CN cross section was estimated
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taking into account of the neck degree of freedom. The fusion
probability was also calculated by the Smolkowski diffusion
model [2] and the probability passing through the CN region
of deformation space was estimated by the multidimensional
Langevin equation [3]. Recently, the Langevin equation was
used widely for the analysis of fusion and fission phenomena
in superheavy mass region [4–9]. Another approach to the
CN cross section is based on the dinuclear system (DNS)
model [10,11], in which they pointed the importance of the
neck behavior of the colliding system, and presented that
the theoretical overestimation of fusion probability in heavier
collision systems is refined by the proper treatment of the
mass parameters for the neck degree of freedom.

It is necessary to investigate in detail the dynamics of the
time evolution of the shape of nuclei. Especially, the time evo-
lution of the neck is one of the important factors [10,12,13],
but the detail has not been discussed. Therefore, it is essential
to analyze the evolution of the neck parameter, its role, and
the contribution in the fusion process.

In the present paper, we show the dynamical mechanism
of the fusion hindrance for the 48Ca + 208Pb system by the
analysis of trajectories in the three-dimensional deformation
space of the Langevin equation. Starting at the contact stage
of colliding nuclei, we show how the delayed neck growth
hinders the trajectory going toward the fusion area. It is found
that the rapid relaxation of the neck makes it difficult for
trajectories to go up the inner slope of potential energy sur-
face (PES) in spite of the lower barrier of the entrance stage
comparing with the case of a slow relaxation of the neck.
The point is the correlation between the evolution of inner
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barrier and the growth of neck during the fusion process. The
dynamical variation of PES of the two center shell models and
the neck formation will mainly be discussed. The fission frag-
ment mass distribution (FFMD) depending on these situations
is also discussed.

In the following section is a brief review of the Langevin-
type approach. The dynamical mechanism of fusion hindrance
in the 48Ca + 208Pb system at Ec.m. = 180.0 MeV is shown
in Sec. III, where the detailed analysis on the effects of the
neck formation and the reason of the fusion hindrance are pre-
sented. Our concluding remarks are given in the final section.

II. MODEL

A. Potential energy surface

We adopt the dynamical model based on the multidimen-
sional Langevin equations, which are similar to the unified
model [14]. Early in the collision, the reaction stage of the
nucleon transfer consists of two parts. First, at the approaching
stage the system is placed in the ground state of the projectile
and target because the reaction proceeds too quickly for nu-
cleons to occupy the lowest single-particle levels. Next, the
system relaxes to the ground state of the entire composite
system which changes the PES to an adiabatic one. Therefore,
we treat the transition of two reaction stages with a time-
dependent weighting function:

V = Vdiab(q) f (t ) + Vadiab(q)[1 − f (t )], (1)

f (t ) = exp

(
− t

τ

)
. (2)

Here, q denotes a set of collective coordinates representing
nuclear shape. The diabatic potential Vdiab(q) is calculated
by a folding procedure using an effective nucleon-nucleon
interaction [14–16]. The adiabatic potential energy Vadiab(q)
of the system is calculated using an extended two-center shell
model [16]. As a characteristic of the diabatic potential, a “po-
tential wall” appears due to the overlap region of the collision
system which corresponds to the hard core representing the
incompressibility of nuclear material. t is the interaction time
and f (t ) is the weighting function included the relaxation
time τ . We use the relaxation time τ = 10−22 s proposed
in [17–19]. With the two-center parametrizations [20,21],
the nuclear shape which is represented by three deformation
parameters is defined as follows: z0 (distance between the
centers of two potentials), δ (deformation of fragment), and
α (mass asymmetry of colliding nuclei); α = (A1−A2 )

(A1+A2 ) , where
A1 and A2 not only stand for the mass numbers of the target
and projectile, respectively [15,22], but also are then used to
indicate mass numbers of the two fission (heavy and light)
fragments. The parameter δ is defined as δ = 3(a−b)

(2a+b) , where
a and b represent the half-length of the ellipse axes in the z0

and ρ directions, respectively [20]. In addition, we use scaling
to save computation time and use the coordinate z defined
as z = z0

(RCN B) , where RCN denotes the radius of the spherical
compound nucleus and the parameter B is defined as B =
(3+δ)

(3−2δ) . We solve the dynamical equation numerically. There-
fore, we restricted the number of degrees of freedom as three
deformation parameters to avoid the huge calculation time.

The neck parameter ε included in the two-center
parametrizations is adjusted in Ref. [23], reproducing the
available data assuming different values between the entrance
and exit channels of the reaction. In the present paper, we
use ε = 1 for the entrance channel and ε = 0.35 for the exit
channel. This treatment is used in Refs. [16,24]. We assume
the time dependence of the potential energy with the finite
range liquid drop model, which is denoted by the character-
istic relaxation time of the neck t0 and the variance �ε as
follows:

VLDM(q, t ) = VLDM(q, ε = 1) fε (t )

+VLDM(q, ε = 0.35)[1 − fε (t )], (3)

VLDM(q, ε) = ES (q, ε) + EC (q, ε), (4)

fε = 1

1 + exp
( t−t0

�ε

) , (5)

where the symbols ES and EC stand for generalized surface
energy and Coulomb energy, respectively [25]. If the value of
t0 is 0 s, at the same time as contact, the adiabatic potential
energy for ε = 1 starts to change toward the adiabatic one
for ε = 0.35. The time-dependent weighting function in the
relaxation of the ε value is often employed in the model based
on the Langevin-type approach [16,24,26–29].

The adiabatic potential energy given a value of ε and a
temperature of a system is defined as

Vadiab(q, t, L, T ) = VLDM(q, t ) + VSH(q, T ) + Vrot (q, L), (6)

VSH(q, T ) = E0
shell(q)�(T ), (7)

E0
shell(q) = �Eshell(q) + �Epair(q), (8)

�(T ) = exp

(
−E∗

Ed

)
. (9)

VSH is the shell correction energy that takes into account
temperature dependence. The symbol E0

shell indicates the mi-
croscopic energy at T = 0, which is calculated as the sum
of the shell correction energy �Eshell and the pairing cor-
relation correction energy �Epair. T is the temperature of
the compound nucleus calculated from the intrinsic energy
of the composite system. �Eshell is calculated by the Struti-
nsky method [30,31] from the single-particle levels of the
two-center shell model potential [20,32,33] as the differ-
ence between the sum of single-particle energies of occupied
states and the averaged quantity. �Epair is evaluated in the
Bardeen, Cooper, Schrieffer (BCS) approximation as de-
scribed in Refs. [31,34]. The averaged part of the pairing
correlation energy is calculated assuming that the density of
single-particle states is constant over the pairing window. The
pairing strength constant is related to the average gap param-
eter �̃ by solving the gap equation in the same approximation
and adopting �̃ = 12/

√
A suggested in [34] by considering

the empirical results for the odd-even mass difference [35].
The temperature dependence factor �(T ) is explained in
Ref. [22], where E∗ indicates the excitation energy of the
compound nucleus. E∗ is given E∗ = aT 2, where a is the level
density parameter. The shell damping energy Ed is selected
as 20 MeV. This value is given by Ignatyuk et al. [36]. The
rotational energy generated from the total angular momentum
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L is represented as Vrot. We obtain

Vrot (q, L) = h̄2	(	 + 1)

2I (q)
+ h̄2L1(L1 + 1)

2�1(q)
+ h̄2L2(L2 + 1)

2�2(q)
.

(10)

Here, I (q) and 	 represent the moment of inertia of the rigid
body with deformation q and the relative orientation of nuclei
and relative angular momentum, respectively. The moment of
inertia and the angular momentum for the heavy and light
fragments are �1,2 and L1,2, respectively.

B. Dynamical equations

The trajectory calculations are performed on the time-
dependent unified potential energy [14,15,22] using the
multidimensional Langevin equation [15,22,37] as follows:

dqi

dt
= (m−1)i j p j,

d pi

dt
= − ∂V

∂qi
− 1

2

∂

∂qi
(m−1) jk p j pk − γi j (m

−1) jk pk

+ gi jR j (t ),

dθ

dt
= 	

μRR2
,

dϕ1

dt
= L1

�1
,

dϕ2

dt
= L2

�2
,

d	

dt
= −∂V

∂θ
− γtan

(
	

μRR2
− L1

�1
a1 − L2

�2
a2

)
R

+ RgtanRtan(t ),

dL1

dt
= − ∂V

∂ϕ1
+ γtan

(
	

μRR2
− L1

�1
a1 − L2

�2
a2

)
a1

− a1gtanRtan(t ),

dL2

dt
= − ∂V

∂ϕ2
+ γtan

(
	

μRR2
− L1

�1
a1 − L2

�2
a2

)
a2

− a2gtanRtan(t ). (11)

The collective coordinates qi represent z, δ, and α, the sym-
bol pi denotes momentum conjugated to qi, and V is the
multidimensional potential energy. The symbol θ indicates
the relative orientation of nuclei. ϕ1 and ϕ2 stand for the
rotation angles of the nuclei in the reaction plane, a1,2 =
R
2 ± R1−R2

2 is the distance from the center of the fragment to
the middle point between the nuclear surfaces, and R1,2 is
the nuclear radii. The symbol R is the distance between the
nuclear centers. The total angular momentum L = 	 + L1 +
L2 is preserved. The symbol μR is reduced mass, and γtan

is the tangential friction force of the colliding nuclei. The
phenomenological nuclear friction forces for separated nuclei
are expressed in terms of the tangential friction γtan and the
radial friction γR using the Woods-Saxon radial form factor
described in Ref. [15] as follows:

F (ξ ) = (
1 + exp

ξ−ρF
aF

)−1
, (12)

γtan = γ 0
t F (ξ ), (13)

γR = γ 0
R F (ξ ). (14)

The model parameter γ 0
t and γ 0

R which is used in the pre-
vious paper [13] employs 0.1 × 10−22 MeV s fm−2 and

FIG. 1. One-dimensional fusion barrier for the central collision
(L = 0h̄) in the reaction 48Ca + 208Pb. The solid and dashed lines
are for fixed ε = 1.00 and fixed ε = 0.65, respectively. The z values
at the contact without neck bridge formation and with neck bridge
formation are indicated by vertical solid and dashed lines. The blue
region shows the compound nucleus (CN) region.

100 × 10−22 MeV s fm−2, respectively. ρF and aF are 2 fm
and 0.6 fm which are determined in Ref. [15]. ξ is the dis-
tance between the nuclear surfaces ξ = R − Rcontact, where
Rcontact = R1 + R2. The phenomenological friction for the ra-
dial direction is switched to the one-body friction in the
mononucleus state. γR is described to consider the kinetic
dissipation according to the surface friction model [38]. The
radial friction is calculated as

γzz = γ one
zz + �(ξ )γR. (15)

For the mononuclear system, the wall-and-window one-body
dissipation γ one

zz is adopted for the friction tensor [39–46]. The
phenomenological friction is switched to that of a mononu-
clear system using the smoothing function [15]

�(ξ ) = (
1 + exp− ξ

0.3
)−1

. (16)

mi j and γi j stand for the shape-dependent collective in-
ertia and friction tensors, respectively. We adopted the
hydrodynamical inertia tensor mi j in the Werner-Wheeler ap-
proximation for the velocity field [47]. The one-body friction
tensors γi j are evaluated within the wall-and-window formula
[41,48]. The normalized random force Ri(t ) is assumed to be
white noise: 〈Ri(t )〉 = 0 and 〈Ri(t1)Rj (t2)〉 = 2δi jδ(t1 − t2).
According to the Einstein relation, the strength of the random
force gi j is given as γi jT = ∑

k gi jg jk .

III. RESULTS

A. Fusion hindrance due to neck formation

To review the fusion hindrance due to effects of the neck
formation in heavy ion collisions, the one-dimensional fusion
barriers for the fixed ε (1.0 and 0.65) are shown for the
reaction of 48Ca + 208Pb in Fig. 1. The top of the barrier
and the contact line are at the same position in the case of
ε = 1.0. In other words, the inner barrier is not formed for
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FIG. 2. Nuclear configuration for 48Ca + 208Pb before two nuclei
contact ({z, δ, α} = {2.0,0.00,0.63}). The solid and dashed lines
correspond to nuclear configurations for ε = 1.00 and ε = 0.65,
respectively.

ε = 1.0. Thus, the system overcoming the fusion barrier after
the contact of two nuclei moves easily toward the formation
of a compound nucleus. On the other hand, when two nuclei
form a neck bridge before contact, the fusion barrier decreases
at the contact point. The fusion enhancement may be expected
due to the decrease of barrier height, however the system
needs to overcome the inner barrier against the friction forces
and as a result the fusion hindrance occurs. Details will be
discussed later.

The nuclear configuration before contact point {z, δ, α} =
{2.0,0.0,0.63} for different fixed ε values in 48Ca + 208Pb is
shown in Fig. 2. As shown in the figure, if use is made of
ε = 0.65, the neck bridge is formed before contact.

Next, we investigate the fission fragment mass distribution
(FFMD) under the different neck bridge formations in the
reaction 48Ca + 208Pb at Ec.m. = 180.0 MeV. FFMD without
the effect of the orbital angular momentum for ε = 1.0 and
ε = 0.65 is shown in Fig. 3. The mass symmetric fission
decreases for the case of the neck bridge formation (ε = 0.65)
before contact compared with that for the case of ε = 1.0. The
decrease of the mass symmetric fission is due to the inner
barrier after contact. The sharp peaks at both sides of the
distribution are the events of the quasielastic (QE) reaction,
which are confirmed in the mass of the collision system. The
formation of the neck bridge before contact makes a second
bump indicated by arrows near 180Hg due to the shell effects.
These bumps correspond to the quasifission (QF) events keep-
ing the memory of the entrance channel.

We also investigate the FFMD when the formation of the
neck bridge appears before contact in terms of the dynam-
ical analysis using the mean trajectory calculations. Figure 4
shows the calculation result of the 48Ca + 208Pb reaction with-
out the effect of the angular momentum at Ec.m. = 180.0 MeV.
The calculation starts at {z, δ, α} = {2.65, 0.0, 0.63}. Both
temporal evolutions of z with and without the formation of
the neck bridge before contact are shown in Fig. 4(a). The

FIG. 3. Mass distribution of fission fragments for the central
collision (L = 0h̄) in the reaction 48Ca + 208Pb at Ec.m. = 180.0 MeV.
The solid and dashed lines show the calculation results for fixed
ε = 1.00 and fixed ε = 0.65, respectively.

value of z begins to move toward the ground state for no neck
bridge formation as indicated by the solid line. If the neck
bridge is formed before contact, z goes toward the fission area
as shown by the broken line. The characteristic times at which
the dynamical variation for ε = 1.0 and ε = 0.65 are shown
by vertical solid and dashed lines, respectively. Each time is
6.845 × 10−21 s and 9.873 × 10−21 s.

Figure 4(b) shows the calculation result of the mean tem-
poral evolution of α. When the neck bridge is formed before
contact (ε = 0.65), the system can obtain the sufficient neck
cross section. The relaxation of the degree of mass asymmetry
starts rapidly in an early stage by nucleon transfer through the
neck. On the contrary, in the case of ε = 1.0, the relaxation of
the degree of mass asymmetry delays because the thick neck is
not formed. Note that the fluctuations are not taken account in
these calculations. The characteristic locations where the dy-
namic changes occur are indicated by a black star (α = 0.46)
and white star (α = 0.13) in Fig. 4(b).

We analyze the dynamical difference of these two tem-
poral evolutions in α. The mean trajectories for ε = 1.0 and
ε = 0.65 drawn in the z-δ plane of the potential energy surface
at the point of α = 0.46 and α = 0.13 are shown in Figs. 4(c)
and 4(d), respectively. The black and white stars plotted in
Figs. 4(c) and 4(d) correspond to the locations of the black
and white stars in Fig. 4(b), respectively. From the behavior
of the trajectory passing after the black star in Fig. 4(c), the
trajectory is guided to the ground state because no barrier
exists toward the fusion area. On the other hand, the trajectory
returns back at the white star in Fig. 4(d) to the fission area,
because the inner barrier appeared due to the rapid relaxation
of the degree of mass asymmetry. Therefore, the trajectory
cannot invade the CN region and then goes in the direction of
the fission. The formation of the inner barrier is caused by the
rapid relaxation of the degree of mass asymmetry due to the
formation of a sufficiently thick neck at the early time (case
ε = 0.65). It can be seen that the quasifission is controlled by
the initial dynamics of the neck.
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FIG. 4. The temporal evolution without fluctuation of z (a) and α (b) for the different ε value. The significant time is indicated by vertical
solid and dashed lines. The solid and open star points show the significant value of mass asymmetry for fixed ε = 1.00 and fixed ε = 0.65,
respectively. The potential energy surface of z-δ plane at the solid star point (α = 0.46) (c) and the open star point (α = 0.13) (d). The mean
trajectory drawn in potential energy surface of z − δ plane at the solid star point (α = 0.46) for fixed ε = 1.00 (c). The same as (c), but at the
open star point (α = 0.13) for fixed ε = 0.65 (d).

B. FFMD depending on the neck relaxation

We investigate the dynamics of ε in the Langevin calcula-
tion in connection with FFMD. We assume that the relaxation
of ε is generated by using �ε = 1.0 × 10−22 s in Eq. (5).
Theoretical reports [10,11,49–51] show that once ε starts to
relax, the relaxation proceeds rapidly. The starting time of
the relaxation is adjusted by t0. To investigate the different
initial dynamics of ε, we use t0 = 0 s and 5.0 × 10−21 s.
We call each relaxation mode as “contact relaxation” and
“delayed relaxation”. Figure 5 shows the FFMD calculated
for the different relaxation modes in the 48Ca + 208Pb reaction
at Ec.m. = 180.0 MeV. We cut the events in the mass range
A < 58, 198 < A where the quasielastic collision is domi-
nated. The mass asymmetric fission is dominant for “contact
relaxation”, and the mass symmetric fission is dominant for
“delayed relaxation”. The inner barrier is formed by the early
formation of the neck in the case of “contact relaxation”, how-
ever, the fusion yield is slightly ensured because trajectories
overcome the inner barrier due to the effect of dynamical fluc-
tuation. The percentage of fusion-fission is 0.57% (black filled
part) and 14.23% (grey filled part) for “contact relaxation”
and “delayed relaxation”, respectively. It is clear the CN for-
mation cross section is hindered for the “contact relaxation”
mode. We analyze the difference of the dominant fission mode
dynamically.

The sample trajectory of “contact relaxation” and “delayed
relaxation” with a fluctuation are drawn in the z-δ potential
energy surface at each α in Fig. 6. The calculation starts at
the ×. As can be seen in Fig. 6(a), the trajectories go up to
the black square and the blue circle where the relaxation of ε

starts in. The trajectories of “contact relaxation” and “delayed

relaxation” keep ε to 1.0 from the × to the black square and
the blue circle, respectively.

In the case of “delayed relaxation”, the trajectory follows
from the black square in Fig. 6(a) to the blue circle without
neck relaxation. The blue circle is also indicated in Fig. 6(b),
but the PES changes drastically because of the relaxation
of mass asymmetry described below. The trajectory moves

FIG. 5. Mass distribution of fission fragments for the initial or-
bital angular momentum in the range of L = 0–100 h̄ for the reaction
48Ca + 208Pb at Ec.m. = 180.0 MeV. The solid and dashed lines show
the calculation results of two relaxation modes of ε: the relaxation
starting late after contact and immediately after contact, respectively.
The fusion-fission fragments for “delayed relaxation” and “contact
relaxation” are presented by the grey and the black-filled areas,
respectively.
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FIG. 6. The trajectories with fluctuation drawn in the potential energy surface for each α value in the reaction 48Ca + 208Pb at Ec.m. =
180.0 MeV. The solid blue and dashed black lines indicate ε relaxation starting late after contact and immediately after contact, respectively.
The ×’s are calculation starting points. The relaxation starting points of the ε parameter are indicated by a black square and blue circle. The
trajectories up to the onset of relaxation are drawn in (a) and the trajectories after the onset of relaxation are drawn in [(b)–(d)]. Black arrows
indicate the direction of the procession of trajectories toward fission.

toward the compound nucleus region due to the inner slope
like in Fig. 1 (solid line) corresponding to the case of “de-
layed relaxation”. After that, since the trajectory is trapped
in the pocket which appeared around {z, δ} = {0.0, 0.2}, the
mass asymmetry is rapidly relaxed. The effect of this pocket
appearing in the deformation space has been already reported
in Ref. [52]. Then the trajectory was sufficiently relaxed in
α exits from near α = 0 as indicated by the black arrow. In
Fig. 4(c), the trajectory settles down the pocket which ap-
peared around {z, δ} = {0.0, 0.2}, however, the trajectory does
not settle down the pocket in Fig. 6(b). Finally, the trajectory
moves to fission due to the effect of dynamical fluctuation. In
the case of “contact relaxation”, the mass transfer through the
neck occurs actively before overcoming the inner barrier. The
trajectory and PES change from Figs. 6(a) to 6(c) due to the
early relaxation of α. As can be seen in Fig. 6(c), it is difficult
for the trajectory to enter the compound nucleus region by the
formation of the inner barrier due to the early relaxation of
the mass asymmetry. Finally, the path to fusion is hindered
and the system goes toward fission at α = 0.2 [as the black
arrow in Fig. 6(d)]. The same trajectory is drawn in Figs. 6(c)
and 6(d).

C. Denecking process with the initial
orbital angular momentum

Figure 7 shows the one-dimensional fusion barrier de-
pending on the initial angular momentum in the 48Ca + 208Pb

reaction. The barrier at the contact point becomes higher
according to the centrifugal potential energy. Therefore, the
formation of CN is expected to suppress corresponding to L.

FIG. 7. One-dimensional fusion barrier depending on the initial
angular momentum (L) for a fixed value of ε = 1.0 in the reaction
48Ca + 208Pb. The solid, dashed, dotted, and dotted-dashed lines are
for L = 0, 50, 100, and 150 h̄, respectively. The z value at the contact
is indicated by vertical dashed lines.
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FIG. 8. Trajectory distribution at the different initial angular momentum and relaxation modes drawn in the z-δ plane for the 48Ca + 208Pb
system with Ec.m. = 180.0 MeV. The ×’s are the starting point of calculation. [(a)–(c)] and [(d)–(f)] show the trajectory distribution for “delayed
relaxation” and “contact relaxation” of ε, respectively. [(a),(d)], [(b),(e)], and [(c),(f)] represent the results in the initial angular momentum 0h̄,
30h̄, and 60h̄, respectively. The open circle and square show the contact point in (b) and (e), respectively. The dashed lines are drawn to guide
the direction of trajectories from the starting point.

We investigate how the discussion presented above for L =
0h̄ is modified in the case with the angular momentum in the
reaction of 48Ca + 208Pb at Ec.m. = 180.0 MeV. The trajectory
distributions for several L values on the z-δ plane are shown
in Fig. 8. The upper three panels Figs. 8(a)–8(c) are for the
“delayed relaxation” of ε and the lower three Figs. 8(d)–8(f)
are for the “contact relaxation” of ε. All trajectories start
at ×. In the case of “delayed relaxation”, substantial trajecto-
ries for L = 0h̄ and 30h̄ reach to the compound nucleus region
{z, δ} = {0.0, 0.2}, but in the case of “contact relaxation”,
trajectories coming to the compound nucleus region are lim-
ited only to L = 0h̄. As shown in Fig. 6(a), the distribution
is enhanced at the pocket of {z, δ} = {0.0, 0.2}, where the
relaxation of α occurs rapidly, and the mass symmetric fis-
sion becomes dominant. The trajectories for L = 60h̄ cannot
overcome the barrier due to the centrifugal potential.

The mean direction of the motion of the trajectory after
contact for “delayed relaxation” is clearly different from that
for “contact relaxation”. As can be seen in Fig. 8(b), the
inclination of the trajectories has about 30◦ from the horizon
line after contact. However, the inclination of the trajectories
for “contact relaxation” is 60◦ as shown in Fig. 8(e). This trend
also occurs for other orbital angular momenta. This difference
comes from forming the inner barrier due to the early growth
of the neck described in Sec. III B, and is the main factor for
the fusion hindrance.

Finally, we try to estimate the fusion probability (PCN). The
definition of the fusion probability in our model is given in
Refs. [22,24]. Figure 9 shows PCN of each orbital angular
momentum for the different relaxation modes of ε in the
48Ca + 208Pb reaction at Ec.m. = 180.0 MeV. PCN is the highest

when ε is fixed to 1.0. This is due to no formation of the inner
barrier by the relaxation of ε. PCN for “delayed relaxation”
is higher by one order than that for “contact relaxation”, and
extends to L = 40h̄. It is clear that the fusion enhancement
is expected for the “delayed relaxation” of ε. The early re-
laxation of ε occurs at the fusion hindrance by the formation
of the inner barrier. The time when the denecking motion
(relaxation of ε) starts is the critical matter for the estimation
of fusion probability in superheavy nuclei.

FIG. 9. Fusion probability for 48Ca + 208Pb at Ec.m. = 180.0
MeV to various L values. The thick solid line is the case of ε

relaxation starting late after contact and the dashed line is for ε

relaxation starting immediately at the two nuclei contact. The thin
line is the calculations for a fixed value of ε = 1.0.
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IV. SUMMARY

The fusion hindrance due to the formation of the neck
has been investigated using the dynamical model based on
Langevin equations. The fusion barrier decreases by forming
the neck bridge at the approaching stage. However, if the
neck bridge is formed before contact, the events of the mass
symmetric fission accumulated inside the fragment mass of
ACN/2 ± 20u are decreased. The fusion probability is sup-
pressed for the early rapid relaxation of ε rather than the case
for the delayed relaxation of ε. As the results of the trajectory
analysis on the nuclear deformation space, it is found that
if the neck relaxation starts in the early stage of collision,
the fusion barrier decreases as a whole but the uphill inner
barrier arises, and the trajectory is prevented from going inside

the fusion area. Therefore, it is concluded that the fusion
hindrance comes from the formation of the inner barrier due
to the early denecking process. In heavy ion collisions, the
diabatic PES is adopted from the approaching process to the
initial stage of contact. In the early stages of collision, the
time dependent function of the neck relaxation should be
treated precisely by considering the diabatic situation of the
system.
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