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Complete neutron-multiplicity distributions in fast-neutron-induced fission
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The average number of neutrons emitted in neutron-induced nuclear fission has been measured for major
actinides from thermal to relativistic incident energy ranges. On the other hand, the complete probability
distributions could not be reconstructed from experimental data beyond a few MeV because the unfold-
ing of the neutron-counter response is an ill-conditioned inverse problem. In order to obtain the complete
neutron-multiplicity distributions without simplifying assumption on their shapes, this paper submits a robust
Tikhonov-inspired regularization procedure. A revaluation, with this method, of the only available dataset,
provides precise neutron-multiplicity distributions for uranium-235 and plutonium-239 up to 12 MeV. Their
exact shapes are exploited to extract, for the first time from experimental data, the second-chance fission partial
probability.
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I. INTRODUCTION

The number of prompt neutrons produced by nuclear fis-
sion plays a foremost role in society, e.g., in low-carbon
energy production or nonproliferation. While the average
neutron multiplicity ν̄ was sufficient for many applications,
an increasing number of problems require the knowledge of
complete distributions P(ν). For example, in reactor physics,
ultrarealistic Monte Carlo simulations using complete P(ν)
could provide a better understanding of low-power phenom-
ena such as clustering [1]. In nuclear safeguards, since ν̄

values are close for most actinides, the isotopic composition
of a sample is inferred from the neutron-multiplicity moments
[2,3]. Reliable P(ν) at any incident neutron energy would
increase the accuracy of nondestructive assay techniques.

The neutron-multiplicity distributions also offer an insight
into the complex dynamics of the fission process. Based on the
Hauser-Feshbach theory, recent computational works reported
an intimate connection between the neutron-multiplicity-
distribution shape and the fission-fragment spin distribution
[4,5].

However, the neutron-multiplicity moments beyond the
average value suffer from a lack of measurements in the fast-
neutron regime. This paper diagnoses how ill conditioning of
the neutron-counter response matrix was the main obstacle for
the unfolding of complete neutron-multiplicity distributions.
A robust method is submitted to overcome this difficulty and
applied to Fréhaut’s measurements [6]. As far as we know, it
is the only fission neutron counting beyond the second-chance
threshold. The complete P(ν) are finally exploited to extract,
for the first time from experimental data, the second-chance
partial probability. These results could be utilized for con-
straining evaluated data: P(ν) have recently been included
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into ENDF and multichance fission physics incorporates many
parameters like fission barriers, neutron transmission coeffi-
cients, and nuclear level densities.

II. STATE OF THE ART

Since the pioneering studies in the 1950s, the average num-
ber of neutrons released in nuclear fission has been measured
for a wide variety of actinides and incident energy ranges
including spontaneous fission [7–10], photofission [11],
thermal-neutron-induced fission [12–15], and fast-neutron-
induced fission from a few MeV [13,14,16,17] to tens of MeV
[18,19]. The true average neutron multiplicity is deduced from
its measurement ν̄exp and the detection efficiency ε as

ν̄ = ν̄exp

ε
. (1)

Nuclear fission, though, is a complex process where frag-
ment splitting, kinetic energy, deformation, and excitation
energy are all varying quantities. Therefore, the neutron
multiplicity is distributed and the shape of this distribution
integrates all these fluctuations.

On the one hand, a generalization of Eq. (1) makes it pos-
sible to derive an approximation of any moment [20] from the
kth order factorial moments of the experimental distribution
f exp
k and the Stirling numbers of the second kind, like the

standard deviation

σ ≈
√√√√ 2∑

j=0

{
2

j

}
f exp

j

ε j
− ν̄2. (2)

Nonetheless, such a procedure is highly unstable: the error
on each moment is transferred to the next one and excessively
amplified by a power law.

On the other hand, the unfolding of the complete distri-
bution P(ν) must take into account that the emission of n
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neutrons can lead to the counting of n, n − 1, n − 2, or less
neutrons. Such a detection process is naturally modeled by a
random binomial sampling. Let X ∈ Rnmax be the vector of
true neutron-multiplicity distribution cut at some maximum
value nmax and Y ∈ Rnmax its measurement. The detection
efficiency unfolding takes the form of a linear inverse problem
Y = AX with

[A]nm =
{(m

n

)
εn(1 − ε)m−n if n � m

0 else.
(3)

The detection operator A ∈ Rnmax×nmax is upper triangular—
there are no more detected than emitted neutrons after noise
subtraction—and it is invertible. Since Diven’s works in the
1950s [7], the neutron-multiplicity distributions are usually
unfolded by a direct inversion method X = A−1Y with

[A−1]nm =
{(m

n

)
ε−m(ε − 1)m−n if n � m

0 else.
(4)

The direct inversion method described by Eq. (4) has
been used to unfold neutron-multiplicity distributions for
spontaneous fission [8,21], photofission [22], and thermal-
neutron-induced fission [7,12,15].

In contrast, there are no such directly unfolded distri-
butions for fast neutrons. The direct inversion method was
indeed reported to return unstable and unphysical distributions
[2,23–25]. Mathematically speaking, the inverse problem (3)
is the discretized version of a Fredholm integral and more
specifically a Volterra integral since A is triangular like time-
dependent problems due to the causal principle. This class of
inverse problems is commonly ill conditioned in the sense
of Hadamard [26]: if A is invertible, the condition number
cond(A) for the Frobenius norm is such that cond(A) :=
‖A‖ × ‖A−1‖ � 1. If so, the direct inversion method can lead
to an unphysical distribution X because the condition number
scales the propagation δX of the experimental errors δY [27]
like

‖δX‖
‖X‖ � cond(A)

‖δY‖
‖Y‖ . (5)

The condition number versus the maximum neutron mul-
tiplicity to consider nmax in Fig. 1 reveals the reason why
multiplicity distributions were not unfolded for fast-neutron-
induced fissions: they need to be described by large nmax

of typically 10 and thus large condition numbers. Thermal-
neutron-induced fissions are properly described by small nmax

of typically 6 and thus smaller condition numbers for the same
detection efficiency. Therefore, the direct unfolding method
(4) is unfeasible for fast neutrons unless a very large statistics
is available. In order to bypass this difficulty, least-squares re-
gressions of predefined shapes for P(ν) were attempted in the
literature using polynomial [28,29], Gaussian [8], and skew-
Gaussian distributions [2,23]. Yet, no study supports that P(ν)
remains such a basic function for fast neutrons. There is even
evidence that skew-Gaussian distributions lead to unphysical
discontinuities from one incident energy to another [2].

Recent works successfully initiate the use of regulariza-
tion tools for the unfolding of P(ν) in superheavy nuclei
spontaneous fission [30–32]. To make such methods robust
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FIG. 1. Condition number of the neutron-counter response ma-
trix vs the maximum number of neutrons to consider. Three detection
efficiencies are presented.

enough for the systematic unfolding of P(ν) in fast-neutron-
induced fission, we had to reinforce them with the addition
of a non-negativity constraint and a formal criterion for the
regularization parameter choice.

III. METHOD

This section presents a robust Tikhonov regularization pro-
cedure in order to generalize Diven’s method from Eq. (4)
for the unfolding of neutron-multiplicity distributions in fast-
neutron-induced fission.

A. Formalism

The regularization procedure aims to get a physical solu-
tion from the generalized inverse problem [33,34]:

Find X ∈ Rnmax such as min ‖AX − Y‖. (6)

Let D be the matrix representation of regularity require-
ments for X in order to be physically acceptable. In the case of
neutron multiplicity, D merely encodes the second derivative
and vanishing conditions out of the multiplicity domain. A
physically acceptable solution of Eq. (6) must verify, for a
chosen η ∈ R,

Find X̃η ∈ Rnmax

such as min‖AX̃η − Y‖
subject to ‖DX̃η‖ � η (7)

and X̃η � 0.

The Tikhonov regularization is the set of problems ob-
tained from the Kuhn-Tucker conditions

Find X̃λ ∈ Rnmax

such as min(‖AX̃λ − Y‖ + λ ‖DX̃λ‖) (8)

subject to X̃λ � 0.
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The Lagrange multiplier λ ∈ R+ is called the regu-
larization parameter. The regularization procedure can be
interpreted as a spectral high-pass filter and the regularization
parameter λ is related to its cutoff. This property can be
noticed on the normal equation

(Aᵀ A + λ2 Dᵀ D)X̃λ = Aᵀ Y. (9)

Projected on the basis (ui, vi ) from the generalized singular
value decomposition [35] of the couple (A, D) associated
with the singular values (ai, di ), the normal equation gives

X̃λ =
nmax∑
i=1

φi〈Y, ui〉vi, with φi = ai

a2
i + λ2 d2

i

. (10)

Filter coefficients φi appear: they vanish if a2
i � λ2 d2

i
but take part as φi → 1/ai otherwise [27]. The propagation
of uncertainties can also be analytically derived [36] with
B = (Aᵀ A + λ2 Dᵀ D)Aᵀ as

cov(X̂λ) = B cov(Y) Bᵀ. (11)

The selection of the optimum parameter λ∗, resulting from
a balance between accuracy and smoothing strength, is crucial
for the regularization procedure success and bias inhibition.
For the unfolding of neutron-multiplicity distributions in su-
perheavy nuclei spontaneous fission, recent works [31,32]
used a “physical” criterion: the reconstructed distribution
must match with the expected mean value from Eq. (1) and
standard deviation approximation from Eq. (2). However, this
criterion may become equivocal in practice: several regu-
larization parameters can deliver a satisfying matching with
low-order moments while the distribution as a whole is wrong.
Therefore, the present paper focuses on two criteria developed
in the framework of applied mathematics [27,36,37]. The first
one, the L-curve method, studies the phase transition from
over-regularized to under-regularized distributions through
the tradeoff curve:

L(λ) : (‖Y − AX̂λ‖, ‖DX̂λ‖). (12)

The optimum parameter is found at the critical point, iden-
tified at the maximum curvature:

λ∗
L : max

λ∈R+

{
C(λ) = L′′(λ)

[1 + L′(λ)2]
3
2

}
. (13)

Since the finite difference estimation of curvature in
Eq. (13) is a source of error, the critical point will be rather
picked out at the farthest point orthogonally projected onto
the segment connecting the two ends of the L curve. The sec-
ond criterion we consider is the generalized cross validation
(GCV) given by

λ∗
GCV : min

λ∈R+

⎧⎪⎨
⎪⎩GCV(λ) = ‖Y − AX̃λ‖

(nmax − 1) − ∑
i

φi(λ)

⎫⎪⎬
⎪⎭. (14)

B. Validation

As a proof of concept, the regularization procedure de-
scribed by Eq. (8) is applied on sampled representative

functions submitted to the detection operator. Detailed in Ta-
ble I, different data entries are studied in order to investigate
typical detection efficiencies ε and numbers of fission events
Nf as well as distributions distorted by a skewness β or a
kurtosis κ . The validation criteria are the relative errors on
the average value �ν̄, standard deviation �σ , skewness �β,
kurtosis �κ , and the Euclidean distance d from the whole
distribution. The L-curve and GCV methods could separately
underestimate or overestimate the regularization parameter. In
practice, such marginal variations do not change significantly
P(ν) but, for sturdiness, λ∗ is taken as the average of λ∗

GCV and
λ∗
L.

Qualitatively, Fig. 2 illustrates the success of the regular-
ization procedure (green histogram) reproducing accurately
the sampled distribution (black curve) from the measured one
(red histogram) while the direct inversion (gray histogram)
is wrong. Quantitatively, Table I demonstrates the capability
of the regularization procedure to return accurate data for
usual conditions (E1, E3, E5, and E6). The regularization
procedure is reaching its limits for low efficiency (E2) or poor
statistics (E4).

IV. REVALUATION OF FRÉHAUT’S DATA

In this section, the regularization method is applied on
Fréhaut’s neutron counting dataset [6]. It went back and
forth between different groups [24,25,28], trying to unfold
the complete distributions, and it was finally decided to as-
sume the shape of the distributions as third-order polynomials
or Gaussian distributions versus the incident neutron energy.
Discussing these assumptions, it was specified that the un-
folding instabilities “could be in principle removed using
the a priori information we have on the smoothness of the
distribution but the corresponding mathematical formalism
remains to be developed” [24]. The procedure from Sec. II is

FIG. 2. Tikhonov regularization for the case E6 from Table I.
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TABLE I. Case studies for the validation of the regularization procedure described by Eq. (8). See the text for notations. Typical
experimental values are explored for detection efficiency ε, number of fission events Nf , and the neutron-multiplicity moments: ν̄, σ , β,
and κ .

Case study Distribution ε (%) Nf ν̄ σ β κ λ∗
GCV λ∗

L �ν̄ (%) �σ �β (%) �κ (%) d (%)

E1 Gaussian 50 104 5.0 1.0 0 0 0.008 0.011 0 3 7
E2 Gaussian 25 104 5.0 1.0 0 0 0.013 0.003 1 8 8
E3 Gaussian 80 104 5.0 1.0 0 0 0.029 0.342 1 8 8
E4 Gaussian 50 103 5.0 1.0 0 0 0.033 0.063 1 10 7
E5 Skew-Gaussian 50 104 5.0 1.0 0.1 0 0.013 0.018 2 2 6 5
E6 Raised cosine 50 104 5.0 1.0 0 −0.6 0.062 0.020 0 3 8 5

taken for this formalism. The revaluation of this dataset is an
opportunity as Fréhaut’s neutron counter was highly efficient
(ε ≈ 83% measured with a californium-252 source) and lies
behind many modern evaluations. For conciseness, the dis-
cussion will focus on uranium-235 but the same treatments
are carried out for plutonium-239. Uranium-238 data are not
exploitable because of the poor statistics close to the E4 case
in Table I.

The complete neutron-multiplicity distributions P(ν) un-
folded by the regularization procedure are given in the
Appendix. We emphasize that, for the first time, no as-
sumption on their shapes was made and no unphysical
discontinuities show up from one incident energy to another.
Additionally, it is checked in Fig. 3 that ν̄ values derived from
those regularized distributions are in excellent agreement with
the ENDF-BVIII evaluation.

The standard deviations, formerly unpublished due to
their extreme sensitivity to the unfolding instabilities, are
derived from the regularized distributions in Fig. 4. Below
the second-chance threshold, they exhibit an approximately
linear increasing trend. For uranium-235, the slope is 0.011 ±

FIG. 3. Average neutron multiplicity ν̄ from regularized P(ν ).
Error bars (not visible) come from Eq. (11).

0.002 MeV−1 with a coefficient of determination R2 = 0.88
and the intercept of 1.10 ± 0.02 is consistent with the value
for thermal neutrons of 1.07 ± 0.02 [7,38]. For plutonium-
239, the slope is 0.011 ± 0.003 MeV−1 with R2 = 0.68 and
the intercept of 1.14 ± 0.02 is consistent with the value for
thermal neutrons of 1.14 ± 0.07 [7,38].

The surprising “universality” of the standard deviation val-
ues around 1.1, reported in the literature in spontaneous and
thermal-neutron-induced fission for most actinides [7,38,39],
seems to generalize as a similar linear law for fast neutrons.
The coefficients of determination suffer from the uncontrolled
systematic errors of this dataset. We understand these fluctu-
ations as coming from corrections made because of different
sources. For instance, the points at 6.97 and 7.09 MeV, respec-
tively, from d-d and p-t sources, have a spurious gap.

In addition, the standard deviation clearly exhibits a lo-
cal minimum around the first- to second-chance fission
transition. As far as we know, this behavior is captured only

FIG. 4. Neutron-multiplicity standard deviation σ . Error bars
come from Eq. (11). Below the second-chance fission threshold σ ≈
0.011 × En + 1.10 with R2 = 0.88. The gray squares result from a
Gaussian fit unfolding method [24]. Solid lines are running averages
to guide the eye.
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by the GEF code [40] despite a systematic underestimation.
Unlike Tikhonov regularization, the unfolding methods based
on simple shapes for P(ν) essentially remove this structure.
For example, the gray squares in Fig. 4 are extracted from
Gaussian fits [24].

The local drop in standard deviation can be explained by
two concurrent mechanisms. The first one, due to the second-
chance fission channel opening, is the deterministic emission
of a prefission neutron. The multiplicity fluctuation is con-
sequently locally deflected. The second one results from the
intimate mixture of neutron-multiplicity distributions p1(ν)
and p2(ν) from first- and second-chance fission, respectively.
This is written

P(ν) = (1 − x) p1(ν) + x p2(ν), (15)

where the mixing ratio x is the second-chance probability. As
seen previously, the standard deviation is roughly linear with
incident energy below the second-chance threshold. Assum-
ing that this behavior is approximately preserved beyond but
in the space of excitation energy, the second-chance fissioning
system having a lower excitation energy than p2(ν) is nar-
rower than p1(ν). Therefore, P(ν) becomes locally narrower
before p2(ν) gets wider in turn.

The neutron-multiplicity mixture described by Eq. (15)
can be solved to find the second-chance probability. To do
this, realistic models for p1(ν) and p2(ν) are required. Below
the second-chance threshold, neutron-multiplicity distribu-
tions are precisely described by raised cosine distributions
R[ν̄, σ ]. This observation differs slightly from the Gaussian
distribution usually reported in the literature for spontaneous
or thermal-neutron-induced fission. This is due to a small kur-
tosis close to −0.5 for every energy in the P(ν) unfolded by
the Tikhonov regularization. The average neutron multiplicity
and standard deviation, approximately linear with incident
energy before the second-chance threshold, are assumed lin-
ear with excitation energy up to 12 MeV. This assumption
extends the linear relationship observed before the second-
chance threshold to a few more MeV. Under this hypothesis,
the neutron-multiplicity distribution i ∈ {1, 2} is modeled as
follows:

pi(ν) ≈ R[ν̄ = aiẼi + bi, σ = ciẼi + di](ν − δi,2). (16)

The Kronecker delta δi,2 is the prefission neutron shift.
The “equivalent” incident energy for the first-chance fission is
simply the incident neutron energy Ẽ1 = En. The “equivalent”
incident neutron energy for second-chance fission is gener-
alized as the excitation energy of the fissioning nucleus Ei

subtracted from its neutron separation energy Sn and the aver-
age prefission neutron energy Ē ′

n such as Ẽ2 = E2 − Sn − Ē ′
n.

The excitation energy is given by the incident neutron energy
increased by the neutron separation energy of the compound
nucleus E2 = En + Sn. The neutron separation energies are
taken from Los Alamos National Laboratory public data [41]
and the average prefission neutron energies from GEF. The
parameters a1, b1, c1, and d1 are taken from the linear fit
of experimental quantities ν̄ and σ below the second-chance
fission threshold. The parameters a2 and b2 come from the
ENDF-BVIII evaluation of ν̄ for uranium-234. The parameters
c2 and d2 rule the standard deviation for uranium-234: there

FIG. 5. Fit from Eq. (15) for uranium-235 at 6 MeV. A mixture
(black dashed line) of p1 (red solid line) and p2 (blue solid line) is
required to minimize the χ 2 distance from the neutron-multiplicity
distribution unfolded from experimental data by the regularization
procedure (orange solid line).

are no such data in the literature but, as previously discussed,
similar values are expected for close-in-mass nuclei. For the
needs of the model, these parameters are thus taken identical
to uranium-235 ones, i.e., c2 = c1 and d2 = d1. The parame-
ters are summarized in Table II. The mixing ratio x is finally
obtained as the minimizer of χ2 distance between Eq. (15) and
the regularized distributions.

A critical fit at 6 MeV is displayed in Fig. 5, during the
first- to second-chance transition, where P(ν) requires a mix-
ture of p1(ν) and p2(ν) to be accurately fitted. Additionally,
the average neutron multiplicity was checked to be perfectly
reproduced by these fits.

The mixing ratio x for each incident neutron energy is plot-
ted in Fig. 6 for uranium-235 and plutonium-239. This result
is an indirect but first measurement of the second-chance fis-
sion partial probability. It is deeply rooted in the clues left by
the multichance competition in the P(ν) shapes—especially
the standard deviation—precisely unfolded by the Tikhonov
regularization. The error bars are estimated as the quadratic
sum of statistical errors from Eq. (11) and arbitrary ±10%
over the experimentally unknown parameter Ē ′

n. For uranium-
235, our plateau lies between GEF, ENDF-BVII, and HF3D [5].
For plutonium-239, our result indicates a continuously grow-
ing trend also predicted by GEF and ENDF-BVII.

V. DISCUSSION

The extraction of the second-chance partial probabil-
ity was made under the assumption of similar standard
deviation laws for close-in-mass nuclei. This property is sup-
ported by all existing measurements for thermal neutrons
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TABLE II. Parameters for the neutron-multiplicity-distribution mixture in Eq. (16). See the text for notations.

Nucleus Sn (MeV) a1 (MeV−1) b1 c1 (MeV−1) d1 a2 (MeV−1) b2 c2 (MeV−1) d2

Uranium-235 5.2 0.12 2.4 0.011 1.1 0.14 2.5 0.011 1.1
Plutonium-239 5.4 0.14 2.9 0.011 1.1 0.15 3.0 0.011 1.1

as well as our fast-neutron data involving uranium-235 and
plutonium-239. The study also required an estimation of the
average prefission neutron energy we took from GEF. For that
reason, we carried out a sensitivity study based on the worst
combination of arbitrary ±10% error over these parameters. It
proved the robustness of the separation between multichance
fission channels from the P(ν) shapes and highlighted that
the parameters associated with the standard deviation ci and
di are critical for the determination of precise second-chance
ratio values. Hence, neutron-counting data for uranium-234
and plutonium-238 would improve our accuracy. Moreover,
the method we have developed in this paper will be directly
usable for the unfolding of such measurements.

The quite good agreement with GEF and ENDF-BVII a pos-
teriori supports the main assumption we made: the linear
relationship between incident neutron energy and standard
deviation below the second-chance threshold seems to be
preserved up to 12 MeV in the space of average excitation
energy. This result is to be added to the recent observation
of an approximately linear relationship between the average
γ multiplicity and the average excitation energy beyond the
multichance thresholds [42].

VI. CONCLUSION

This paper proposes a robust formalism based on the
Tikhonov regularization to unfold the neutron-multiplicity
distributions from the raw data of any neutron counter.

Since the Tikhonov regularization does not reduce the so-
lution space of the unfolding problem to some simplistic func-
tions but only regular ones, the unfolded neutron-multiplicity

distributions are more precise. The standard deviation is
roughly linear with the incident neutron energy below the
second-chance fission threshold with a slope of 0.011 ±
0.002 MeV−1 for uranium-235 and 0.011 ± 0.003 MeV−1 for
plutonium-239. In addition, it exhibits a local minimum in
the energy range of second-chance fission transition. A simple
model based on a mixing ratio of the second- to first-chance
channel highlights how this results from their competition to
govern the shape of the neutron-multiplicity distributions. As-
suming that the linearity is preserved in the space of average
excitation energy, this competition was exploited to extract
an indirect but first measurement of the second-chance partial
probability.

The regularization procedure reaches its limits for dramat-
ically poor statistics, which is why uranium-238 data were not
operable. Furthermore, Fréhaut’s data are affected by system-
atic errors larger than statistical errors. New measurements
with a white neutron source could thus be valuable to reduce
the uncertainties and generalize the study to higher-chance
fissions. Such a program is being developed by CEA with the
new detector SCONE [43] and the Neutrons For Science beam
at GANIL [44].

APPENDIX: COMPLETE
NEUTRON-MULTIPLICITY-DISTRIBUTION

VALUES AND UNCERTAINTIES

The complete neutron-multiplicity distributions P(ν)
unfolded by the regularization procedure are shown in
Tables III–VI.

FIG. 6. Second-chance fission partial probability for uranium-235 (left) and plutonium-239 (right). The error bars include the statistical
error propagation from Eq. (11) as well as arbitrary ±10% uncertainty over the average prefission neutron energy.
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TABLE III. Complete neutron-multiplicity distributions for uranium-235 unfolded by the Tikhonov regularization procedure.

Neutron energy (MeV) Regularization parameter p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9)

1.36 0.0000 0.0215 0.1618 0.3018 0.3233 0.1522 0.0385 0.0011 0.0000 0.0000 0.0000
1.87 0.0000 0.0192 0.1413 0.3098 0.3188 0.1656 0.0434 0.0020 0.0000 0.0000 0.0000
2.45 0.0000 0.0154 0.1318 0.2982 0.3238 0.1793 0.0457 0.0057 0.0001 0.0000 0.0000
2.98 0.0000 0.0135 0.1168 0.2958 0.3226 0.1919 0.0527 0.0067 0.0001 0.0000 0.0000
3.50 0.0000 0.0149 0.1003 0.2975 0.3234 0.1955 0.0664 0.0020 0.0000 0.0000 0.0000
4.03 0.0466 0.0098 0.0922 0.2851 0.3143 0.2231 0.0648 0.0078 0.0028 0.0002 0.0000
5.06 0.0000 0.0070 0.0767 0.2547 0.3312 0.2280 0.0953 0.0071 0.0000 0.0000 0.0000
6.08 0.0000 0.0050 0.0597 0.2011 0.3332 0.2626 0.1107 0.0276 0.0001 0.0000 0.0000
6.97 0.0178 0.0020 0.0319 0.1772 0.3302 0.2958 0.1298 0.0327 0.0004 0.0000 0.0000
7.09 0.0100 0.0024 0.0409 0.1739 0.3283 0.2777 0.1398 0.0369 0.0000 0.0000 0.0000
7.48 0.0214 0.0017 0.0289 0.1527 0.3217 0.3096 0.1448 0.0400 0.0008 0.0000 0.0000
7.99 0.0290 0.0013 0.0184 0.1628 0.2935 0.3273 0.1591 0.0369 0.0007 0.0000 0.0000
8.49 0.0317 0.0000 0.0239 0.1337 0.3069 0.3199 0.1640 0.0500 0.0016 0.0000 0.0000
9.00 0.0227 0.0016 0.0160 0.1282 0.2987 0.3176 0.1779 0.0592 0.0008 0.0000 0.0000
9.49 0.0322 0.0000 0.0121 0.1186 0.2840 0.3256 0.1981 0.0543 0.0057 0.0016 0.0000
9.74 0.0346 0.0000 0.0071 0.1132 0.2785 0.3285 0.2014 0.0697 0.0015 0.0000 0.0000
9.98 0.0440 0.0000 0.0119 0.1048 0.2686 0.3234 0.2128 0.0647 0.0103 0.0035 0.0000

10.47 0.0100 0.0011 0.0139 0.0925 0.2683 0.3259 0.2207 0.0775 0.0000 0.0000 0.0000
10.96 0.0713 0.0006 0.0064 0.0898 0.2665 0.3190 0.2058 0.0929 0.0190 0.0000 0.0000
11.44 0.0540 0.0005 0.0074 0.0903 0.2314 0.3310 0.2309 0.0791 0.0220 0.0075 0.0000
11.93 0.0735 0.0000 0.0070 0.0740 0.2376 0.3154 0.2422 0.0973 0.0213 0.0040 0.0011

TABLE IV. Statistical error propagated by Tikhonov regularization Eq. (11) for uranium-235. Notation: p(i) ± �p(i).

Neutron energy (MeV) Number of fissions �p(0) �p(1) �p(2) �p(3) �p(4) �p(5) �p(6) �p(7) �p(8) �p(9)

1.36 15538 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
1.87 15223 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
2.45 15263 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
2.98 18279 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
3.50 15225 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
4.03 22960 0.0028 0.0034 0.0043 0.0053 0.0062 0.0070 0.0067 0.0066 0.0061 0.0067
5.06 22874 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
6.08 10999 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
6.97 11376 0.0028 0.0036 0.0047 0.0064 0.0087 0.0112 0.0124 0.0140 0.0144 0.0099
7.09 20371 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
7.48 26486 0.0028 0.0035 0.0047 0.0063 0.0084 0.0107 0.0114 0.0124 0.0128 0.0094
7.99 23270 0.0028 0.0035 0.0046 0.0060 0.0077 0.0093 0.0093 0.0095 0.0097 0.0083
8.49 22734 0.0028 0.0035 0.0045 0.0059 0.0074 0.0088 0.0087 0.0087 0.0088 0.0079
9.00 25148 0.0028 0.0035 0.0047 0.0063 0.0082 0.0103 0.0108 0.0115 0.0119 0.0091
9.49 32735 0.0028 0.0035 0.0045 0.0059 0.0074 0.0088 0.0087 0.0087 0.0088 0.0079
9.74 23181 0.0028 0.0035 0.0045 0.0058 0.0072 0.0084 0.0082 0.0081 0.0081 0.0076
9.98 34456 0.0028 0.0034 0.0044 0.0054 0.0064 0.0073 0.0070 0.0069 0.0065 0.0069

10.47 23062 0.0028 0.0036 0.0048 0.0067 0.0093 0.0128 0.0158 0.0196 0.0198 0.0118
10.96 23251 0.0027 0.0032 0.0039 0.0045 0.0049 0.0052 0.0050 0.0052 0.0041 0.0055
11.44 22904 0.0027 0.0034 0.0042 0.0051 0.0058 0.0063 0.0060 0.0061 0.0053 0.0063
11.93 22376 0.0027 0.0032 0.0038 0.0044 0.0047 0.0051 0.0048 0.0051 0.0040 0.0054
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TABLE V. Complete neutron-multiplicity distributions for plutonium-239 unfolded by the Tikhonov regularization procedure.

Neutron energy (MeV) Regularization parameter p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9)

1.36 0.0000 0.0060 0.0763 0.2487 0.3231 0.2428 0.0882 0.0149 0.0000 0.0000 0.0000
1.87 0.0296 0.0054 0.0645 0.2390 0.3114 0.2658 0.0942 0.0198 0.0000 0.0000 0.0000
2.45 0.0331 0.0056 0.0567 0.2130 0.3275 0.2717 0.1005 0.0249 0.0000 0.0000 0.0000
2.98 0.0193 0.0051 0.0506 0.2016 0.3177 0.2701 0.1211 0.0338 0.0000 0.0000 0.0000
3.50 0.0342 0.0059 0.0420 0.1958 0.3067 0.2927 0.1249 0.0320 0.0000 0.0000 0.0000
4.03 0.0000 0.0030 0.0426 0.1556 0.3360 0.2825 0.1477 0.0327 0.0000 0.0000 0.0000
5.06 0.0000 0.0011 0.0271 0.1474 0.3089 0.2929 0.1705 0.0522 0.0000 0.0000 0.0000
6.08 0.0615 0.0011 0.0300 0.1090 0.2750 0.3400 0.1550 0.0800 0.0100 0.0000 0.0000
6.97 0.0426 0.0000 0.0137 0.1035 0.2366 0.3517 0.2107 0.0642 0.0190 0.0005 0.0000
7.09 0.0381 0.0015 0.0179 0.0916 0.2330 0.3415 0.2230 0.0617 0.0298 0.0000 0.0000
7.48 0.0208 0.0010 0.0120 0.0886 0.2490 0.3267 0.2231 0.0797 0.0199 0.0000 0.0000
7.99 0.0281 0.0000 0.0120 0.0749 0.2365 0.3403 0.2186 0.0978 0.0200 0.0000 0.0000
8.49 0.0424 0.0000 0.0070 0.0747 0.2072 0.3496 0.2181 0.1135 0.0299 0.0000 0.0000
9.00 0.0389 0.0000 0.0060 0.0670 0.2090 0.3130 0.2670 0.1080 0.0300 0.0000 0.0000
9.49 0.0187 0.0000 0.0080 0.0482 0.2108 0.3143 0.2661 0.1225 0.0301 0.0000 0.0000
9.74 0.0421 0.0000 0.0040 0.0517 0.2030 0.3085 0.2706 0.1224 0.0398 0.0000 0.0000
9.98 0.0389 0.0002 0.0040 0.0507 0.1821 0.3074 0.2984 0.1075 0.0497 0.0000 0.0000

10.47 0.0248 0.0000 0.0000 0.0555 0.1617 0.3211 0.2810 0.1313 0.0488 0.0007 0.0000
10.96 0.0206 0.0001 0.0060 0.0411 0.1675 0.2828 0.2978 0.1444 0.0602 0.0000 0.0000
11.44 0.0163 0.0000 0.0040 0.0359 0.1534 0.2948 0.2620 0.2002 0.0498 0.0000 0.0000
11.93 0.0226 0.0000 0.0000 0.0506 0.1168 0.3071 0.2767 0.1698 0.0766 0.0024 0.0000

TABLE VI. Statistical error propagated by Tikhonov regularization Eq. (11) for plutonium-239. Notation: p(i) ± �p(i).

Neutron energy (MeV) Number of fissions �p(0) �p(1) �p(2) �p(3) �p(4) �p(5) �p(6) �p(7) �p(8) �p(9)

1.36 22224 0.0028 0.0036 0.0049 0.0068 0.0095 0.0129 0.0158 0.0192 0.0193 0.0115
1.87 21724 0.0028 0.0035 0.0046 0.0061 0.0077 0.0092 0.0092 0.0090 0.0092 0.0079
2.45 21879 0.0028 0.0035 0.0046 0.0060 0.0074 0.0088 0.0086 0.0084 0.0084 0.0076
2.98 28017 0.0028 0.0036 0.0048 0.0065 0.0087 0.0112 0.0121 0.0132 0.0135 0.0095
3.50 22298 0.0028 0.0035 0.0046 0.0060 0.0073 0.0086 0.0085 0.0082 0.0082 0.0075
4.03 34044 0.0028 0.0036 0.0049 0.0068 0.0095 0.0129 0.0158 0.0192 0.0193 0.0115
5.06 33845 0.0028 0.0036 0.0049 0.0068 0.0095 0.0129 0.0158 0.0192 0.0193 0.0115
6.08 16106 0.0027 0.0033 0.0041 0.0049 0.0054 0.0058 0.0055 0.0056 0.0046 0.0058
6.97 14324 0.0028 0.0035 0.0044 0.0056 0.0066 0.0075 0.0072 0.0069 0.0065 0.0068
7.09 25349 0.0028 0.0035 0.0045 0.0058 0.0070 0.0081 0.0078 0.0075 0.0074 0.0072
7.48 27466 0.0028 0.0036 0.0048 0.0065 0.0085 0.0108 0.0115 0.0122 0.0125 0.0091
7.99 27436 0.0028 0.0035 0.0047 0.0062 0.0079 0.0096 0.0096 0.0096 0.0098 0.0082
8.49 23785 0.0028 0.0035 0.0044 0.0056 0.0067 0.0076 0.0073 0.0070 0.0067 0.0069
9.00 29643 0.0028 0.0035 0.0045 0.0058 0.0069 0.0080 0.0077 0.0074 0.0072 0.0071
9.49 31770 0.0028 0.0036 0.0048 0.0065 0.0087 0.0112 0.0121 0.0132 0.0135 0.0095
9.74 24759 0.0028 0.0035 0.0044 0.0056 0.0067 0.0076 0.0073 0.0070 0.0067 0.0069
9.98 38758 0.0027 0.0033 0.0040 0.0047 0.0051 0.0055 0.0052 0.0054 0.0043 0.0055

10.47 21618 0.0028 0.0035 0.0044 0.0056 0.0066 0.0075 0.0072 0.0069 0.0065 0.0068
10.96 30203 0.0027 0.0033 0.0040 0.0047 0.0051 0.0055 0.0052 0.0054 0.0043 0.0055
11.44 25788 0.0027 0.0031 0.0036 0.0041 0.0042 0.0045 0.0043 0.0046 0.0034 0.0048
11.93 28593 0.0027 0.0032 0.0039 0.0045 0.0048 0.0051 0.0048 0.0050 0.0039 0.0052
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