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Main properties of isoscalar giant multipole resonances (up to L = 3), including L = 0 and 2 overtones,
in medium-mass closed-shell nuclei are described within the semimicroscopic particle-hole dispersive optical
model. Main properties are characterized by the energy-averaged strength distribution, projected (one-body)
transition density, and probabilities of direct one-nucleon decay. Calculation results obtained for characteristics
of the mentioned resonances in the 48Ca, 90Zr, and 132Sn nuclei are compared with available experimental data.
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I. INTRODUCTION

Being a microscopically based extension of the stan-
dard [1,2] and nonstandard [3] versions of the continuum-
random-phase approximation (cRPA) obtained by taking
the spreading effect into account, the particle-hole disper-
sive optical model (PHDOM) has been formulated [4] and
implemented to describing main properties of various gi-
ant resonances (GRs) in medium-heavy closed-shell nuclei
[5–10]. The main characteristics of a GR, which are de-
termined for a wide excitation-energy interval, include the
energy-averaged strength distribution and projected (one-
body) transition density, both related to an appropriate probing
operator, and the probabilities of direct one-nucleon decay.
PHDOM can be used for describing these characteristics
because within the model, the main relaxation modes of high-
energy particle-hole (p-h)-type states, associated with GRs,
are together taken into account. These modes, Landau damp-
ing, and the coupling of mentioned states to the single-particle
(s-p) continuum are described microscopically in terms of
a mean field and p-h interaction, whereas, the coupling to
many-quasiparticle configurations (the spreading effect) is
treated phenomenologically in terms of a properly parame-
terized energy-averaged p-h self-energy term. The imaginary
part of the self-energy term determines the real part via a
proper dispersive relationship. Landau-Migdal p-h interac-
tion and a realistic (Woods-Saxon-type) phenomenological
mean field consistent with the spinless part of this interaction
are used as input quantities in implementations of PHDOM.
The self-consistency conditions due to isospin symmetry and
translation invariance of the model Hamiltonian are fullfilled.
Parameters of the mean field and p-h interactions are deduced
from independent data, whereas, the “spreading” parameters,
which determine the strength of the imaginary part of the
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energy-averaged p-h self-energy term, are considered as ad-
justed quantities.

The current version of the PHDOM has been adopted in
Ref. [10] to describe main characteristics of isoscalar giant
multipole resonances (ISGMPRs) in medium-heavy closed-
shell nuclei. The L = 0–3 resonances together with L = 0, 2
overtones have been considered. A cRPA-based description of
low-energy isoscalar collective states, including the 1− spuri-
ous state related to center-of-mass motion, has been also taken
into consideration. The adopted model has been implemented
to describe main characteristics of the mentioned resonances
in the 208Pb nucleus, taken as the heaviest doubly closed-
shell nucleus. A rather reasonable description of respective
experimental data has been obtained. Some of results obtained
within the PHDOM for L = 0–3 ISGMPRs were compared
with the respective results of calculations obtained within the
microscopic RPA-based approach of self-consistent Hartree-
Fock (HF), using Skyrme-type forces [2,11].

The studies of Refs. [5–10] complete the “testing” stage of
PHDOM-based implementations to the description of various
GRs, mainly in 208Pb. The next stage consists in system-
atic evaluating, within PHDOM, the main characteristics of
families of isoscalar and isovector GRs in medium-heavy
closed-shell parent nuclei. The first step in this direction has
been recently performed in applying to the Gamow-Teller and
charge-exchange spin-monopole GRs [12].

The present paper is a direct continuation of the study un-
dertaken in Ref. [10]. Using the same “spreading” parameters,
we extend this paper to evaluation of main characteristics of
the above-mentioned six ISGMPRs in medium-mass closed-
shell nuclei 48Ca, 90Zr, and 132Sn. For reader’s convenience,
we show the model relations, which are directly used in
calculations (Section. II). The choice of model parameters,
calculation results, and discussion of the results are given in
Sec. III. Section IV contains our concluding remarks.
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II. MODEL RELATIONS

Being developed for description of the GR strength dis-
tribution and double-transition density, PHDOM has been
originally formulated in terms of the energy-averaged p-
h Green’s function (effective p-h propagator), which obeys
the Bethe-Goldstone-type equation [4]. The nonhomogeneous
term in this equation (the “free” p-h propagator) is the
PHDOM key quantity in which Landau damping, the s-p
continuum, and the spreading effect are together taken into
account. The free p-h propagator is related to the model of
noninteracting and independently damping p-h excitations.
In the above-mentioned equation, Landau-Migdal forces are
used as the p-h interaction responsible for long-range correla-
tions. For describing non-spin-flip GRs, the following part of
these forces is used:

F (x1, x2) → (F (r1) + F ′ �τ1�τ2)δ(�r1 − �r2). (1)

To evaluate the double-transition density depended only
on nuclear structure, it is necessary to solve the Bethe-
Goldstone equation for the effective p-h propagator. However,
for practical use, the specific (projected) one-body tran-
sition density can be exploited [6]. This and other GR
main characteristics can be evaluated within the PHDOM
in a more “economic” way, using the effective-field method
(see, e.g., Refs. [6,7,10]). The method has been introduced
in RPA-based approaches by Migdal [13]. Let VLM (�r) =
VL(r)YLM (�n) be the isoscalar s-p external field (probing
operator). Using a convolution of this field with the ef-
fective p-h propagator to define the effective field, one
gets the equation for the effective-field radial components
ṼL(r, ω) (ω is the excitation energy), which is simpler than
the respective Bethe-Goldstone equation,

ṼL(r, ω) = VL(r) + F (r)

r2

∫
AL(r, r′, ω)ṼL(r′, ω)dr′. (2)

Here, (rr′)−2AL(r, r′, ω) is the radial L component of
the free p-h propagator related to excitations in the neu-
tral channels, AL = ∑

α=n,p Aα
L, where indices n and p are

related to the neutron and proton subsystems, respectively.
Rather cumbersome expressions for these components are
given in Refs. [6,10]. These expressions contain the occupa-
tion numbers nμ, the s-p radial bound-state wave functions
r−1χμ(r) and energies εμ with μ = nr,μ, jμ, lμ[(μ) ≡ jμ, lμ]
being the set of bound-state quantum numbers, and the kine-
matic factors tL

(λ)(μ) = 1√
2L+1

〈(λ)‖YL‖(μ)〉. Also included are
the Green’s functions g(λ)(r, r′, ε = εμ ± ω) of the single-
particle radial Schrödinger equation, which contains the term
[−iW (ω) + P(ω)] fμ fWS(r), added to a mean field with W (ω)
and P(ω) being the imaginary and real parts of the strength
of the energy-averaged p-h self-energy term responsible for
the spreading effect, and fWS(r) and fμ are the Woods-Saxon
function and its diagonal matrix element, respectively.

The effective field of Eq. (2) determines the main char-
acteristics of ISGMPRs. In particular, the expression for
the strength function SL(ω), associated with the above-given
probing operator, is the following:

SL(ω) = − 1

π
Im PL(ω), (3)

where PL(ω) is the respective polarizability,

PL(ω) =
∫

VL(r)AL(r, r′, ω)ṼL(r′, ω)dr dr′. (4)

The results of strength-function calculations can be verified
using the weakly model-dependent energy-weighted sum rule
EWSRL = ∫ ωSL(ω)dω [14],

EWSRL = 1

4π

h̄2

2M
A

〈(
dVL(r)

dr

)2

+ L(L + 1)

(
VL(r)

r

)2
〉
.

(5)
Here, the averaging 〈�〉 is performed over the ground state

nuclear density n(r) = nn(r) + np(r), the sum of the neutron
and proton densities. In the next section, the strength func-
tions SL(ω), calculated for nuclei under consideration, are
presented in terms of the relative energy-weighted strength
functions (fractions of EWSRL),

yL(ω) = ωSL(ω)/EWSRL, (6)

normalized by the condition xL = ∫ yL(ω)dω = 1. (We omit
the factor (2L + 1) in Eq. (5) in accordance with the definition
of the strength functions of Eqs. (3), and (4).

The ISGMPR next characteristic is the projected transi-
tion density also associated with the above-given probing
operator [6,10]. The transition-density radial L-component
r−2ρVL (r, ω), can be expressed in terms of the respective ef-
fective field under the condition that the external-field radial
part is a real quantity,

1

r2
ρVL (r, ω) = − 1

π
ImṼL(r, ω)/

[
F (r)S1/2

L (ω)
]
. (7)

The radial dependence of the L-component ρVL (r, ω =
ωL(peak)), taken at the peak energy of the respective ISGMPR
strength function, exhibits specific behavior depending on the
nature of this GR. Namely, this radial dependence exhibits
node-less, one-node, and two-node behavior for the main-
tone, overtone, and second-order overtone GRs, respectively
[10].

The choice of the radial part of the external field also
depends on the nature of the GR. Namely, for the main-tone
GRs, the isoscalar giant quadrupole and octupole resonances
(ISGQR and ISGOR, respectively), the radial part is taken as
VL(r) = rL. For the GRs, which are overtones of the corre-
sponding spurious states, the isoscalar giant monopole and
dipole resonances (ISGMR and ISGDR, respectively), the
radial part is taken as VL(r) = rL(r2 − ηL〈r2〉). The L = 0
isoscalar spurious state is the nucleus ground state, whereas,
the L = 1 spurious state is the isoscalar dipole state associated
with center-of-mass motion. The adopted parameters ηL are
found from the condition of the absence of spurious-state
excitation by the overtone external field. For the PHDOM-
based description of ISGMR one gets: ηL=0 = 1 [7]. The
method of evaluating ηL=1 and a detailed description of the
spurious isoscalar dipole state are given in Ref. [10]. Among
the overtones of real isoscalar GRs, the overtones of ISGMR
(i.e., ISGMR2) and ISGQR (i.e., ISGQR2) have the lowest
excitation energies. The radial part of the respective exter-
nal field is taken as V ov

L (r) = r2(r2−ηov
L 〈r2〉). The adopted
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parameters ηov
L are found from the condition of minimal main-

tone strength excitation obtained using the overtone external
field: ∫V ov

L (r)ρVL (r, ωL(peak))dr = 0.
A possibility to describe probabilities of GR direct one-

nucleon decay belongs to specific features of PHDOM. These
probabilities can be also expressed in terms of the effective
field [7,10]. The strength function of direct one-nucleon decay
of ISGMPR into the channel μ, corresponding to population
of one-hole μ−1 state in the subsystem α of the respective
product nucleus, is determined by the squared amplitudes of
a “direct + semidirect” reaction induced by the external field
VLM (�r),

S↑,α
L,μ(ω)

=
∑
(λ)

nα
μ

(
tL
(λ)(μ)

)2
∣∣∣∣
∫

χα ∗
ε=εμ+ω,(λ)(r)ṼL(r, ω)χα

μ (r)dr

∣∣∣∣
2

.

(8)

Here, r−1χα
ε>0,(λ)(r) is the radial one-nucleon continuum-

state wave function, having the standing-wave asymptotic
behavior. Being normalized to the δ function of the energy in
the W = P = 0 limit, this wave function obeys the mentioned
Schrödinger equation in which the above-described complex
term is added to the mean field. The partial branching ratio of
direct one-nucleon decay of the ISGMPR into the channel μ,
b↑,α

L,μ , is determined by the strength functions of Eqs. (8), (3),
and (4),

b↑,α
L,μ(ω12) =

∫
ω12

S↑,α
L,μ(ω)dω

/ ∫
ω12

SL(ω)dω. (9)

Here, ω12 = ω1 − ω2 is an energy interval that includes the
considered GR. The total branching ratios b↑,α

L,tot = ∑
μ b↑,α

L,μ

determine the branching ratio of statistical (mainly neu-
tron) decay: b↓

L = 1− ∑
α=n,p b↑,α

L,tot. Note that in the cRPA

limit (W = P = 0),
∑

α=n,p b↑,α
L,tot = b↑

L = 1 (unitary condi-

tion), and b↓
L = 0.

III. CHARACTERISTICS OF ISGMPRs

As mentioned in the Introduction, the following input
quantities are used in the PHDOM-based description of main
characteristics of ISGMPRs: (i) a realistic phenomenologi-
cal, partially self-consistent mean field (described in detail
in Refs. [10,15]), (ii) the spinless part of Landau-Migdal p-h
interaction [Eq. (1)], and (iii) the imaginary part W (ω) of the
strength of the energy-averaged p-h self-energy term respon-
sible for the spreading effect.

(i) The mean field contains the central (Woods-Saxon-type)
and spin-orbit isoscalar terms (with intensities U0 and
Uls, respectively), the isovector 1

2τ (3)v(r) and Coulomb
terms. The isoscalar terms contain also the Woods-Saxon
radial size and diffuseness parameters (r0 and a, respec-
tively). The symmetry potential v(r) = 2F ′n(−)(r) and
Coulomb potential UC (r) are calculated self-consistently
via the neutron-excess and proton density [n(−)(r) =
nn(r) − np(r) and np(r), respectively]. Due to the above-

given isospin self-consistency condition, the strength
parameter F ′ of Eq. (1) might be related to mean field
parameters, which are found for doubly closed-shell
nuclei 48Ca, 132Sn, and 208Pb from the description of
observable single-quasi-particle spectra in the respective
even-odd and odd-even nuclei. The mean field parame-
ters are listed in Table I for 48Ca and 132Sn (for 208Pb, the
parameters are given in Ref. [10]). Using these data for
48Ca and 132Sn, one gets the mean field parameters for
an arbitrary medium-heavy spherical nucleus by means
of an interpolation procedure (see the Appendix). The
parameters obtained in such a way for 90Zr are also given
in Table I.1

(ii) The isoscalar and isovector strengths of the spinless part
of the Landau-Migdal p-h interaction [Eq. (1)] are taken
as F (r) = C f (r) and F ′ = C f ′, C = 300 MeV fm3. The
values of Landau-Migdal parameter f ′, used below are
given in Table I together with the mean field parameters.
The dimensionless strength f (r) is parametrized in ac-
cordance with Ref. [13],

f (r) = f ex + ( f in − f ex) fWS(r). (10)

The small parameter f in is taken as an univer-
sal quantity, whereas, the main parameter f ex in
Eq. (10) is found for each considered nucleus (Ta-
ble I) from the condition that the energy of the
spurious isoscalar dipole state is close to zero
(∼=30 keV). The respective sum rule of Eq. (5) is well
exhausted by the mentioned spurious state (∼=92%). The
cRPA-based search of the spurious-state parameters is
described in detail in Ref. [10].

(iii) In PHDOM implementations, the imaginary part of
the strength of the energy-averaged p-h self-energy term
is taken as a three-parametric function of the excitation
energy,

2W (ω) =
{

0, ω < �,

α(ω − �)2/[1 + (ω − �)2/B2], ω � �.

(11)

Here, the adjustable (spreading) parameters α, �, and B
can be named as the strength, gap, and saturation parame-
ters, respectively. The use of the function W (ω) of Eq. (11)
for evaluation of the strength of the self-energy term real
part P(ω), via the proper dispersive relationship [4] leads
to a rather cumbersome expression, which can be found
in Ref. [16]. Below, we employ the values of spreading
parameters found from the PHDOM-based description of
the observable total width [full width at the half maximum
(FWHM)] of L = 0−3 ISGMPRs in the 208Pb nucleus: α =
0.20 MeV−1, � = 3 MeV, B = 4.5 MeV [10].

The first step in the PHDOM-based description of L = 0–3
ISGMPRs is calculation [according to Eqs. (2)–(4)] of the

1A search for the mean field parameters was made in collaboration
with V. I. Bondarenko and used in Ref. [12].
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TABLE I. The mean field and related model parameters used in PHDOM-based calculations of characteristics of ISGMPRs in nuclei under
consideration. (Notations are given in the text). The values r0 = 1.21 fm and f in = 0.0875 are taken as universal quantities.

Nucleus U0, MeV Uls, MeV fm2 a, fm f ′ − f ex ηov
L=0 ηov

L=2

48Ca 54.34 32.09 0.576 1.13 2.556 3.07 2.00
90Zr 55.06 34.93 0.612 1.05 2.580 3.17 1.77
132Sn 55.53 35.98 0.633 0.999 2.536 2.72 1.85

strength functions SL(ω) associated with the probing opera-
tors VL(�r) given in Sec. II. After evaluating the L = 0 and 2
strength functions, one gets (according to the prescription
given in Sec. II) the probing-operator parameters ηov

L (Table I),
and the ISGMR2 and ISGQR2 strength functions. Calculated
for nuclei under consideration, the above-listed strength func-
tions are presented in terms of the energy-weighted-sum-rule
fractions, yL(ω) and yov

L (ω), of Eqs. (5), and (6), respectively.
The L = 0 and L = 2 fractions together with the fractions
of respective overtone GRs are shown in Figs. 1 and 2, re-
spectively. The L = 1 and L = 3 fractions are presented in
Fig. 3.

The strength functions calculated within PHDOM allow
us to evaluate for a given excitation energy interval ω12 =
ω1 − ω2 the following ISGMPR parameters: (i) the integrated
EWSR fraction (fraction parameter), x; (ii) the main-peak
energy ωpeak; (iii) the centroid energy ω̄, defined as the ratio of
the first to zero moments of the respective strength function,
and; (iv) the total width (FWHM). The above-listed param-
eters evaluated for ISGMPRs in nuclei under consideration
are given in Tables II–IV together with available experimental
data.

Some of the evaluated GR parameters are compared in
Tables II and III with respective results of calculations
obtained within the self-consistent microscopic RPA-based
approach of Hartree-Fock (HFRPA) [11] using the SkT1 [17]
Skyrme effective nucleon-nucleon interaction. The SkT1 in-
teraction is of the standard form with ten parameters, which
are determined by fitting results of HF calculations to experi-
mental data on nuclear ground states properties of nuclei. We
note that the SkT1 interaction is associated with an effective
mass m∗ = 1, which is employed in the PHDOM calculations.
Details of the numerical method employed in the HFRPA cal-
culations of the response functions and the centroid energies
of giant resonances can be found in Refs. [11,18,19]. For ac-
curacy, calculations of the response functions, of multipolarity
L = 0–3, are carried in the 0–100 MeV range of excitation
energy. Also, for proper comparison with experimental data,
a Lorentzian smearing of the calculated response functions is
employed with values of smearing widths  obtained experi-
mentally (see Refs. [20,23]).

The next characteristic of ISGMPRs is the projected tran-
sition density of Eq. (7), ρVL (r, ω). Being evaluated within
PHDOM for nuclei under consideration, the radial (one-

TABLE II. The parameters of ISGMPRs in 48Ca evaluated within PHDOM and presented in a comparison with available experimental data
and results of HFRPA calculations using Skyrme interaction [11]. (Notations are given in the text).

L ω1 − ω2, MeV xL , % ω̄L , MeV ωL(peak), MeV L(FWHM), MeV

0 5–35 99 19.7 19.5 8.5 PHDOM
20.22 20.65 HFRPA

9.5–40 95+11
−15 19.88+0.14

−0.18 6.68+0.31
−0.36 Expt. [20]

10–31 78+4
−3 19.5 ± 0.1 Expt. [21]

10–25.5 18.40 ± 0.13 Expt. [22]
0 ov 5–25 26 18.0 15.3; 23.6 PHDOM

25–50 63 35.3 26.9; 33.5 PHDOM
1 (LE) 4–16 12 11.2 10.0 2.1 PHDOM

20+12
−8 16.69+0.19

−0.13 6.24+1.49
−0.11 Expt. [20]

1 (HE) 16–50 87 28.7 30.4 17.8 PHDOM
30.13 32.70 HFRPA

160+90
−50 37.28+0.71

−1.98 14.95+3.49
−0.11 Expt. [20]

2 5–35 97 15.9 15.9 2.4 PHDOM
17.94 17.77 HFRPA

9.5–40 83+10
−16 16.79+0.14

−0.12 6.95+0.11
−0.35 Expt. [20]

2 ov 8–24 32 17.4 19.8 8.1 PHDOM
24–50 62 34.8 26.0; 33.9 PHDOM

3 (LE) 4–16 21 8.8 7.7 1.2 PHDOM
3 (HE) 16–50 72 28.7 28.5 4.6 PHDOM

31.62 32.85 HFRPA
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TABLE III. The same as in Table II but for 90Zr.

L ω1 − ω2, MeV xL , % ω̄L , MeV ωL(peak), MeV L(FWHM), MeV

0 8–30 99 17.7 16.2 4.0 PHDOM
18.01 17.51 HFRPA

10–35 106 ± 12 17.88+0.13
−0.11 17.1 4.4 Expt. [23]

95 ± 6 18.13 ± 0.09 16.55 ± 0.08 4.2 ± 0.3 Expt. [24]

10–22 74.7 ± 9 19.17+0.21
−0.20 16.76 ± 0.12 4.96+0.31

−0.32 Expt. [25]

0 ov 8–25 31 19.3 19.6 5.9 PHDOM
25–50 63 34.3 30.5 PHDOM

1 (LE) 5–15 11 11.1 12.20 2.5 PHDOM
9.2 ± 2.1 17.5 ± 0.2 5.4 ± 0.7 Expt. [23]
7.9 ± 2.9 17.8 ± 0.5 3.7 ± 1.2 Expt. [26]

1 (HE) 15–40 87 26.7 29.7 11.3 PHDOM
29.77 30.29 HFRPA

49 ± 6 27.4 ± 0.5 10.1 ± 2.0 Expt. [23]
67 ± 8 26.9 ± 0.7 12.0 ± 1.5 Expt. [26]

20–35 68.7 ± 12.0 27.76+0.98
−0.78 11.28+2.42

−2.70 Expt. [25]

2 5–35 96 13.8 13.5 2.7 PHDOM
15.25 15.03 HFRPA

10–35 92 ± 12 14.09 ± 0.20 14.56 ± 0.20 4.94 ± 0.20 Expt. [23]

10–20 107.6 ± 5.0 14.64+0.22
−0.21 13.99 ± 0.07 7.44+0.30

−0.28 Expt. [25]

2 ov 8–25 36 18.2 16.8 3.6 PHDOM
25–50 61 34.5 38.0 PHDOM

3 (LE) 4–15 25 6.9 5.3; 11.6 PHDOM
3 (HE) 15–40 67 25.1 24.6 3.8 PHDOM

28.21 27.72 HFRPA

dimensional) transition densities taken at the peak energy of
the respective GR are shown in Figs. 4–6.

Turning to direct one-nucleon decay of ISGMPRs, we
show in Tables V–VII the partial and total branching ra-
tios b↑,α

L,μ and b↑,α
L,tot, evaluated within PHDOM [in accordance

with Eqs. (8), and (9)] for nuclei under consideration. For a
comparison of the calculated partial branching ratio with the
respective experimental value, when become available, it is

reasonable to use the quantity b̌
↑,α

L,μ = (SF)μb↑,α
L,μ, where (SF)μ

is the spectroscopic factor of the product-nucleus one-hole

TABLE IV. The parameters of ISGMPRs in 132Sn evaluated
within PHDOM.

ω1 − ω2, xL , ω̄L , ωL(peak), L(FWHM),
L MeV % MeV MeV MeV

0 5–30 100 15.6 15.4 4.7
0 ov 5–25 46 15.5 11.7; 19.3

25–50 52 34.1 34.9
1 (LE) 5–15 18 9.7 6.8;10.4
1 (HE) 15–40 83 24.8 26.0 15.7
2 4–25 88 12.0 12.0 2.7
2 ov 4–20 37 13.1 13.4 7.0

20–40 55 28.9 23.9; 33.7
3 (LE) 3–15 35 5.1
3 (HE) 15–40 65 22.6 21.9 3.3

state μ−1. In this way, one can take into account a more
complicated structure of the mentioned state.

The above-presented calculation results obtained within
PHDOM for the main characteristics and parameters of IS-
GMPRs in medium-heavy closed-shell nuclei are similar to

TABLE V. The partial and total branching ratios for direct one-
nucleon decay of the ISGMPR into the channel μ. The evaluated
within PHDOM branching ratios (in percentage) for 48Ca are given
with indication of the respective excitation-energy intervals ω12 and
fraction parameters xL (see the text).

μ−1 εμ, MeV b↑
L=0,μ b↑

L=1,μ b↑
L=2,μ b↑

L=3,μ

Neutron
1 f7/2 −7.95 34.3 31.2 20.5 49.1
1d3/2 −13.84 16.3 12.0 3.0 4.1
2s1/2 −14.95 11.4 9.0 3.5 5.0
1d5/2 −18.37 15.6 14.8 0.04 16.5

b↑,n
L,tot 77.6 75.1 27.0 75.5

Proton
2s1/2 −14.92 6.4 6.3 0.04 4.9
1d3/2 −15.96 3.8 5.7 0.004 1.4
1d5/2 −20.56 1.2 6.6 2.0

b↑,p
L,tot 11.4 23.3 0.04 8.3

ω1 − ω2, MeV 13–26 17–38 13–19 24–33
xL , % 87 76 65 46
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FIG. 1. The relative energy-weighted strength functions
(EWSRL fractions) calculated within PHDOM for ISGMR (solid
line) and ISGMR2 (thin line) in nuclei under consideration.

those obtained earlier for 208Pb [10]. Comments to these re-
sults are the following.

(i) The strength-function main-peak energies exhibit a
smooth A dependence (close to A−1/3 for L = 0, 2,

FIG. 2. The same as in Fig. 1 but for ISGQR and ISGQR2.

and 3) peculiar to the shape resonances (Table II–IV).
In Fig. 7, the A dependences of the calculated peak
energies are shown for the L = 0–3 resonances (with
inclusion of the results obtained for 208Pb [10]) in
comparison with respective experimental data.
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FIG. 3. The same as in Fig. 1 but for ISGDR and ISGOR.

(ii) Comparing with unity the total branching ratio of
direct one-nucleon decay b↑

L (or the branching ratio
of statistical decay b↓

L = 1−b↑
L ) defined for a cer-

tain excitation-energy interval ω12 (Sec. II) allows
one to estimate contribution of Landau damping +
s-p continuum (or contribution of the spreading ef-

FIG. 4. The projected radial (one-dimensional) transition den-
sities evaluated within PHDOM and taken at the peak energy
of ISGMR (solid line) and ISGMR2 (thin line) in nuclei under
consideration.

fect) to formation of the strength functions SL(ω).
As follows from the data given in Tables V–VII
(and in Table V of Ref. [10]), the main peak of
L = 2 strength function (which relatively occurs at
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FIG. 5. The same as in Fig. 4 but for ISGQR and ISGQR2.

lower energy) is formed mainly due to the spreading
effect (b↓

L=2 > 75%), whereas, the main peaks of L =
0, 1, and 3 strength functions (which relatively occur
at higher energies) are formed, as a rule, mainly due

FIG. 6. The same as in Fig. 4 but for ISGDR and ISGOR.

to Landau damping +s-p continuum (b↑
L > 50%).

The last statement can also be applicable to L = 0,

and 2 overtone-GR strength functions (Figs. 1 and 2).
(iii) The main peaks of the considered L = 0–3 relative

strength functions exhaust the major parts of EWSRL
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TABLE VI. The same as in Table V but for 90Zr.

μ−1 εμ, MeV b↑
L=0,μ b↑

L=1,μ b↑
L=2,μ b↑

L=3,μ

Neutron
1g9/2 −11.26 16.2 17.2 3.8 18.1
2p1/2 −14.10 10.7 4.6 0.54 2.9
1 f5/2 −15.26 7.3 8.6 0.03 2.0
2p3/2 −15.97 16.7 9.9 9.0
1 f7/2 −20.10 0.01 11.2 3.0
2s1/2 −25.27 4.0 0.17

b↑,n
L,tot 50.9 61.0 4.4 35.2

Proton
2p1/2 −6.91 7.7 4.2 0.52 3.9
2p3/2 −8.70 12.7 9.0 0.20 9.4
1 f5/2 −9.89 1.2 5.6 0.01 1.7
1 f7/2 −14.84 6.2 2.0
2s1/2 −18.17 3.5 0.65

b↑,p
L,tot 21.6 28.5 0.7 17.7

ω1 − ω2, MeV 14–21 20–33 11–16 21–28
xL , % 79 70 60 42

(the respective fraction parameters xL(ω12) are given
in Tables V–VII). The rest is distributed in a large
excitation-energy intervals (Figs. 1–3). In particular,
one can see a rather weak pigmy resonance in the en-
ergy dependence of L = 2 and L = 3 main-tone GR
relative strength functions. These pigmy resonances
are a trace of “free 2h̄ω” and “free 3h̄ω” p-h exci-
tations, respectively, responsible for formation of the
collective states associated with the main peak of the
considered GRs. (“1h̄ω” means the intershell energy
interval). Since the p-h interaction in the isoscalar
channel is attractive (Table I), the pygmy resonance
is placed at the high-energy tail of the respective

TABLE VII. The same as in Table V but for 132Sn.

μ−1 εμ, MeV b↑
L=0,μ b↑

L=1,μ b↑
L=2,μ b↑

L=3,μ

Neutron
1h11/2 −7.11 13.4 15.6 6.0 14.8
2d3/2 −7.32 13.1 5.2 4.8 5.3
3s1/2 −7.91 5.2 2.5 4.5 1.6
1g7/2 −9.51 10.1 8.7 0.89 2.8
2d5/2 −9.98 17.7 9.6 7.9 13.1
1g9/2 −14.97 7.9 12.0 4.3
2p1/2 −16.61 0.82 3.9 1.2
2p3/2 −18.02 0.34 8.1 10.2
1 f5/2 −18.93 0.12 4.6 0.59

b↑,n
L,tot 68.7 82.4 24.1 54.0

Proton
1g9/2 −15.17 2.1 0.33
2p1/2 −16.42 1.9 0.01
2p3/2 −17.79 4.2 0.002

b↑,p
L,tot 0 8.2 0 0.34

ω1 − ω2, MeV 10–21 18–31 9–15 19–24
xL , % 85 63 62 35

FIG. 7. Evaluated within PHDOM the peak energies of L = 0–3
ISGMPRs (the respective values for 208Pb [10] are included) in a
comparison with respective experimental data.

GR. The asymmetry of the main peak in the energy
dependence of L = 0 GR relative strength function
(Figs. 1, and 2 in Ref. [10]) might be assigned to a
manifestation of the pygmy resonance related to free
2h̄ω p-h excitations. This statement is supported by
a comparison of the relative strength functions calcu-
lated within PHDOM and cRPA for ISGMR in 208Pb
[6]. Low- and high-energy components of the L = 1
and 3 relative strength functions (Fig. 3) appear due
to contribution of free 1h̄ω and free 3h̄ω p-h exci-
tations in formation of these strength functions. The
mentioned low-energy components are usually asso-
ciated with soft isoscalar modes (see, e.g., Ref. [27]).
Evaluated within PHDOM the parameters of these
components are also given in Tables II–IV.

(iv) The strength functions SL(ω) evaluated within PH-
DOM for L = 0–2 GRs in 90Zr are compared with
the respective strength functions deduced from an
analysis of respective reaction cross sections of GR
excitation [23] (Fig. 8). Similar comparison is shown
in Fig. 9 for EWSRL=0 fraction related to ISGMR in
90Zr [28]. Bearing in mind the use of the collective-
model (energy-independent) transition density in the
above-mentioned analysis, the agreement between
the calculated and experimental strength functions
looks satisfactory.

(v) The centroid energies and main peak energies of
ISGMPRs evaluated with the use of the calculated
strength functions are, as a rule, in an accept-
able agreement with available experimental data
(Tables II–IV). The description of total widths for
ISGMR and HE-ISGDR in 48Ca and 90Zr looks
reasonable (Tables II and III). Only for ISGQR in
48Ca and 90Zr the total widths are markedly smaller
than the respective experimental values (Table II
and III). Nevertheless, the contribution of the spread-
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FIG. 8. The strength functions SL (ω) evaluated within PH-
DOM for L = 0–2 GRs in 90Zr in a comparison with respective
strength functions (multiplied by proper normalization factors) de-
duced from an analysis of respective reaction cross sections of GR
excitation [25].

FIG. 9. The relative energy-weighted strength functions (the
EWSRL fractions) calculated within PHDOM for ISGMR in 90Zr in
a comparison with respective experimental data [28].

ing effect to formation of total widths of ISGMPRs
might be varied by adjusting the spreading pa-
rameters of Eq. (11) for each nucleus to improve
description of experimental data. Evaluated within
PHDOM the GR centroid and peak energies of the
ISGMPRs are found to be lower, by about 2–13%,
than the energies obtained within the HFRPA method
of Ref. [11] (Tables II and III). In connection with
this method, we note that PHDOM is not fully self-
consistent model and, therefore, cannot be used for a
description of bulk properties of nuclei.

(vi) As expected, the projected transition density (taken
at the resonance peak-energy) exhibits a nodeless
radial dependence for L = 2 and 3 main-tone GRs
(Figs. 5 and 6 ), a one-node dependence for L =
0, and 1 first-order overtone GRs (Figs. 4 and 6), and
a two-node dependence for the L = 0 second-order
overtone GR (Fig. 4).

(vii) As expected, the total one-neutron decay branching
ratio is markedly larger than the total branching ra-
tio for one-proton decay of considered ISGMPRs
(Tables V–VII). Experimental data on partial prob-
abilities of ISGMPRs direct one-nucleon decay are
scant. Here, we note Ref. [29], where the branching
ratio b↑,n

L=1 = ∑
μ b↑,n

L=1,μ is deduced from a common
analysis of 90Zr(α, α′)− and 90Zr(α, α′n)-reaction
cross sections. (The sum is taken over four va-
lence neutron-hole states μ−1 in 89Zr, Table VI). In
the analysis of Ref. [29] different excitation-energy
intervals are used in the definition of the branch-
ing ratio: ω12 = 23−28 MeV in the numerator, and
ω12 = 10–37 MeV in denominator of Eq. (9). Using
this definition and the values of spectroscopic fac-
tors given in Ref. [29], we get, in accordance with

Eq. (9), the value b̌
↑,n
L=1 = 11%, which is approxi-

mately twice the respective experimental value of
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4.8(9)% [29]. The above-described specification of
calculating within PHDOM the one-nucleon direct-
decay branching ratios is used for ISGDR in 208Pb.
Obtained in Ref. [10] the value b↑,n

L=1 = 29.8% (the
sum is taken over five valance neutron-hole states)
is reduced up to the value b̌

↑,n
L=1 = 9.4%, which is in

agreement with the respective experimental value of
10.5(16) % [29].

IV. CONCLUDING REMARKS

In this paper, we presented results of the calculations
of main characteristics and parameters of six isoscalar gi-
ant multipole resonances in medium-mass closed-shell nuclei
48Ca, 90Zr, and 132Sn. The calculations are performed within
the semimicroscopic particle-hole dispersive optical model
in which main relaxation modes of (p-h)-type states associ-
ated with giant resonances are together taken into account.
Namely, this point makes possible to get, within a model,
a rather full description of the main giant-resonance charac-
teristics for a wide excitation-energy interval and, therefore,
to get information about giant-resonance structure and de-
cay mechanisms. In calculations, we employed a realistic
phenomenological mean field with parameters taken from in-
dependent data, and the spinless part of Landau-Migdal p-h
interaction. Parameters of this interaction are related to the
mean field due to isospin symmetry and translation invariance
of the model Hamiltonian. The phenomenological parame-
ters of the p-h self-energy term responsible for the spreading
effect are taken from our previous study of ISGMPRs in
208Pb. Thus, in the present paper, no specific adjusted model
parameters are used. The energy-averaged strength functions
and projected (one-body) transition density are evaluated for
all considered GRs. The partial strength functions for direct
one-nucleon decay are also evaluated. The above-mentioned
strength functions are further used to estimate the main GR
parameters, such as the peak and centroid energies, total
width, and probabilities of direct one-nucleon decay. As a

rule, the calculation results are in an acceptable agreement
with available experimental data and can serve as predictions
in cases where experimental data are not available. This paper
and the above-mentioned description of ISGMPRs in 208Pb
support the statement that the used model is a useful tool for
theoretical studies of various giant resonances in closed-shell
nuclei. Extension of the model to taking into account nucleon
pairing in medium-heavy open-shell spherical nuclei is in
progress.
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APPENDIX: INTERPOLATION PROCEDURE

Searching for mean field parameters for medium-heavy
spherical nuclei (48 < A < 208) is based on the data ob-
tained for closed-shell nuclei 48Ca, 132Sn (Table I), and 208Pb
[10]. The following parabolic-type interpolation procedure is
proposed. Let x(A) be one from the mean field parameters
(U0,Uls, a, f ′):

x(A) =
∑

k=0,1,2

xk (A − A0)k . (A1)

Here, xk
′s are adjustable parameters, A0 is a reference value

(taken equal to 180). The parameters can be found from (A1)
after the use of this equation for the basic values of the
A = 48, 132, and 208 nuclei.
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M. Itoh, S. Ando, T. Aoki, A. Uchiyama, S. Adachi, M.
Fujiwara, C. Iwamoto, A. Tamii, H. Akimune, C. Kadono, Y.
Matsuda, T. Nakahara, T. Furuno, T. Kawabata, M. Tsumura,
M. N. Haraken, and N. Kalantar-Nayestanaki, Phys. Lett. B
760, 482 (2016).

[25] Y. K. Gupta, K. B. Howard, U. Garg, J. T. Matta, M. Şenyiğit,
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