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Effect of deformation in the scattering and reaction of a 9C radioactive beam by protons and 12C,
and extraction of the density distribution of 9C
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The effect of deformation in the scattering and reaction of a 9C radioactive beam by protons and 12C is
investigated within the relativistic impulse approximation and a modified Glauber model whose amplitude
involved the combined effects of phase variation, higher momentum transfer components, Pauli blocking, and
finite range. Spherical and deformed relativistic mean field densities are used. Using the proton scattering
experiment by 9C as well as interaction cross section data, the proton and neutron root mean square (rms)
radii and deformations are extracted. It is found that deformation strongly affects the scattering cross section and
polarization at medium and large angles, where the second and third peaks are reproduced by a deformed density.
The polarization is inverted at the peaks by deformation. The measured angular distribution of the proton by a
9C beam at 277–300 MeV/u as well as the reaction cross section data of 9C + 12C at 680 and 720 MeV/u
are satisfactorily reproduced by an extracted deformed Woods-Saxon density of 9C with matter rms radius and
deformation parameter of the order Rm ≈ 2.33 fm and βm ≈ 0.36.

DOI: 10.1103/PhysRevC.108.014607

I. INTRODUCTION

Recent developments in the study of unstable nuclei have
inspired renewed interest in nuclear radii and proton and
neutron density distributions (for a recent review see, e.g.,
Refs. [1–4]). Proton elastic scattering at intermediate ener-
gies is one way for examining these distributions. We can
directly compare proton elastic scattering with nuclear density
distributions using a relativistic impulse approximation (RIA)
[5–13] or a folding model with g-matrix interaction [14].
In the RIA the motion of the projectile in the field of the
nucleus is described with the relativistic Dirac equation that
describes the interacting nucleons via meson exchanges. It has
the advantage that the spin-orbit interaction is built in without
any need for adjustable parameters. It also has provided a
remarkably good description of the elastic cross section and
spin observable at intermediate and high energies [5–13].

The aim of the present work is to use the RIA to study p-9C
scattering at intermediate energy. The study of p-9C scattering
is very interesting and important for knowing the properties of
a proton-nucleon interaction with a few-body system. Among
the carbon isotopes, 9C is a nucleus of interest that is near the
proton drip-line. The measurement of the differential elastic
scattering of 9C from protons at 277–300 MeV/nucleon has
been reported by Matsuda et al. [15]. To obtain the nucleon
distributions in 9C, they analyzed the experimental data by
using spherical two-parameters Fermi (2pF) distribution for
protons and neutrons. In addition, they assumed density de-
pendence coupling constants and meson masses in terms of
four parameters in the NN-scattering amplitudes. With these
additional four parameters in the NN-scattering amplitudes
and the other four parameters of the spherical (two for proton
and two neutrons) Fermi densities Matsuda et al. were able

to fit the proton-9C differential elastic cross section data but
with highly unphysical deduced proton and neutron density
distributions.

In view of the failure of the method of Matsuda et al. to
yield reasonable proton and neutron distributions, Rafi et al.
[16] had reanalyzed the measured proton-9C elastic angu-
lar distribution within the Brueckner-Hartree-Fock framework
using the Argonne v-18 internucleon potential and density
distributions obtained from a spherical relativistic mean-field
(RMF) calculation. The calculations yield a good agreement
with the experimental data up to angle 30 (degrees). The
second peak in the data after 30 (degrees) cannot be described
by Rafi et al. where they get a decrease of steeper slope at 30◦
like that obtained by the original RIA when using spherical
RMF densities (see Fig. (10) of [15]). In fact, nuclear struc-
ture calculations predicted 9C to be strongly deformed. Thus
assuming 9C has spherical densities, as Matsuda et al. and Rafi
et al. had done, is a crude approximation.

In this work, we investigate the effect of deformation in
the scattering of 9C radioactive beams by protons at inter-
mediate energy within the RIA as well as in the reaction
cross section of 9C + 12C at high energy using a modified
Glauber model whose amplitude involved combining effects
of phase variation, higher momentum transfer components,
Pauli blocking, and finite range. Furthermore,we extract the
density distribution of 9C. Section II presents the theoreti-
cal description. The results are presented and discussed in
Sec. III.

II. THEORETICAL DESCRIPTION

In the relativistic impulse approximation the Dirac equa-
tion for the single-particle motion of the projectile nucleon in
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TABLE I. The spherical and deformed RMF radii and deformation parameters of 9C calculated using NLRA1 interaction.

Rs
n(fm) Rs

p(fm) Rs
m(fm) Rd

n (fm) Rd
p(fm) Rd

m(fm) β2n β2p β2m

1.976 2.58 2.395 2.195 2.710 2.550 0.4194 0.3930 0.4018

the mean field of the target nucleus can be written as [5–13]

[−iα∇ + UV (r; E ) + β(M + US (r; E )) + VC]|ψ> = E |ψ>,

(1)
where US and UV are the scalar and vector potentials which
contain both direct and exchange parts,

UL(=S,V ) ≡ U D
L (r; E ) + U X

L (r; E ). (2)

E is the total nucleon-nucleus center of mass (c.m.) projectile
energy, M is its rest mass, and VC is the Coulomb potential
energy. The Dirac optical potentials are calculated from the
nucleon-nucleon (NN) t matrix, where the action of these
potentials on the incident projectile wave function, projected
in the coordinate space, can be written as

<x|Uopt|ψ0> = −4π ip

M

occ∑
α

∫
d3y′

∫
d3y

∫
d3x′ψα

× [<xy′|t (E )|x′y> + (−1)T <y′x|t (E )|x′y>]

× ψ0(x′)ψα (y), (3)

where

Uopt = US + γ 0UV . (4)

p is the magnitude of the three-momentum of the projectile
in the nucleon-nucleus c.m. frame and T is the total isospin
of the two-nucleon state. The antisymmetrized matrix ele-
ment of t (E ) in coordinate space is the Fourier transform
of the momentum space matrix element. The t matrix t (E )
is the lowest-order meson-exchange diagram evaluated from
the Feynman rules. The mesons have different spins and
parities (scalar, vector, tensor, pseudoscalar, and axial vec-
tor) and isospin 0 and 1. The Dirac optical potentials (direct
and exchange parts) are written as a folding integral of the
nucleon-nucleon t matrix and the target (scalar and vector)
densities:

U D
L (r; E ) = −4π ip

M

∫
d3r′ρL(r′) tD

L (|r − r′|; E ), (5)

U X
L (r; E ) = −4π ip

M

∫
d3r′ρL(r, r′) tX

L (|r − r′|; E ) j0

×
(

p

h̄
|r − r′|

)
, (6)

where the local density approximation is used for the nonlocal
exchange term and

tD,X
L (s; E ) =

∫
d3q

2π3
tD,X
L (q; E )e−iq.s. (7)

The off-diagonal density matrix ρL(r, r′) is approximated to
be given in terms of the one-body densities, using the density
matrix expansion approximation. For the NN t matrix we
used the parametrization of [11–13]. For laboratory energies

≈ 200–500 MeV, the Dirac optical potentials are modified by
a Pauling blocking low energy correction [12,13].

III. RESULTS AND DISCUSSION

For the projectile 9C a modified deformed Fermi distribu-
tion is considered for protons and neutrons in which both radii
and diffuseness are depend on deformations,

ρi=p,n(r) = ρ0i

1 + exp
( r−Ri (θ )

ai (θ )

) , (8)

where

Ri(θ ) = R0i[1 + β2iY20(θ )]. (9)

The expansion (9) is a well familiar approximation of the
deformed half-density radius. The diffuseness is also assumed
to depend on deformation and can be expanded in a similar
way to the radius as

ai(θ ) = a0i[1 + β2iY20(θ )]. (10)

The advantage of introducing a deformed diffuseness param-
eter in the Fermi shape is to increase the dependence of the
density distribution on the deformation parameters.

The angle-average approximation is used [17,18]:

ρ(r) = 1

2

∫ π

0
ρ(r, θ ) sin(θ ) dθ. (11)

The quadrupole deformation parameters and root mean square
(rms) radii for protons and neutrons can be determined by
deformed RMF calculations, using the number of boson and
fermion shells (nB = nF = 12) [19], and they are listed in
Table I. The neutron diffuseness parameter a0n is assumed to
depend on the asymmetry (N − Z )/A as a0n = a0p + as(N −
Z )/A, where a0p is the proton diffuseness parameter. For a
deformed-average (def-av.) RMF density a0p is fixed to 0.4
fm and as to 0.222 fm and the half-density radii R0p and R0n

are adjusted in order to reproduce the RMF rms proton and
neutron radii.

The elastic scattering cross sections and polarization of
p-9C at 200, 280, and 360 MeV calculated by the RIA
using spherical and deformed averages. RMF densities are
presented in Figs. 1, 2, and 3, denoted by short-dashed and
dash double-dotted lines. For the deformed average scalar
densities we used the approximation, ρps = ρp and ρns = ρn

[20]. The NLRA1 interaction [21] is used in both spherical
and deformed RMF calculations. Pairing is treated in the
Bardeen-Cooper-Schrieffer (BCS) approximation using the
model described in [22–24] for an energy gap of protons and
neutrons. As shown from these figures the effect of defor-
mation is to make the second and third (see Fig. 3) peaks
and minima well defined and shifted to smaller angles. The
well-defined peak appearing at large angles by the deformed
density totally disappears by using a spherical RMF density.

014607-2



EFFECT OF DEFORMATION IN THE SCATTERING AND … PHYSICAL REVIEW C 108, 014607 (2023)

FIG. 1. The elastic scattering cross section and polarization of
p + 9C at Elab at 200 MeV.

FIG. 2. The elastic scattering cross section and polarization of
p + 9C at Elab at 280 MeV in comparison with the data at 277–300
MeV.

FIG. 3. Same as Fig. 1 but at 360 MeV.

The polarization is strongly affected by deformation where it
has an inverse behavior at the peaks in the cross section, as
shown from Figs. 1–3. Although the deformed density well
defined the peaks in the cross section it presents lower a cross
section than the data, as shown from Fig. 2, which could be
due to the larger radii and deformation parameters predicted
by RMF. On the other hand, Skyrme Hartree-Fock (SHF)
calculations [25] predicted smaller deformations, and conse-
quently smaller rms radii, than those of the RMF calculation.

In order to fit the data at 277–300 MeV we scale the
RMF proton and neutron deformed rms radii and deformation
parameters, listed in Table I, by factors ci(=p,n) and c′

i as

Ri(=p,n) = ci × RRMF
i , βi(=p,n) = c′

i × βRMF
i . (12)

For simplicity, we assume c′
i = ci. a0p is fixed to 0.307 fm

and as to 0.27 fm. The half-density radii R0p and R0n are
adjusted in order to reproduce the scaled RMF rms proton and
neutron radii, where the scaled parameters cp and cn, which
produced the scaled rms radii and deformations, are slowly
decreased in order to catch the data and they are found to be
cp = 0.941 and cn = 0.825. The parameters of the extracted
density distribution are listed in Table II, denoted by set
A. The second row in Table II gives the parameters of the
extracted proton and neutron densities but when using defor-
mation parameters derived from deformed SHF calculations
[25]. The other parameters of the density distributions, like
the half-density radii and diffuseness, are fixed to those of set
A. The SHF deformation parameters are smaller than those of
the RMF and those extracted in set A, thus they have predicted
smaller rms radii, as seen from Table II. The extracted proton,
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TABLE II. The extracted proton and neutron deformed WS density parameters and rms radii, denoted by sets A and B, which are described
in the text.

R0p R0n a0p a0n βp βn βm Rp Rn Rm

set (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm)

A 2.8025 2.004 0.307 0.217 0.370 0.346 0.360 2.5500 1.8104 2.3300
B 2.8025 2.004 0.307 0.217 0.273 0.251 0.269 2.5055 1.7813 2.2897

neutron and total densities are plotted in Fig. 4, where set A
produced slightly larger surface and tail regions, due to their
larger deformations.

The elastic scattering cross section and polarization cal-
culated by these extracted densities are plotted in Fig. 2 by
solid (set A) and dash-dotted (set B) lines. As shown from
this figure the extracted density set A satisfactorily reproduced
the data at all angles. Set B can also well describe the data,
although it predicted slightly higher cross sections at the sec-
ond peak. The spherical RMF densities give much lower cross
sections after 30◦, where the second peak disappears as those
obtained in [15,16] where they used spherical RMF densities.

Figure 2 (lower part) shows a dramatic dependence of
polarization on deformation, especially at medium and larger
angles. For example, the first dip in the polarization calculated
by spherical RMF density occurs at angle θ ∼= 32.5◦, while it
is shifted to lower angles by deformation, where it occurs at

FIG. 4. The extracted def-av. proton and neutron (upper part) and
total (lower part) density distributions by the present work, whose
parameters are listed in Table II.

angle θ ∼= 27.5◦ by the extracted deformed density. Another
important note is that this first dip is deeper when using a
spherical RMF density, while it is diminished by deformation.
It is also found that the second maximum in the polarization
calculated by deformed extracted density occurs at θ ≈ 34◦,
which nearly corresponds to the second maximum in the
experimental differential cross section. On the other hand,
the spherical RMF density presented an inverse behavior and
shifted the second maximum in the polarization to a much
larger angle, θ ≈ 43◦. Thus, data for polarization are of great
important and are essentially needed in order to extract infor-
mation about the density distribution of exotic nuclei.

Figure 5 shows the extracted densities (set A) in compari-
son with the spherical RMF densities as well as the spherical
densities extracted by Matsuda et al. As shown from Fig. 5
(lower part) the extracted total def-av. density has larger sur-
face and diffuseness than that of the spherical RMF density.

FIG. 5. The extracted def-av. proton and neutron (upper part) and
total (lower part) density distributions by the present work (set A) in a
comparison with the spherical RMF and those extracted by Matsuda
et al. [15].
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TABLE III. The reaction cross sections at 680 and 720 MeV/u
calculated by parameter sets A and B in comparison with data [27].

The percentage errors (PE) are also listed, where PE = |σ ex
R −σ cal

R |
σ ex

R
×

100.

σR(680) σ ex
R (680) σR(720) σ ex

R (720)
set (mb) (mb) PE (mb) (mb) PE

A 815.4 812±13[27] 0.4 831.3 834±18[27] 0.3
B 796.0 2.0 813.9 2.4

This increases and modifies the cross section at large angles
consistent with the data. The RMF densities give larger rms
radii which is due to its much larger volume parts, as seen
from Fig. 5. In comparison with Matsude et al. we found the
present extracted def-av. Woods-Saxon (WS) density is more
reliable and physical than the spherical WS density extracted

by Matsuda et al., which is highly unphysical and contradicts
with experiments as well as nuclear structure predictions.

In order to examine the extracted densities for reaction
cross section data we calculated the reaction cross section of
9C + 12C at 680 and 720 MeV/u, using a modified Glauber
model, which involves the combined effect of the phase
variation, higher momentum transfer components, and Pauli
blocking of the NN amplitude [26]. We get the results listed in
Table III. As seen from this table, set A satisfactorily produced
the reaction cross section date [27] and has much smaller
percentage errors which are of the order of 0.3–0.4%. Set B
has much larger percentage errors than set A, as seen from
Table II. This also favors the present extracted deformation
parameters and radii of set A in describing 9C.

Finally, one can conclude that both the elastic scattering
and the reaction cross section experiments are important in
order to extract more reliable information about the radii and
densities of neutron or proton-rich nuclei.
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