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In this work, we study the elastic scattering of some light particles, such as *H, *H, *He, and *He, by
heavy target nuclei with an extended Watanabe model, which uses as input the neutron-nucleus and proton-

nucleus optical potentials and the ground-state wave functions of the projectile. The nucleon-nucleus optical
potential used in this work was obtained within a semimicroscopic nuclear matter approach, whose real and
imaginary parts are provided by the first- and second-order terms, respectively, of the Taylor expansion of
the Brueckner-Hartree-Fock mass operator obtained with the reaction G matrix built up with the Gogny force
[J. Lopez Morafia and X. Viiias, J. Phys. G 48, 035104 (2021)]. The angular distributions of the scattering of >H,
3H, 3He, and *He from different target nuclei and at different incident energies of the projectile computed with
this model are analyzed. The reaction cross sections corresponding to some of these scattering processes are also
calculated. Our results are compared with the experimental values as well as with another Watanabe calculation
where the nucleon-nucleus optical potential is provided by the phenomenological Koning-Delaroche model. The
limitations of the extended Watanabe model used in this work are also discussed.
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I. INTRODUCTION

The theoretical analysis of the scattering of nucleons by
nuclei is usually performed with the help of the optical model
[1], which allows one to predict different observables such as
the elastic scattering angular distributions, the total reaction
cross sections, and the analyzing powers in a relatively simple
way. The optical potential can be built up in two different
manners. In the case of phenomenological optical potentials,
one assumes some analytical profile for the radial depen-
dence of the potential, usually of Woods-Saxon type, and
fits their parameters to reproduce a selected set of measure-
ments of different scattering observables in some particular
reactions [2—4]. The optical potential can also be determined
from more microscopic grounds, which often are based on
the fact that this potential could be identified with the mass
operator of the one-particle Green function [5]. Following
this idea, Jeukene, Lejeune, and Mahaux derived a micro-
scopic optical potential performing Brueckner-Hartree-Fock
(BHF) calculations in nuclear matter using realistic nucleon-
nucleon interactions. This microscopic optical potential was
applied to finite nuclei using the local density approximation
(LDA) with parametrized nuclear densities [6—10]. However,
effective forces such as the Skyrme [11] or Gogny [12] inter-
actions, which are specially designed to describe ground-state
properties of finite nuclei, have also been used to obtain a
nucleon-nucleus microscopic optical potential [13—18]. The
underlying idea, in this case, is that these forces can be re-
garded as effective parametrization of the G matrix and used
to obtain perturbatively the first- and second-order terms of
the expansion of the mass operator of the one-body Green
function.

2469-9985/2023/108(1)/014605(16)

014605-1

A different approximation to obtain the microscopic opti-
cal potential is the folding model [19,20], where the optical
potential is computed by convolution of a complex two-body
nucleon-nucleon effective interaction [21-27] with the target
nucleus density. It can be seen from basic folding formulas
that the method generates the first-order term of the micro-
scopic optical potential derived from Feshbach’s theory [28].
This model is used quite often as a basis to describe the scat-
tering of light projectiles by heavier nuclei. In this case, the
corresponding microscopic optical potential can be obtained
by folding the projectile density with the nucleon-nucleus
optical potential, which represents the interaction of a free
nucleon of the projectile with the target nucleus [29-33].

In a previous paper [18] we developed a microscopic model
to describe nucleon-nucleus scattering at relatively low bom-
barding energy using Gogny forces of the D1 family. The
real and imaginary parts of this microscopic optical potential
are obtained as the first- and second-order terms of the Tay-
lor expansion of the mass operator, respectively, which are
calculated within the BHF method using the G-matrix built
up with the effective Gogny force. This optical potential is
applied to finite nuclei using the LDA with the neutron and
proton densities computed within a quasilocal Hartree-Fock
approximation with the same Gogny interaction [34,35]. This
nucleon-nucleus microscopic optical potential [18] does not
contain free parameters to be adjusted to scattering data and
gives a reasonably good agreement with the experimental
results of differential cross sections and analyzing powers of
neutron and proton elastic scattering by atomic nuclei along
the whole periodic table. Very recently, this model was used
successfully to describe quasielastic proton-neutron charge
exchange reactions [36].
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We want to continue analyzing the ability of this Gogny-
based microscopic optical potential to describe other scat-
tering processes. In particular, in this work, we perform an
exploratory study of the elastic scattering of light projectiles
H, H, *He, and “He by atomic nuclei through a relatively
simple folding model. Actually, we follow a strategy sim-
ilar to that used in Refs. [37—43] for describing this type
of reaction with a microscopic optical potential built up
with effective Skyrme forces. We are aware that this sim-
ple model corresponds to the free scattering of the nucleon
of the projectile by the target nucleus disregarding other
possible reaction channels, such as inelastic scattering and
breakup and transfer reactions, which are taken into account,
on average, in the imaginary part of the optical potential.
Thus the microscopic optical potential used in this work be-
comes an extended Watanabe model [44] for describing the
light-particle—nucleus elastic scattering (the original Watan-
abe model takes into account only deuteron-nucleus elastic
scattering). In order to account for the breakup effects, the
more fundamental continuum discretized coupled-channels
(CDCC) method was introduced long ago by Rawitscher
[45]. More recently, Mackintosh and Keeley pointed out the
relevance of the pickup reactions in the coupled-channels
calculations for a precise description of the ?He-nucleus [46],
3He-nucleus [47], and *H-nucleus [48,49] elastic scatterings.
In order to check the reliability of our model, we have com-
pared our results for some deuteron-induced reactions with
the CDCC results reported in Ref. [50], using in both cases
the phenomenonogical optical potential of Koning-Delaroche
as underlying nucleon-nucleus optical potential. Also we have
estimated the impact of including the pickup channels on the
elastic scattering calculation for two reactions by comparing
our results with the predictions of the coupled reaction chan-
nel (CRC) calculations of Ref. [46,48].

The paper is organized as follows. In Sec. I we summarize
our theory. Section III is devoted to discussing the predictions
of our model concerning several elastic scattering observables
measured in different reactions induced by *H, *H, *He, and
“He. Our conclusions are laid out in the last section. The
Appendix summarizes the renormalization procedure of the
Gogny-based nucleon-nucleus optical potentials.

II. BASIC THEORY

To describe elastic scattering by light particles we use
an extended version of the Watanabe model [44], which
was initially devised for describing high energy scattering of
deuterons by complex nuclei.

A. The Watanabe model

In this model, it is assumed that the scattering of deuterons
by heavier nuclei is described by the wave function solution
of the following Schrodinger equation:

i 2
{— wVRz - ﬂVsZ + Via(s)

v <R + %) +V (R - %) }\IJ(R, s) = EU(R, 5).
(1)

which is written in terms of the neutron and proton center of
mass and relative coordinates, R = (r; +r;)/2 ands =r; —
r>. In this equation M = m,, + m, and u = m,m,/(m, + m,)
are the total and reduced masses of the two nucleons, V; and
V, represents the interaction of the neutron and proton with
the target nucleus, and V), is the neutron-proton interaction in
the deuteron.

The wave function solution of the Schrodinger equation (1)
can be written as [44]

YR, s) = xo(8)PR) + F(R,s), @

where xo(s) is the ground state-deuteron wave function, ®(R)
describes the center-of-mass motion and F (R, s) takes into
account the coupling between the center of mass and the
relative motion.

The ground-state deuteron wave function, which corre-
sponds to total spin and isospin S = 1 and T = 0, respectively,
does not contain D-wave admixture and is the solution of the
intrinsic Schrodinger equation

2

{— h—Vsz + VIZ(S)}XO = €4 X0, 3
2p

which together with the wave functions x;(i = 1,2, ...), also

solutions of the equation H;,x; = €;x; and orthogonal to ¥,

form a complete set of wave functions, which, assuming a

discretized continuum, allows one to write [37,50]

F(R,s) =) xi(s)pi(R). )
i>0
Next, multiplying the Schrodinger equation (1) by Xg and
integrating over the relative coordinate, one obtains

2

h
—ﬂVR%D(R) + VR)PR) + g(R) = (E — €,)P(R),
®)

where

V(R) = /dsxg(s)[v1 (R + %) +V (R — ;)]Xo(s) (6)

and

g(R) = /arsxg(s)[vl (R+ %) + VZ(R - g)}F(R, ).

(N
The last contribution in the left-hand side of (5), g(R), con-
tains the breakup of the deuteron and the distortion of the
deuteron wave function. These effects in the simplest ver-
sion of the Watanabe model are approximated by adding
an imaginary contribution to V(R) and dropping g(R). In
a last step, the potentials V| and V, in (7) are replaced by
the corresponding neutron-nucleus and proton-nucleus optical
potentials. The dipole polarizability in the deuteron scattering
is a manifestation of the coupling to breakup channels via
the electric dipole operator [51]. This effect has an important
effect on energies around the Coulomb barrier [52]. It was
pointed out some time ago that the trivially local equivalent
polarization potential describing the effect of the breakup
channels on elastic scattering has both real and imaginary con-
tributions [53]. Although the breakup effects and the impact of
the dipole polarizability have not been included explicitly in
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our model, we expect they are included, at least partially, in an
effective way through the imaginary part of the optical poten-
tial, as in the original Watanabe work [44]. We have checked
our approach by performing some comparisons between the
differential and total cross sections computed with the original
Watanabe model and the CDCC results of Ref. [50].

B. The extended Watanabe model

In order to describe the elastic scattering of *H, *He, and
“He by heavier nuclei, we use a generalized Watanabe model
where the microscopic projectile-target optical potential is
obtained by folding the nucleon-target optical potential of the
constituents nucleons in the ground state of the projectile. It
can be written as

n
VR) = (xo1, .., &IV
i=1

X(Rs sls""‘S;:nfl)'XO(gl:"'agnfl))a (8)

where n is the number of nucleons in the projectile,
ViR, &, ..., &,_1) is the free nucleon-target optical potential
corresponding to the nucleon i, and xo(§, ..., &,—1) is the
ground-state wave function of the projectile, both written in
terms of the Jacobi coordinates. In this system R is the center-
of-mass position of the projectileand §; (i = 1,...,n — 1) are
the relative coordinates related to the positions ry, rp, ..., I,
of each nucleon in the projectile:

1 n
Rzzgri,

| Jj
Ejzyzrk_errl (G=12,...,n—1), &)
k=1

where n = 2 for 2H, n = 3 for °H, and He and n = 4 for “He.

The wave functions of the different projectiles, which enter
in (8), are expressed in terms of the intrinsic coordinates. In
the case of the deuteron the ground-state wave function, as-
suming only s-wave contribution, is expressed by the Hulthén
function [39]

N,
Doy (&) = g—f[e—“é' — P4, (10)

where N; = ‘/% with « =023 fm™' and B =
1.61 fm~".

For *H and He the spatial part of the intrinsic wave
functions are expressed by the three-dimensional harmonic
oscillator functions as [40,41]

B2 i pe2 el
e T3, (1D

32

where g = 0.346 fm~? for *H and B = 0.283 fm~? for *He.
Notice that the full wave functions of these two nuclei also
contain, in addition to the spatial part, spin and isospin contri-
butions. In order to preserve the antisymmetry, the two iden-
tical particles are coupled to isospin 7 = 1 and spin S = 0.
When the third nucleon is added, the total spin and isospin

@5y (81, &2) = Pspe(81, 62) = <

become S, = 1/2 and 7, = 1/2, because the ground states of
3H and *He are a isospin doublet. These total spin and isospin
values together with the symmetric spatial part of the wave
functions of these nuclei given by Eq. (11) implies that in
their ground state they have spin-parity J* = 1/2%, which is
in agreement with the experimental values. However, as far as
the optical potential (8) only depends on spatial variables, the
spin and isospin structure of the *H and *He do not play any
role in its calculation.

Again using harmonic oscillator wave functions the wave
function of “He can be written as

473
where in this case 8 = 0.4395 fm—2 [42].

,33 %713(512%22)7%
Dy (81, 62, 63) = e 7 7, (12)

C. The nucleon-nucleus optical potential

The other piece of the Watanabe model is the free nucleon-
nucleus optical potential, which we have derived in a previous
publication [18] on the basis of a semi-microscopic nuclear
matter approximation using Gogny forces of the D1 family.
Gogny interactions were introduced by Gogny in the early
1980s [12], aimed to describe simultaneously the mean field
and the pairing field of finite nuclei with the same interaction.
The Gogny D1S parametrization [54] has been used in large-
scale Hartree-Fock-Bogoliubov calculations of ground-state
properties of finite nuclei along the whole periodic table [55].
A detailed analysis of these results shows some deficiencies
in the theoretical description of masses of neutron-rich nuclei
compared with the corresponding experimental values (see
[56] for more details). To remedy these limitations of D18,
new parametrizations of the Gogny force, namely DIN [57]
and D1M [58], have been proposed. These forces incorporate
in their fitting protocol the constraint of reproducing, in a
qualitative way, the microscopic equation of state of Friedman
and Pandharipande in neutron matter in order to improve the
description of neutron-rich nuclei.

The Gogny forces of the D1 family consist of a finite-range
part and a zero-range density-dependent term together with
spin-orbit interaction, which is also zero range as in the case
of Skyrme forces. The finite-range part is the sum of two
Gaussian form factors with different ranges, each multiplied
by all the possible spin-isospin exchange operators with dif-
ferent weights. Therefore this type of Gogny force reads

5 > 1/3 k=2 P12 \2
V(F2) =15(1 +ﬁo)5(712)[/0(r1 ;rz)] +y e 0

x (Wi + By, — HiP, — My P, P,)
+ iWis(81 + 62) - kT x 8(Fio)k, (13)

where
pU:%(l—{—a'lé\'z) and p\r:%(l"i_flfz)

are the spin and isospin exchange operators, respectively,
while

?12:71—_5 and k =
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TABLE I. Parameters of the effective D1S Gogny force used in
this work.

k py (fm) Wi By Hy M, (MeV)
DIS 1 0.7 —1720.3 1300 —1813.53 1397.60
2 1.2 103.64 —163.48 162.81 —223.93

DIS W5 = 130 MeV fm® t; = 1390 MeV fm*

are the relative coordinate and the relative momentum of
the two nucleons, respectively. The parameters of the force,
namely Wy, By, Hy, My, u (k = 1, 2), t3, and Wy are fitted to
reproduce some properties of finite nuclei and infinite nuclear
matter (see Refs. [12] and [58] for more details about the
fitting protocol of Gogny interactions).

Let us summarize the more relevant aspects of the mi-
croscopic optical potential based on the Gogny interaction,
which was derived in Ref. [18] and will be used in the present
work. It is obtained with the Jeukene, Lejeune, and Mahaux

J

procedure [6-9] in nuclear matter. The real and imaginary
parts of the central potential are determined from the first and
second terms of the Taylor expansion of the mass operator,
which is computed using the effective Gogny force instead
of a microscopic interaction. In the present work, we use the
DIS parametrization of the Gogny force, whose parameters
are given in Table I. In Ref. [18] we checked that the use
of other parametrizations of the Gogny force such as DIN or
D1M provides basically the same description of the nucleon-
nucleus elastic scattering. The model described here based on
the Gogny interaction is similar to other microscopic optical
potentials obtained from the same theoretical grounds but
using Skyrme forces [13-17].

In this model, the real part of the central potential cor-
responds to the single-particle potential felt by the incident
projectile due to the nucleon in the target. In the strict ap-
plication of the model, this real part is the Hartree-Fock (HF)
single-particle potential in nuclear matter considering only the
two-body part of the nucleon-nucleon interaction, which for
an incident nucleon « of type t reads

3 k=2 B M
k k
th = §t3p1/3[,0—,0w]+7t3/2 E /L2|:(Wk+7>p_ (Hk+7>pta:|

k=1

k=2
1 3 Wk Hk Hk
_m ;Mk[(? + Bk - 7 - Mk>1(kata kp - k‘L’Ol) - (7 +Mk)1(kou kp - k—ta):|» (14)

where the Fermi momenta of the particles with the same (opposite) isospin as the projectile are related to the corresponding

particle densities by k2, = 372 p,, (K

—Ta

=3712p_¢s). In Eq. (14) the functions I, which depend on the momentum k, of the

projectile and correspond to the HF exchange potential, are defined as

32
I(kou kp) =

k

To obtain the real part of the central potential in a finite
nucleus we apply the LDA in (14) with the self-consistent
neutron and proton densities of the target computed within
the quasilocal density formalism [18,34,35], which allows
one to express V;, as a function of the position through the
densities and local Fermi momenta of neutrons and protons
in Eq. (14). The radial dependence of the momentum of the
incident neutron k, is given by the solution of the equation

n*k2
E; = — + V‘L’O((kota k‘[(){(R)v k—wt(R))a (16)

2m
where E| is the energy of the projectile in the laboratory frame
[if the projectile is a proton the Coulomb potential of the target
has to be added to (16)]. Due to the finite range of the Gogny
force the momentum of the incident nucleon k,, appears in the
kinetic and potential contributions to Eq. (16), which implies
that this equation has not an exact analytical solution and
therefore the momentum k, must be obtained numerically.
However, the momentum of the incident nucleon can still be
obtained approximately in an analytical way by performing
locally a quadratic Taylor expansion of V;,, around the Fermi
momentum k., of the particles with the same isospin as the

4 8 2 "2
n3 |:erf (%(kp — ko,)> + erf (%(k,, + ka)>] + k_n|:e4k(ka+kp)2 _ ei(kakm} (15)
M, o

1y

(

projectile, i.e.,
Vrot(R) = Vra(ka = kwn R)

1 0Vu(ky, R
N [_¥

)

where the coordinate R indicates the radial dependence of the
real part of the central potential, owing to its dependence on
the local neutron and proton Fermi momenta of the target.
With this approximation Eq. (16) can be recast as

Ik

E;, =
L 2m?,

+ Vora(R), (18)

where m}, is the effective mass at the Fermi momentum k.,

defined as
m 1 [dV,
=14+ —=— , 19

m * 2 km|: ke, i|ka=km (19

T

and

kro [ 0Vea
Vora = Viglka = keg) — —2| —22. 20
0t T ( T ) ) |:8ka :|kakm ( )
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The imaginary part of the central potential is given by [18]
1
€a+€v _E)L_G[L—i_in

1 ~
We = S 1Im Xk: (av|V i)
hopuskp

x (u|V]av). 1)

The denominator of this expression can be easily worked
out by making use of the parabolic approach, which allows
writing the single-particle energy of the projectile as (18)
and similar expressions for the other particle and hole states
entering in Eq. (21). Due to the charge conservation, we can
write the denominator of (21) as

R o > o 2
Eu+ 8 — & — & = —2 v _ % ®22)
2my,  2my, 2mi, 2my,

Applying the principal value integral to deal with the denom-
inator of (21), after some lengthy algebra one obtains the
imaginary part of the central potential in the nuclear matter
approach, which can be finally expressed as

Wew = — 2 (W, 420 + W+ Wy + W], (23)
2 (2m)°

where the different contributions to (23) are given in [18].
The microscopic nucleon-nucleus optical potential that de-
scribes the light-particle target scattering (8) also contains
Coulomb and spin-orbit contributions. The Coulomb potential
in the light-particle microscopic optical potential is included
in the different proton-nucleus potentials entering in Eq. (8).
Except in the case of “He where it vanishes, the spin-orbit
potentials in the other light particles considered in this work

J

2 3

are consistent with the sum of the spin-orbit potentials for
their constituent nucleons. Notice, however, that the spin-orbit
for the deuteron is multiplied by an energy factor [39], which
takes into account the energy dependence of the spin-orbit
potential in this case, and for tritium the spin-orbit energy of
each constituent is multiplied by the corresponding effective
mass in order to enhance the spin-orbit contribution at the
nuclear surface [40]. Note that, in the calculations reported
in the next section, we have replaced the real part of the
single-particle potential in the nuclear matter approach with
the one obtained in the HF approximation, which takes into
account the finite size of the target nucleus as well as the
rearrangement contributions (see [18] for more details).

III. RESULTS

A. Optical potentials for the scattering of light
projectiles from nuclei

As we have discussed previously, the microscopic optical
potential for describing the elastic scattering of deuterons
from nuclei used in this work is built up with the help of the
Watanabe model and is given by Eq. (6), where V| and V, are
the neutron-nucleus and proton-nucleus microscopical optical
potentials based on the Gogny D18 effective force and derived
in Ref. [18].

Using the optical potential provided by the extended
Watanabe model (8) with the intrinsic wave functions for 3H,
3He, and *He given by Egs. (11) and (12), the microscopic
optical potential for describing *H and *He scattering from
heavier nuclei reads

2 3 3

2
Vertgtion(R) = / dEdE ] (&, &)[Vn(p) (R LI 5—2) Vi (R _Ey §> Vo <R - ﬁ)}m(a,&), 24)

and for scattering of « particles is given by

2 2

Vire(R) = / dEdEds x] (. &, S3)|:Vn(R + % + %) + vn(R _Ay éi)

AL

where V,, and V,, are the neutron-nucleus and proton-nucleus
optical potentials obtained as explained in Sec. IT C. At this
point, two comments are in order. First, within the theoretical
model used in this work, the energy E of the projectile is
shared among its nucleons, which means that the neutron-
nucleus and proton-nucleus optical potentials entering in
Egs. (6), (24), and (25) are computed at energy values of E /2,
E /3, and E /4, respectively. Second, if this energy is smaller
than the Coulomb barrier of the proton-target system, the real
and imaginary parts of the central potential are not taken into
account and the proton-nucleus optical potential reduces to
its Coulomb contribution. However, this prescription may be
an oversimplification that underestimates the reaction cross
section because, as explained in Ref. [59], in the scattering
of a composite weakly bound particle, such as H, *H, or *He,
there is a reaction probability even in the case that the energy

& &

R—-=>- —):|Xo(§1, £,86), (25)

2 2

(

of a fragment is below that of the fragment-target Coulomb
barrier due to the Trojan horse effect [60].

The real and imaginary parts of the central contribution to
the microscopic optical potential based on the Gogny force for
describing the elastic scattering of light particles from heavier
targets (MOPG hereafter), show, as a function of the energy
of the incident projectile, some global trends that are largely
independent of the projectile and of the target nucleus. Just as
an example, we show in the different panels of Fig. 1 the evo-
lution with the energy of the projectile of the profiles of real
and imaginary parts of the central term of the MOPG provided
by Egs. (6) and (25) for the reactions 2H->"Pb and “He->**Pb.
From this figure, we can see that in all the cases the depth of
the real part decreases with increasing energy, which points
out the repulsive character of the energy dependence of the
real part of the MOPG. However, the opposite trend happens
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FIG. 1. Real and imaginary parts of the 2H->*Pb (up) and “He-
28pPh (down) microscopic optical potentials computed with our
microscopic unrenormalized (MOPG) and renormalized (RMOPG)
models at several energies of the projectile.

for the imaginary part and we see that its strength increases
when the energy of the projectile grows, due to the fact that at
higher energy more inelastic channels are open. On the other
hand, the imaginary part computed with the MOPG develops,
for both reactions, a very well-marked peak at the surface,
which indicates its strong absorptive character at the surface
of the target. When the energy of the projectile increases, the
volume absorption in the interior of the target is more relevant,
as far as the higher energy of the projectile allows explor-
ing the inner part of the target. This volume absorption also
increases with the mass of the target and becomes stronger
than the surface absorption in the case of heavy 2**Pb targets.
These trends are also observed in other similar calculations
of the optical potential designed for describing the scattering
of light particles based on the Skyrme forces [39-42]. It is
interesting that the central real and imaginary parts of the
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FIG. 2. Real and imaginary parts of *H-'2°Sn (up) and *He-*’Ca
(down) microscopic optical potentials computed with our renormal-
ized model (RMOPG) and with a Watanabe model based on the
Ko6ning-Delaroche (KD) nucleon-nucleus optical potential computed
at several energies of the projectile.

phenomenological optical potentials for describing the elastic
scattering of >H [61], *H and *He [62], and “He [63] also show
for a given target similar trends as a function of the energy.
As pointed out in our previous work [18], the nucleon-
nucleus microscopic optical potential based on the Gogny
force predicts more absorption, in particular at high energy
of the projectile, but roughly similar real part compared to
phenomenological optical potentials, for example Koning-
Delaroche (see in this respect Figs. 1 and 2 of [18]). We
expect that this behavior of the nucleon-nucleus potential may
have a relevant impact on the MOPG owing to Eq. (8). In
order to get an improvement of the description of the elastic
scattering of light particles by nuclei using the MOPG model,
inspired by Ref. [10] we have renormalized the central real
and imaginary parts and the spin-orbit term of the Gogny
nucleon-nucleus optical potential by energy-dependent factors
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TABLE II. Real and imaginary parts of the phenomenological optical potentials (POP) that describe the scattering of 2H [61], *°H and *He
[62], and “He at the Rsa for different reactions at several energies. The predictions of the theoretical models MOPG, RMOPG, and KD at the

phenomenological Rsx are also given.

Veop (MeV) Vkp (MeV) Vmorc (MeV) Vrmorc (MeV)
E (MeV) Rsa (fm) Wrop (MeV) Wikp (MeV) Wmore (MeV) Wrmorg (MeV)
21 + 208pp
30 10.772 —0.618 —1.625 —1.259 —1.339
—1.412 —0.732 —0.603 —0.461
70 10.384 —0.856 —2.189 —1.866 —1.809
—2.321 —1.084 —1.725 —0.967
110 10.240 —0.812 —2.188 —2.087 —1.880
—2.875 —1.116 —2.266 —1.246
3H + 1298p
40 9.536 —1.394 —1.838 —1.266 —1.366
—1.308 —0.803 —0.785 —0.639
70 9.140 —2.167 —2.924 —2.326 —2.414
—1.487 —1.386 —2.009 —1.296
100 8.872 —2.876 —3.862 —-3.410 —3.433
—2.279 —1.826 —3.343 —1.827
*He +“°Ca
20 8.002 —0.848 —1.305 —0.863 —0.972
—1.001 —0.535 —0.359 —0.359
80 7.040 —2.514 —3.995 —3.841 —3.848
—2.401 —2.086 —3.493 —2.130
120 6.729 —3.464 —5.252 —5.683 —5.369
—3.004 —2.642 —5.725 —-3.015
*He +2*%Pb
50 10.922 —1.607 —1.958 —1.234 —1.330
—0.825 —0.965 —0.440 —0.365
150 10.217 —3.040 —4.348 —-3.619 —3.459
—2.478 —2.469 —4.018 —2.223
250 9.959 —2.701 —4.983 —5.056 —4.439
—3.778 —2.873 —6.193 —3.640

following the protocol discussed in the Appendix. This renor-
malized MOPG (RMOPG from now on) is also displayed
in Fig. 1. The renormalization makes the real part deeper
at low bombarding energies and shallower at high energies
following, roughly, a smooth transition. As a function of the
energy of the projectile, the renormalization reduces strongly
the imaginary part at high energy but only a little at low
energy. Also, the surface bump is damped by the renormal-
ization. The RMOPG predictions are quite similar to those
obtained by using an extended Watanabe potential Eq. (8)
built up using the phenomenological nucleon-nucleus optical
potential of Kéning and Delaroche (KD in the following), as
can be seen in Fig. 2 where we display the real and imaginary
parts for the *H+ '°Sn and *He + *°Ca reactions at several
energies computed with both models. For the first reaction the
real parts predicted by the RMOPG and KD models are almost
identical, while for the second reaction the predictions of these
two models differ more, probably due to the smaller mass of
the target. Regarding the imaginary central part, the RMOPG
and KD models predict a surface bump, which for 3H + 2°Sn
is roughly independent of the energy, whereas for *He + “°Ca
it shows an increasing trend with increasing energy of the
incident particle, this behavior being more pronounced in the
RMOPG case. The imaginary part also contains a volume

absorption region, which increases with the growing energy of
the projectile and with the mass of the target in both models.
The most relevant part of the optical potential for the
nucleus-nucleus elastic scattering is the tail of the potential,
in particular at the strong absorption radius Rga, which is
closely related to the reaction cross section (see for instance
[64] and references therein). In Table II we give the Rga
values corresponding to the reactions and energies displayed
in Figs. 1 and 2 obtained using the phenomenological optical
potentials that describe the elastic scattering of >H [61], *H
and *He [62], and *He [63]. The Rs, is defined as the distance
of the closest approach of the trajectory with angular mo-
mentum L corresponding to transparency function [S;| = 0.5,
which in the low energy regime, such as the one considered
in this work, can be approximated by the closest distance
reached by the Coulomb orbit with |S;| = 0.5. Notice that the
Rsa extracted with the theoretical models used in this work,
namely KD, MOPG, and RMOPG, provide values very close
to the ones reported in this table. For the sake of clarity, we
will use the Rga obtained from the phenomenological optical
potential in what follows. In the same table, we also show the
values of the real and imaginary parts of the central term of
the optical potential at Rga computed with the aforementioned
phenomenological optical potential and with the different
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theoretical models discussed in this work. From this table, we
can see that the values of the real and imaginary parts at the
Rsa predicted by the theoretical models, in particular by the
KD and RMOPG ones, agree quite well among them. This fact
suggests that the scattering observables computed with these
models should be quite similar [65]. However, the optical
potentials at Rsy computed with the theoretical models differ
more from the predictions of the phenomenological ones. This
implies that the theoretical predictions, obtained with global
models, will reproduce the experimental data less accurately
than the local phenomenological optical potentials specifically
designed for describing a given reaction. However, it should
also be noted that the real and imaginary parts of the opti-
cal potentials for describing light-particle scattering are quite
deep and vary rapidly with the distance. Therefore the differ-
ences in Table II could have less impact on the calculation of
scattering observables than appears at first sight, as we will
see in the next discussions.

B. Angular distributions

We want now to investigate the predictive power of the
light-particle—nucleus microscopical optical potential based
of the Gogny interaction derived in this work. To get some
insight about the dependence of the angular distributions on
the mass of the target and the energy of the projectile, we
display in Figs. 3-6 the elastic scattering angular distributions
in Rutherford units of incident 2H at 56 MeV, H at 33 MeV,
3He at 119 MeV, and “He at 35 and 104 MeV from different
targets. Globally, we see from these figures that the MOPG,
which does not contain free parameters fitted to scattering
data, reproduces the experimental results in a quite satisfac-
tory way.

In the case of elastic scattering of deuterons at 56 MeV on
targets from 160 to 298Pb, we see that our renormalized model
RMOPG reproduces very nicely the experimental behavior
[66] of not only the dips at low scattering angles but also for
larger scattering angles. We also see in the upper panel that
the unrenormalized model MOPG is also in good agreement
with the experiment in the dips but for larger scattering angles
predicts a slightly smaller differential cross section than the
experimental data and shows a smooth oscillatory trend in
disagreement with the experiment. In the lower panel, we
compare the RMOPG and KD results. We see that both mod-
els show almost an identical behavior reproducing fairly well
the experimental data with a few exceptions [66].

The breakup of loosely bound projectiles, such as >H, *H,
or *He, has a relevant impact on the elastic scattering of such
types of projectiles. For the reasons pointed out before, in
the present work we have used the simplest approach pro-
posed in the original paper of Watanabe, which includes the
breakup effects as a whole in the imaginary part of the opti-
cal potential [44]. However, in order to assess the reliability
of our approach, we display in Fig. 4 the differential cross
sections obtained with our approach (solid line) and with the
CDCC method (dashed line) using in both calculations the KD
model. From this figure, we see that the predictions of our
approach are reasonable, reproducing quite well the experi-
mental data and with an overall agreement with the CDCC

E, =56 MeV
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FIG. 3. Angular distributions in Rutherford units of the elastic
scattering of deuterons with an incident energy of 56 MeV by several
target nuclei from '°Q to 2%Pb predicted by the RMOPG model
compared to the MOPG (a) and KD (b) results. The experimental
data are taken from [66]. Note that, except for the topmost one, each
angular distribution is offset by a factor of 100 from the preceding
one.

results taken from Ref. [50], which, as expected, reproduce
slightly better the experimental values.

In the two panels of Fig. 5, we display the angular distribu-
tions of incident *H and *He at energies of 33 and 119 MeV,
respectively, scattered by several light and medium mass tar-
gets from C to Ni. For *H scattering the MOPG and RMOPG
models predict similar results for all the considered reactions
[68]. Both models reproduce reasonably well the experimental
dips up to a scattering angle of about 50°. Beyond this angle,
the experimental behavior is qualitatively reproduced in the
case of the 12C, 10, 40Ca, and ¥Ca targets and less so in the
case of 2*Mg and ¥Ni, where a lack of absorption in the two
theoretical calculations is observed. The predictions of our
model for the scattering of *He projectiles also reproduce the
experimental data [69] at low scattering angles in a reasonable
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FIG. 4. Angular distributions in Rutherford units of the elastic
scattering of deuterons on different targets obtained using the KD
model. Solid and dashed lines are the results predicted by the ap-
proach used in the present work and by the CDCC of Ref. [50].
Experimental values are taken from the EXFOR database [67]. Note
that, except for the topmost one, each angular distribution is offset
by a factor of 100 from the preceding one.

way. Again the position of the dips in the angular distributions
is predicted quite well by the MOPG and RMOPG models.
Also, the experimental behavior is reasonably well averaged
by our theoretical calculation up to scattering angles of 40°—
50°. From these angles on, the experimental data exhibit a
decreasing trend, which is not reproduced by our models.
It is interesting to note that the behavior of the differential
cross sections for scattering angles larger than ~50° is not
reproduced by the KD either, although it is predicted by the
phenomenological potential that describes the elastic scatter-
ing of A = 3 projectiles by heavier targets [62].

In the upper panel of Fig. 6 we display the angular dis-
tributions in Rutherford units corresponding to the elastic
scattering of « particles by different target nuclei at a given in-
cident energy of 104 MeV [70-73] computed with the MOPG
and RMOPG models. We see that these two theoretical calcu-
lations predict quite similar differential cross sections, which
describe reasonably well the experimental data except for the
208ph target, where the dips at scattering angles larger than
40° are not reproduced. In the lower panel of this Fig. 6 we
display angular distributions relative to Rutherford scattering
of «-particle scattering on different targets of mass number
A ~ 60 computed with the RMOPG and KD models. Both
theoretical calculations predict very similar results, which
reproduce rather well the experimental data up to scattering
angles of about 90°. From this angle on, the agreement be-
tween the theoretical predictions and the experiment slightly
deteriorates.

Next, we want to investigate the energy dependence of the
differential cross sections for a given target. To this end, we
display in Fig. 7 the angular distributions of deuterons scat-
tered by a target of 2*Mg in the range of energies between 56
and 72 MeV in the upper panel and between 74 and 90 MeV in
the lower panel. In the case of elastic scattering of deuterons
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FIG. 5. Angular distributions in Rutherford units of the elastic
scattering of *H with incident energy of 33 MeV from several targets
from '2C to *®Ni (a) and of *He with incident energy of 119 MeV
from '2C to °Ni (b). The experimental data are taken from [68]
and [69] for °H and *He, respectively. For useful comparisons, we
also display the upper (lower) panel the theoretical results computed
with the RMOPG and MOPG (RMOPG and KD) models. Note that,
except for the topmost one, each angular distribution is offset by a
factor of 100 from the preceding one.

in the range between 56 and 72 MeV, the MOPG and RMOPG
predict quite well the position and depth of the diffraction
minima. For larger scattering angles the experimental data
decrease. This trend is well reproduced by the RMOPG model
while MOPG shows a wiggly pattern with a value slightly
smaller than the experimental data due to the large absorption
of this model. In the energy range between 74 and 90 MeV,
which is displayed in the lower panel, we see that the KD
model reproduces nicely the experimental data with a quality
similar to that of the RMOPG in the upper panel. The MOPG
predictions, which show the same trends as in the upper panel,
reproduce the decreasing behavior of the experimental values
only in a qualitative way.
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FIG. 6. (a) Angular distributions in Rutherford units of the elastic
scattering of o particles with incident energy of 104 MeV by several
target nuclei from *°Ca to 2% Pb predicted by the MOPG and RMOPG
models in comparison with the experimental results [70-73]. (b) An-
gular distributions in Rutherford units of the elastic scattering of o
particles of 25 MeV from several targets of mass number A = 60.
The experimental data are taken from [74]. Note that, except for the
topmost one, each angular distribution is offset by a factor of 100
from the preceding one.

Although our model is able to describe deuteron, triton,
helion, and «-particle scattering by heavier nuclei for scat-
tering angles up to ~40°-50° in a rather reasonable way, it
fails for larger angles where discrepancies with the exper-
imental values can be important. Overall our model is not
completely satisfactory due to the following reasons. On the
one hand, our global optical potentials for describing light-
particle scattering, namely MOPG and RMOPG, are built up
with the Watanabe model using the underlying microscopic
nucleon-nucleus optical potential derived in Ref. [18]. The
former does not contain parameters adjusted to scattering
data and the latter has been renormalized using experimental
nucleon-nucleus scattering results. Therefore neither of the
two models has been fitted to experimental data of light-

H + Mg
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56 MeV _ — —— (a) on

——  RMOPG
Data
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FIG. 7. Angular distributions in Rutherford units of the elastic
scattering of deuterons from 2*Mg at different incident energies of
the projectile computed with the MOPG and RMOPG models (a) and
with the MOPG and KD models (b) compared to the experimental
values [75,76]. Note that, except for the topmost one, each angular
distribution is offset by a factor of 100 from the preceding one.

particle—nucleus scattering, and consequently our models are
fully predictive in this respect. Thus it is not surprising that the
predictive power of the MOPG and RMOPG is less than that
of phenomenological optical models because in the latter case
their parameters are fitted to reproduce the scattering data of a
given projectile. On the other hand, there are the intrinsic limi-
tations of the folding model, which does not take into account
the well-established coupled channels and coupled reaction
channels that are very important for an accurate description
of the light-particle scattering [46—49]. Calculations includ-
ing coupling collective states and pickup reactions allow to
extract the so-called dynamical polarization potential by in-
version of the elastic channel S matrix. This potential added
to the folding potential provides a very accurate description
of the angular distribution of the elastic cross section [46—49].
In Fig. 8 we display the angular distributions relative to
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FIG. 8. (a) Angular distributions in Rutherford units of the elas-
tic scattering of deuteron with an incident energy of 52 MeV by
a target of “°Ca predicted by the MOPG and RMOPG models in
comparison with the results of the CDCC and CRC calculations of
Keeley and Mackintosh reported in [46]. The results provided by the
phenomenological potential of Ref. [61] are also displayed. (b) The
same as in the upper panel for the scattering of triton at 33 MeV by a
“0Ca target. The CDCC and CRC results are taken from [48] and the
phenomenological predictions from Ref. [62]

Rutherford of the >H + *’Ca at 52 MeV and *H + *°Ca at 33
MeV reactions computed with the coupled reaction channel
method in Refs. [46] and [48], respectively, together with the
predictions of our MOPG and RMOPG models. We see that
all the folding models displayed in these figure, including the
ones of Refs. [46] and [48], describe the experimental data up
to scattering angles about 40°-50° and predict very different
values for larger angles, which may indicate a failure of the
pure folding models. However, when the dynamical polariza-
tion potential is added to the folding contribution, the exper-
imental angular distributions are reproduced with very high
precision, as can be seen in Fig. 8 and in the results reported
in [46-49] and references therein. It is important to point out

TABLE III. Reaction cross sections for ?H-nucleus scattering
computed with the MOPG, RMOP, and KD models computed with
the approach used in this work. Some results from the more elabo-
rated CDCC method reported in [50] are also given. Experimental
values are taken from Ref. [77]

Data MOPG RMOPG KD

E (MeV) (mb) (mb) (mb) (mb) CDCC [50]
160

37.9 962 +27 1136 1074 1066 1122

65.5 811+19 1067 907 883 943

97.4 726 £ 21 1011 822 745 790
40Ca

37.9 1439 £43 1568 1503 1487 1590

65.5 1338 £28 1556 1391 1361 1424

97.4 1260 £ 30 1486 1274 1175 1244
58Ni

37.9 1625+ 51 1741 1678 1731 1824

65.5 1571 £33 1724 1559 1574 1683

97.4 1524 +45 1693 1479 1424 1503
12051'1

37.9 2240 + 69 2317 2243 2247 2341

65.5 2346+ 51 2453 2286 2242 2330

97.4 235155 2426 2193 2070 2176
208Pb

37.9 2844 4+142 2643 2576 2676 2736

65.5 3049+ 71 2976 2809 2865 2937

97.4 3250+ 82 3043 2797 2781 2881

that the effects of the dynamical polarization potential cannot
be recovered by renormalization of the folding potential as
discussed in [49]. In Fig. 8 we have also plotted the angu-
lar distributions for the above-mentioned reactions computed
with the phenomenological optical potentials for deuterons
[61] and for tritons [62]. We see that these phenomenological
optical potentials describe again the experimental data up to
40°-50° and fail for larger angles, showing that this type of
global potentials is not very well suited to deal with scattering
on closed-shell targets [47,62].

IV. REACTION CROSS SECTIONS

The reaction cross section measures the flux of incident
particles that are removed from the elastic channel because
of the nonelastic process. In addition to some technological
applications, the main interest of the study of reaction cross
sections lies in the fact that they can be very useful in the anal-
ysis of angular distributions in elastic scattering in order to
eliminate ambiguities of the optical potential [78]. The study
of nonelastic reactions requires accurate optical potentials
because the imaginary part of their phase shifts determines
not only the reaction cross sections but also the amplitude of
the partial waves entering in the distorted-wave calculations
needed to describe the inelastic process. Also, the reaction
cross sections may be an important quantity to give global
insight into analyzing the predictive power of different optical
models. In this section we compare the theoretical reaction
cross sections obtained using the MOPG, RMOPG, and KD
models for the scattering of 2H at 38, 65, and 97 MeV, *He
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TABLE IV. Reaction cross sections for *He-nucleus scattering
computed with the MOPG, RMOPG, and KD models. Experimental
values are taken from Ref. [78].

TABLE V. Reaction cross sections for *He-nucleus scattering
computed with the MOPG, RMOPG, and KD models. Experimental
values are taken from Ref. [79].

E (MeV) Data(mb) MOPG (mb) KD (mb) RMOPG (mb) E (MeV) Data(mb) MOPG (mb) KD (mb) RMOPG (mb)
160 160

96.4 975+£35 1163 1045 1044 117.2 973+ 62 1162 1076 1058

137.8 850£50 1115 908 960 163.9 895 £ 100 1134 990 986

167.3 800+£25 1090 844 939 192.4 850 £+ 58 1118 945 955
40Ca 40Ca

96.4 1360 £ 90 1599 1459 1462 117.2 1470 £ 60 1614 1512 1494

137.8 1280 £ 85 1557 1333 1386 163.9 1410+ 120 1579 1463 1360

167.3 1225+75 1524 1256 1353 192.4 1370+ 70 1599 1393 1389
58Ni 60Ni

96.4 1690 £ 100 1771 1681 1635 117.2 1670 £85 1832 1774 1711

137.8 1570 £ 80 1806 1646 1542 163.9 1700 £ 160 1850 1713 1659

167.3 1470 £75 1734 1500 1533 1924 1610£90 1828 1649 1609
]2()Sn lZOSn

96.4 2285+ 165 2458 2263 2305 117.2 2360+ 150 2472 2342 2334

137.8 2230+ 100 2552 2235 2316 163.9 2380 £250 2516 2285 2308

167.3 2180+ 100 2523 2158 2245 192.4 2300+ 170 2550 2276 2267
208Pb 208Pb

96.4 2765 £250 2913 2823 2757 117.2 2990 + 180 2972 2940 2829

137.8 2850 £250 3081 2876 2822 163.9 2720+ 250 2987 2915 2664

167.3 2820+ 180 3124 2891 2680 192.4 3900 £ 190 2989 2871 2507

at 98, 138, and 167 MeV, and “He at 117.2, 163.9, and 192.4
MeV from a set of targets ranging from '°0Q to 2%®Pb with
the corresponding experimental values, which are taken from
Refs. [77], [78] and [79], respectively.

Our theoretical results are collected in Table III for H
and Table IV for *He and Table V for “He. The experimental
values of the reaction cross sections increase when the mass
of the target grows. As a function of the energy, the lightest
targets show, for all the projectiles, a decreasing tendency
with increasing energy. These global trends with the mass of
the target and the energy of the projectile are fulfilled rather
well by our theoretical calculations. In a more quantitative
way, we see that for all the projectiles the MOPG without
renormalization overestimates the experimental values, except
for reactions of 2H and “He on 2%Pb targets, as a conse-
quence of the large imaginary part in the nucleon-nucleus
optical potential [18]. The RMOPG and KD models predict
cross sections that are quite similar between them and slightly
overcome the experimental values for the lightest targets, in
particular for the smallest energies. For medium mass nuclei
up to '2°Sn, both models describe quite accurately the exper-
imental reaction cross sections while for the heaviest target
208ph both models underestimate the experimental values by
an amount that can be about 25% in the case of scattering
of “He. In the particular case of scattering of H, we also
collect in Table III the CDCC reaction cross sections reported
in Ref. [50], which are also computed using the KD model.
The CDCC results exceed the values calculated in this work
by about 5%, pointing out that our approach takes into account
a large amount of the breakup effects, at least those concern-
ing reaction cross sections. In Fig. 9 we display the reaction
cross section of the 2H 4 ¥Ni and 2H + 2®Pb reactions as

a function of the energy of the projectile computed with all
the models used in this work. In the case of **Ni target, we
see that the reaction cross section increases with the energy
and reaches a maximum at about E; = 20 MeV and then
decreases. However, for 2%Pb, the reaction cross section is
an increasing function of the energy, at least in the considered
range. We also can see that the CDCC predictions and our
results computed in this work almost coincide up to an energy
of the projectile E, about 20 MeV for the **Ni and about 40
MeV for the 2°®Pb target. From these energies on, the CDCC
prediction is larger by ~5% than the result computed in this
work as a consequence of the better description of the breakup
effects. For both reactions and energies below 40-50 MeV, the
KD cross sections are larger than the values predicted by the
MOPG and RMOPG models, and the opposite trend happens
for higher energies. In this region and for the *Ni target, the
MOPG and CDCC results are larger than the experimental
data, while the RMOPG and KD results, computed with the
extended Watanabe approach used in this work, reproduce
quite accurately the experimental values. For the 2°®Pb target
the experimental reaction cross sections are underestimated
by all the models considered, the MOPG without renormaliza-
tion being the model that better agrees with the experimental
data.

V. SUMMARY AND CONCLUSIONS

We have derived a microscopic optical potential to describe
the elastic scattering of light particles, such as deuterons,
tritons, helions, and « particles from heavier target nuclei.
This optical potential is obtained through an extended Watan-
abe model, whose basic ingredients are the neutron-nucleus
and proton-nucleus optical potentials and the projectile
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FIG. 9. Reaction cross sections as a function of the energy of the
incident deuteron on **Ni (top) and 2®Pb (bottom) computed with
the approach developed in this work using the MOPG, RMOPG, and
KD models. The predictions of the CDCC method taken from [50]
are also displayed.

wave functions. This simple model neglects the interaction
among the nucleons of the projectile and assumes that ef-
fects from dissociation and distortion of the wave function
of the projectile can be included phenomenologically in the
imaginary part of the optical potential. Effects due to inelas-
tic and pickup reactions have not been considered either in
our simple model. The nucleon-nucleus optical potential used
here was derived in a previous work within a semimicroscopic
nuclear matter approach where the real and imaginary parts
are given, respectively, by the first- and second-order terms
of the mass operator, which is determined by means of a
Brueckner-Hartree-Fock calculation using a G matrix built
up with an effective Gogny interaction. This nucleon-nucleus
potential is supplemented by the Coulomb potential for inci-
dent protons and by a real spin-orbit potential obtained from a
self-consistent quasilocal HF calculation in the target nucleus.

As is expected, for all the projectiles considered, the real
and imaginary parts of the theoretical light-particle-nucleus
optical potential derived in this work decrease and increase,
respectively, when the energy of the projectile grows. At low
incident energy, the imaginary part is strongly peaked at the

surface. When the energy increases the volume absorption
grows and the relative surface absorption diminishes. The
angular distribution of the elastic scattering of light particles at
different energies from different target nuclei computed with
the optical potential derived in this work exhibits reasonably
agreement with the experimental data, although the quality
depends on the reaction. In general, for scattering angles
below 50°, the diffraction pattern of the experimental data at
high enough incident energy is quite well reproduced by our
calculations, as well as the positions of the first dips. For larger
scattering angles there are discrepancies between the values of
the differential cross sections predicted by our model and the
experimental values, pointing out to a too strong absorption
for light targets, although this trend is reversed for heavier
nuclei. The cross sections computed with our model decrease
with the growing energy of the projectile for light and medium
mass targets while the contrary happens for the heaviest target
analyzed in this work, namely 2°Pb, which is in agreement
with the experimental trend. However, the values calculated
with our MOPG model for all the targets except 2°®Pb over-
estimate the experimental values, especially in the case of the
lightest targets with mass numbers smaller than A = 40.

To have a better insight into the quality of the results
obtained with the MOPG model, we have repeated the the-
oretical calculations within an extended Watanabe model but
using the Koning-Delaroche nucleon-nucleus optical potential
instead of the optical potential based on the Gogny interaction.
These KD optical potentials for describing the elastic scatter-
ing of light particles predict angular distributions and reaction
cross sections in better agreement with the experiment than
our MOPG model. We have also used this KD model in the
case of deuteron scattering to compare our extended Watanabe
prescription with the results provided by the more elabo-
rated CDCC method, which takes into account explicitly the
breakup effects. We find that the CDCC method improves
slightly the angular distributions and provides reaction cross
sections about 6-7% larger.

To obtain a better description of light-particle elastic
scattering with our model, we improve the starting nucleon-
nucleus potential by renormalizing with energy-dependent
factors the real and imaginary parts of the central contribution
and the spin-orbit potential following the protocol described
in the Appendix. This renormalized nucleon-nucleus po-
tential, also based on the Gogny interaction, predicts a
description of the nucleon-nucleus elastic scattering quite
similar to the one provided by the Koning-Delaroche model
in spite of the fact that the fitting procedures of the two
models are clearly different. The use of these renormal-
ized nucleon-nucleus potentials in the extended Watanabe
approach produces the RMOPG model, which describes
light-particle elastic scattering with a quality similar to that
obtained with the KD model. In particular, the angular distri-
butions computed with the RMOPG model reproduce the dips
at small scattering angles and the exponential falloff at large
scattering data in much better agreement with the experiment
than the unrenormalized MOPG results. The reaction cross
sections computed with the RMOPG are smaller than the ones
calculated with the unrenormalized MOPG model and quite
similar to the values predicted by the KD model. We have also
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TABLE VI. Numerical values of the parameters of the energy-
dependent renormalization functions M,, Mg, and M, for proton-
nucleus reactions described with the MOPG.

My(E, M) = ME? + ME + 23

Al A2 A3
4.555 x 107 —9.5351 x 1073 1.1801
My(E, i) = pE* + j1E + 3

231 H2 "3
1.0069 x 10~ —1.1196 x 1072 0.8684
M, (E, 8) = 8,E> + 8,E + 8

8 & 3
—1.0329 x 1073 1.7524 x 1073 0.6147

checked that the results discussed in this work are compatible
with other folding calculations using nucleon-nucleus micro-
scopic optical models built up with the Skyrme interaction.

Overall our Watanabe model based on the Gogny force can
provide a qualitative description of the light projectile-nucleus
elastic scattering. In particular, the angular distributions up to
scattering angles about 40°-50° reproduce the experimental
data fairly well but fail for larger angles. Apart from its global
character, the lack of accuracy in our model, as well as in any
other obtained using the folding method, is due to the absence
of inelastic and reaction channels in the elastic scattering cal-
culation. A more accurate description of the systematic of the
elastic scattering of light particle by heavier nuclei requires
local information about the structure of the target and nearby
nuclei, which is the necessary input for dealing with the more
sophisticated CDCC and CRC calculations.

Although numerical results obtained with the Gogny mod-
els are available from the authors on request, an important
and urgent task is to publish the numerical code. Work in this
direction is in progress. There is, however, room for improve-
ments of the approach described in this work, for instance im-
plementing CDCC or CRC calculations on top of our Gogny
model, including a more accurate description of the Coulomb
interaction, or considering explicitly the dipole polarizability
in the deuteron scattering around the Coulomb barrier.
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APPENDIX

As pointed out in the main text, the imaginary part of
MOPG for light particles is too strong compared to the pre-
dictions of the KD model and the phenomenological models
fitted to describe the elastic scattering of this kind of particles
[61-63]. This fact is, actually, a direct consequence of the
strong absorption in the nucleon-nucleus Gogny model, as
pointed out in [18]. To cure this unwanted effect, we renormal-
ize with energy-dependent factors the real and imaginary parts
of the central term of the nucleon-nucleus Gogny potential as
well as its corresponding spin-orbit contribution, in a similar
way as was done in Ref. [10] with the Jeukene, Lejeune, and
Mahaux optical potential.

To this end we first select a set of 45 proton-nucleus and
22 neutron-nucleus reactions on targets of 40Cq, Fe, N7r,
1208n, and 2°8Pb for which experimental angular distributions
of elastic scattering in the energy ranges between 10 and 100
MeV (for protons) and between 5 and 26 MeV (for neutrons)
exist in the EXFOR database [67]. Next, for each reaction
and each energy, we determine the coefficients «, 8, and y,
which multiply the real central part, the imaginary central part,
and the spin-orbit contribution of the Gogny optical potential,
in such a way that the renormalized potential minimizes the
relative rms buildup as

N 2
1 Oexp, — O (057,37)/)1}
2 exp; th
rms” = — E , (A1)
M5 |:

Oexp;

where o, are the Ny experimental values of the differential
cross section for each considered reaction taken from [67]
and oy, the corresponding theoretical values computed with
the renormalized potential. We fit these two set of 45 (pro-
tons) and 22 (neutrons) of {(«, B, y)} pseudodata by suitable
analytical functions, which allow determining the energy-
dependent factors that have to be used to renormalize the
Gogny optical potential for any nucleon-nucleus reaction. To
this end, we chose the renormalization functions M, (E, A;),
Mg(E, ui)and M, (E, 8;) given in Table VI for protons and in
Table VII for neutrons. These functions depend on the energy
of the projectile and on 3—4 parameters, which are determined
by minimizing the relative rms between each set of pseudo-
data and corresponding fitting functions. For example, for the
set of pseudodata {«;} and the fitting function M, (E, A;), we
obtain the A, A, and A3 parameters by minimizing

N 2
1 i — My (E;, A
rmszz—Z[a ( k)i| ’
N2 i— o;

where now the sum runs over the considered proton-nucleus
(neutron-nucleus) reactions, N, being the total number of re-
actions, i.e., 45 for protons and 22 for neutrons.

(A2)
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