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α decay serves as an important probe for the studies of unstable nuclei. This paper proposes an approach
combining the sophisticated α-decay model and Bayesian neural network (BNN) to improve the prediction
accuracy of α-decay half-lives. The global and extrapolated analyses show that the BNN method can improve
the description of model-based predictions of α decay. In our calculation, the experimental decay energies Qα

are used to obtain the accurate α-decay penetration probability, which indicates that the improvements come
from the corrections of α-cluster preformation factors. Further analyzing α-decay half-lives of nuclide chains
shows that the shell structure effect can be well introduced into estimations of α-cluster preformation factors
by utilizing the BNN. The studies of this paper provide an effective way to predict the α-decay half-lives of
unknown nuclei.
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I. INTRODUCTION

α decay has been one of the most important modes of
nuclear decay for more than a century. As a time-dependent
quantum many-body problem, α decay is critical to improve
the contemporary nuclear models and study the structure of
exotic nuclei [1,2]. Meanwhile, it plays a vital role in identi-
fying newly synthesized superheavy elements or new isotopes
[3,4]. In astrophysics, the α decay of 146Sm has been used
as a clock to measure the formation of the solar system [5].
As the significant decay mode, one can extract rich structural
information from α decay about the nuclear deformation [6,7],
effective nuclear interaction [8,9], shell effects [10,11], α clus-
tering [12–14], etc.

The α-decay process can be described as a tunneling effect
of an α particle through the barrier formed by both the at-
tractive nuclear potential and the repulsive Coulomb potential
[15,16]. Based on this simplification, the investigations of α

decay are divided into two main elements: the calculations
of the α-decay penetration probability and the estimations of
α-cluster preformation factor Pα . Various theoretical models
have been proposed to determine the α-decay penetration
probability, such as the two-potential approach [17,18], the
deformed tunneling model [19,20], and the multichannel clus-
ter model [21]. Compared with the penetration probability, the
treatment of α-cluster formation in the parent nucleus is more
complicated, which is at least a quantum five-body problem as
one needs to handle not only the internal motion for the four
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nucleons in the cluster but also the relative motion between the
cluster and the core [22–25]. Despite many efforts [26–33],
the α-cluster formation problem in α-decay theory has not
been completely understood.

The α-cluster preformation factor Pα is usually considered
as a constant empirically for a certain type of parent nuclei.
This simplistic treatment is because the Pα varies smoothly
throughout the open shell region [8], but such an assumption
is possibly insufficient to accurately reproduce the half-lives
close to the shell closure. There are significant changes on
the Pα across the closed shells, such as the proton Z = 82 and
the neutron N = 126 [34,35]. In previous researches, a limited
number of semiempirical formulations were proposed includ-
ing the impacts of nucleon configuration and shell structure
[36,37], such as the number of valence nucleons and quartets
above the closest doubly magic nuclei [38], the fragmentation
potential [22], and the daughter mass number [39]. Based on
the difference in binding energy between parent and neighbor-
ing nuclei, the cluster-formation model (CFM) has also been
proposed to extract the Pα through a systematics of separation
energy [40,41].

At the microscopic level, α preformation factors can be
calculated by overlapping between the α-decay wave function
and the primal wave function. For light nuclei, there have been
a lot of successful studies in the α-like correlations employ-
ing microscopic methods, such as the fermionic molecular
dynamics (FMD) model and quantum Monte Carlo (QMC)
method [42–46]. However, complete microscopic computa-
tions are difficult and time-consuming for heavy nuclei. The
present microscopic studies have presented the Pα for few
benchmark nuclei like 104Te and 212Po by using the quartetting
wave-function approach [24,47]. This work aims to employ
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the machine learning approach to provide the value of the Pα

for wide region of α emitters.
As a statistical model, the machine learning provides a new

extended approach to process nuclear systems and to com-
plement the quantum theory-based models [48]. The study
of nuclear structure and reaction has benefited greatly in
recent years by the participation of numerous machine learn-
ing techniques, like the Gaussian process (GP) [49,50], the
naive Bayes classifier (NBP) [51,52], the deep learning (DL)
[53,54], the restricted Boltzmann machines (RBMs) [55,56],
and the Bayesian neural networks (BNN) [57,58]. It is fa-
vored by physics researchers due to its ability to extract key
information about the underlying scientific laws and physical
processes based on massive datasets. The BNN has excel-
lent advantages, including the estimation of errors, automatic
complexity control, as well as avoiding overfitting [59,60],
which has been used effectively in nuclear physics to predict
nuclear radii [61,62], nuclear masses [63,64], and β-decay
half-lives [65,66]. Note that the BNN is also utilized to refine
the theoretical Qα from the mass models [67,68].

In this paper, by employing the Bayesian neural network,
we systematically investigate the estimations of α-decay
width and demonstrate that the BNN method can refine the
α-cluster preformation factor Pα . Note that analyzing the α

emitters of isotopic and isotonic chains, the influences of shell
structure effect on Pα are further explored to show the ability
of the BNN method in refining α-decay width. There are two
integrants in this work. Primarily, four inputs, namely the
proton number Z , the α-decay energy Qα , the asymmetric
coefficient S, and the change in angular momentum l , are
selected to refine the α-decay half-lives. Secondly, the exper-
imental Qα is used instead of the theoretical values from the
nuclear mass models to calculate raw α-decay half-lives. Ex-
perimental Qα guarantees the accurate calculations of α-decay
penetration probability, thus the improvements are mainly
from the Pα corrections using BNN. In order to illustrate the
generality of the BNN method, we choose three α-decay mod-
els including the spherical tunneling model [69], the deformed
tunneling model [19], and a semiempirical formula [70] to
calculate the raw α-decay half-lives. In total, there are 420
experimental α emitters with well-defined branching ratios
in the Nudat3.0 [71]. Based on this database, the data set
contains 479 data. It includes all the 420 α-decay transition
data from the ground state to the ground state. For the 59
parent nuclei whose ground states have different Jπ from
those of the daughter nuclei, the decay channels with largest
branching ratios are also contained in the data set.

It should be pointed out that the previous theoretical α-
decay models mainly focus on the research of favored α

transitions and have achieved good agreement with the exper-
imental data. However, for some odd-A nuclei and odd-odd
nuclei, the transitions from ground state to ground state are
unfavored α transitions, and studies on these transitions are
sparse. If the previous theoretical models are directly general-
ized to the unfavored α transition, it is expected that the bias
will be large. Therefore, we apply a machine learning method
to favored and unfavored transitions to extend the studies on
α decay. Numerous and precise experimental data of favored
transitions are helpful in substantially improving the accuracy

of BNN predictions. By introducing changes in angular mo-
mentum as input variables, BNN is able to analyze and reveal
the underlying nuclear structure correlations associated with
unfavored transitions.

This paper is organized in the following way. In Sec. II,
the framework of α-decay models and BNN method are
presented. The results and corresponding discussions are pro-
vided in Sec. III. Finally, a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we introduce two tunneling models includ-
ing the spherical tunneling model and the deformed tunneling
model for calculating the T1/2. Then, we further present the
framework of the BNN method, which shows the construction
of the network.

A. α-decay models

In the spherical tunneling model, there are primarily three
components to the total interactive potential between the
cluster and the core nucleus: the nuclear, Coulomb, and cen-
trifugal terms [69]

V (r) = VN (r) + VC (r) + h̄2

2μ

(
L + 1

2

)2

r2
, (1)

where VN (r) is represented by a “cosh” geometry of depth V0,
radius R, and nonzero diffuseness a,

VN (r) = −V0
1 + cosh(R/a)

cosh(r/a) + cosh(R/a)
. (2)

L is the angular momentum and the centrifugal barrier is writ-
ten as its Langer modified form. The three classical turning
points can be solved by equation V (r) = Qα and the radius
parameter R can be evaluated for each decay by utilizing the
Bohr-Sommerfeld quantization condition [72,73]∫ r2

r1

dr

√
2μ

h̄2 [Qα − V (r)] = (G − L + 1)
π

2
, (3)

where the G is the global quantum number. Under the semi-
classical approximation and choosing the appropriate value
of the α-cluster preformation factor Pα , we can calculate the
α-decay width �s,

�s = PαF
h̄2

4μ
exp

[
−2

∫ r3

r2

drk(r)

]
, (4)

where the F is the normalization factor and k(r) =√
2μ

h̄2 |Qα − V (r)|. Finally, the α-decay half-life related to the
width can be given by T1/2 = h̄ ln 2/�s.

It is well known that many α emitters are to a certain extent
deformed, so it is necessary to consider a deformed tunneling
model. For the deformed tunneling model, we choose the
deformed density-dependent cluster model [19] to calculate
the α-decay width. The α-core potential is expressed as

VTotal (R, β ) = VN (R, β ) + VC (R, β ) + h̄2

2μ

(
L + 1

2

)2

R2
, (5)

where R is the distance between the centers of mass of the
core and the α particle. The orientation angle β is about
the α particle with respect to the daughter nucleus symmetry
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axis. Using the multipole expansion method, the microscopic
potential between the deformable nucleus and the spherical
α particle is numerically calculated from the double-folded
model

VN or C (R, β ) =
∑

l=0,2,4...

V l
N or C (R, β ), (6)

where the multipole component is given by

V l
N or C (R, β ) = 2

π

√
2l + 1

4π

∫ ∞

0
dkk2 jl (kR)

× ρ̃1(k)ρ̃ (l )
2 (k)ṽ(k)Pl (cos β ). (7)

In multipole components, ρ̃1(k) is the Fourier transformation
of the α-particle density distribution and ρ̃

(l )
2 (k) is the intrinsic

form factor. ṽ(k) is the Fourier transformation of the effective
interaction about local two-body [74]. After identifying three
turning points R1(β ), R2(β ), R3(β ), the decay penetration
probability as a function of polar angle can be represented by

Pβ = exp

[
−2

∫ R3(β )

R2(β )

√
2μ

h̄2 |Qα − VTotal (R, β )|dR

]
. (8)

The α-decay width �d of deformed tunneling model can be
obtained by averaging over all directions of Pβ ,

�d = PαF
h̄2

4μ

1

2

∫ π

0
Pβ sin(θ )dθ. (9)

Then the half-lives of the deformed tunneling model can be
given by T1/2 = h̄ ln 2/�d .

In the calculation, it is indispensable to determine the
Pα , which is a complex process in microscopic computation.
Therefore, we use a semiempirical formula to fit the experi-
mental value of the preformation factor Pexp

α in five nuclear
regions of magicity [36]. The Pexp

α is extracted from ratios of
experimental decay width to calculated �d , with an assump-
tion that Pα = 1 in Eq. (9). The semiempirical formula of the
preformation factor used in this paper has the following form
[38]:

log10Pα = C1Nq + C2Im + C3

√
l (l + 1) + C4, (10)

where Nq = (Z − Zm)/2, and Im = (N − Nm)/2 − Nq. Zm

(Nm) represents the nearest magic numbers below Z (N),
respectively. l represents the changes of angular momentum
between the mother and daughter nuclei and C1–4 are the
fitting coefficients. Equation (10) contains the quartet number
and the magic asymmetry number [38], with an additional
angular momentum term to describe unfavored transitions.

B. Bayesian neural network

Bayesian neural network is a probabilistic network, the
details of which can be found in Ref. [75]. In this chapter, we
only focus on the main features of Bayesian neural network.
As the basis for the entire network, Bayes theorem can give
the posterior distribution p(ω|x, t ),

p(ω|x, t ) = p(x, t |ω)p(ω)

p(x, t )
, (11)

where p(ω) is the prior distribution of the ω, p(x, t |ω) is the
likelihood function, and p(x, t ) is the marginal likelihood. In
our particular case, the x denotes the four input variables, i.e.,
the proton number Z , the decay energy Qα , the asymmetric
coefficient S, and the change in angular momentum l . The
t = δn is the residual of α-decay half-life as

δn(log10T1/2) = log10

T exp
1/2

T th
1/2

. (12)

Following the standard practice, assuming a Gaussian
distribution to the likelihood function, i.e., p(x, t |ω) =
exp(−χ2/2), where the function χ2(ω) is given by

χ2(ω) =
N∑

n=1

[
tn − S(x, ω)

�tn

]2

. (13)

Here, N is the number of available data and �tn is the variance
parameter of the nth observable. The S(x, ω) is a function of
the neural network which connects input and output through
one hidden layer, it can be written as

S(x, ω) = a +
H∑

j=1

b j Relu

(
c j +

I∑
i=1

d jixi

)
, (14)

where ω = {a, bj, c j, d ji} are the model free parameters. H is
the number of the hidden nodes and I is the number of input
variables. The BNN contains four input variables, including
the proton number Z , the α-decay energy Qα , the asymmetric
coefficient S = (N − Z )2/A, and the change of angular mo-
mentum l . Finally, the function S(x, ω) consists of a total of
1 + (I + 2)H parameters.

The prior distributions p(ω) is assigned as a zero mean
Gaussian function and modeled by a γ distribution. With the
prior distribution and likelihood function specified, we make
predictions based on the posterior probability density of the
neural network averaged over the network parameter ω,

〈S〉 =
∫

S(x, ω)p(ω | x, t )dω. (15)

In this paper, we utilize the BNN method to train the
residuals directly and construct the internal hidden relation-
ship between the residuals δn and characteristic parameters
Z, Qα, S, l . The root-mean-square (rms) deviation σrms is used
to quantify the predictive ability of different models after
BNN modification:

σrms =
√√√√1

n

n∑
i=1

[
log10

(
T exp

1/2

T th
1/2

)]2

i

. (16)

The architecture of this work and the graphical structure of
the BNN is illustrated in Fig. 1. The cubes on the left represent
the 479 entire data used for training, which are divided into the
learning set and validation set during the extrapolation. The
associated interpolation and extrapolation processes are rep-
resented by orange and blue arrows, respectively. The panel
on the top right shows the structure of the Bayesian neural
network used in this work and the formulation description of
the Bayes theorem.
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FIG. 1. Pictorial representation of this work. The cubes on the left are the entire set of δn regarded as a function of the four charac-
teristic quantities of Z, Qα, S, l . The orange arrows represent the interpolation process, while the blue arrows represent the extrapolation
process.

III. RESULTS AND DISCUSSION

In this part, we analyze the global optimization properties
and the extrapolation capabilities of the BNN method to im-
prove the description of model-based predictions of α decay.
To pictorially illustrate the fine-tuning of the BNN method in
regions affected by shell structure effect, we further present
the results for isotopic and isotonic chains. The accuracy
of BNN predictions can be guaranteed by utilizing plentiful
and accurate experimental data of favored transitions. By
introducing the angular momentum term l in BNN inputs,
unfavored transitions can be analyzed to explore the hidden
nuclear structure information.

A. Global optimization of the BNN method

According to the updated experimental data of Nudat3.0,
the entire set containing 479 favored and unfavored α transi-
tions data are incorporated into the training. The raw residuals
δraw (Z, Qα, S, l ) for both spherical and deformed tunneling
models can be calculated. Then the rms deviations σpre for the
entire set are obtained and listed in Table I. In the calculations,

TABLE I. The rms deviation σpre of T1/2 from the raw spherical
tunneling model, the deformed tunneling model and a semiempirical
formula, and σpost after BNN corrections. 479 data for favored and
unfavored α transitions are chosen as the entire set.

Models σpre σpost �σ/σpre

Sph. mod. 0.882 0.536 39.2%
Defo. mod. 0.776 0.517 33.4%
Sem. form. 0.855 0.545 36.3%

the Pα are acquired through Eq. (10). The coefficients in
Eq. (10) are obtained by fitting Pexp

α for 479 nuclei across five
nuclear regions and are listed in Table II. The Pexp

α is given
by the ratios of experimental decay width to calculated �d

with an assumption that Pα = 1. In addition, the result for
a semiempirical formula is also presented as a reference in
Table I.

Based on the raw residuals δraw (Z, Qα, S, l ), the BNN
method is employed to refine the theoretical results to obtain
the corrected T1/2. The corresponding σpost of the entire set are
listed in Table II. In order to measure the improvement of the
data set, the relative difference in rms deviation �σ/σpre =
(σpre − σpost )/σpre are also presented in Table I.

From Table I, it can be found that although different decay
models have strong robustness and can reproduce the exper-
imental data well, there are still certain deviations between
the theoretical T1/2 and the experimental data. After BNN
corrections, one can see that the BNN method leads to over
30% improvements on the description of model-based predic-
tions of α decay. For the spherical and the deformed tunneling
models, the improvements are increased by 39.2% and 33.4%,
respectively. These indicate that the BNN method can explore
the hidden local half-life correlations between different nuclei
and further fine-tune the physical results of the computation.
For the semiempirical formula, the prediction accuracy is also
improved by 36.3%, which implies that the BNN can improve
the predictive ability of the semiempirical formulas by estab-
lishing mapping relationships that are difficult to display with
explicit expressions. By comparing the data in Table I, it can
be concluded that the BNN method is suitable for different
types of α-decay models and the prediction accuracy is im-
proved by selecting reasonable feature inputs to physically
motivate the network.
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TABLE II. Fitted coefficients C1–4 of Eq. (10) for preformation factor Pα , which are fitted from 479 data in five different nuclear regions.
The number of nuclei in each region is also given.

50 < Z < 82 50 < Z < 82 82 � Z � 100 82 � Z � 100 Z > 100
Regions 50 < N < 82 82 � N < 126 82 � N < 126 N � 126 N � 126

Numbers 13 101 129 220 16

C1 0.1616 −0.0251 0.1153 −0.0244 −0.0607
C2 −0.1859 0.0067 −0.0530 −0.0356 0.0441
C3 −0.4486 −0.0575 −0.1082 −0.2624 −0.5576
C4 −0.3394 −0.1413 0.0880 −0.4901 −1.3601

To visually demonstrate the effectiveness of the
BNN method for different nuclear regions, the residuals
δ(Z, Qα, S, l ) with and without the BNN corrections are
presented in Fig. 2. As can be seen from Figs. 2(a) and 2(b),
the regions with large residuals predicted by the spherical
and deformed tunneling models always appear in blocks,
especially in the superheavy region. After the introduction
of the BNN method, the prediction accuracy is improved
satisfactorily in the global region.

The theoretical framework of α-decay models mainly in-
clude two elements: the α-decay penetration probability and
the α-cluster preformation factor Pα . Since we use the experi-
mental Qα , the calculation of α-decay penetration probability
is relatively accurate. As for the Pα , its purely microscopic
computation is complicated. In this part, we use Eq. (10) and
the coefficients in the Table II to calculate the Pα . Seen from
the results of Figs. 2(c) and 2(d), using the BNN method
to alter the values of the Pα can improve the description of
model-based predictions of α decay.

Combining the results of Table I and Fig. 2, it can be con-
cluded that the BNN method provides reasonable corrections
to the Pα by extracting the hidden local effects and makes bet-
ter prediction accuracy in the global region. The reasons are
as follows: first, the four characteristic parameters Z, Qα, S, l
cover the major variation case of α decay, which helps BNN to
effectively grasp the changes of Pα from a global perspective.
Second, by choosing reasonable numbers of neurons and the

FIG. 2. Residuals between logarithm values of theoretical and
experimental selected α-decay half-lives. (a) The result of the orig-
inal spherical tunneling model. (c) The result of spherical tunneling
model after BNN correction. (b) The same as in (a) but for deformed
tunneling model. (d) The same as in (c) but for deformed tunneling
model.

categories of activation functions, the BNN can capture the
hidden local correlations between nuclei and obtain important
internal physical information, such as shell and pairing effects.

B. Extrapolating capabilities of the BNN method

Extrapolation is more challenging but more appealing than
interpolation, especially in the nuclei region where experi-
mental data are very scarce. In this part, we further analyze
the extrapolation capabilities of the BNN method in predicting
α-decay half-lives. Before the extrapolation, all 479 data in the
entire set are divided into the learning set with 421 data and
the validation set with 58 data whose T1/2 are updated since
2019 in the Evaluated Nuclear Structure Data File (ENSDF)
nuclear database [76]. The 58 selected nuclei are uniformly
located at the edge of the nuclide diagram in Fig. 2.

First of all, we use the learning set data to determine the
value of parameters of the neural network. Once the neural
network is calibrated, we calculate the rms deviation and the
degree of improvement �σ/σpre of the learning and validation
sets. The detailed data are presented in Table III.

For the spherical tunneling model, one can see that it has
robust capabilities of global description and extrapolation.
With the BNN refinements, the rms deviations of learning
set and validation set are improved by 37.7% and 33.0%, re-
spectively. Regarding another deformed tunneling model, the
extrapolation ability of the BNN method is also well demon-
strated and the rms deviations of learning set and validation set
are improved by 33.4% and 21.7%, respectively. It can be con-
sidered that the BNN method has reliable extrapolation ability
in predicting the α-decay half-lives based on the sophisticated
α-decay model.

The results of Table III indicate that the BNN method
has effective and reliable extrapolation capabilities. The

TABLE III. The rms deviation σpre of T1/2 from the theoretical
model, and the rms deviation σpost after the BNN corrections. The
learning set includes 421 data, and the validation set includes 58 data
whose T1/2 are updated since 2019 in ENSDF.

Learning set Validation set

Models σpre σpost �σ/σpre σpre σpost �σ/σpre

Sph. mod. 0.868 0.540 37.7% 0.977 0.654 33.0%
Defo. mod. 0.775 0.516 33.4% 0.786 0.615 21.7%
Sem. form. 0.883 0.557 37.0% 0.594 0.480 19.2%
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FIG. 3. (a) The logarithm of T1/2 for the Po (Z = 84) isotopes. The green triangles denote the raw result from the deformed tunneling
model, and the red pentacles represent the corrected results from the BNN method. (b) The same as in (a), but for Ac (Z = 89) isotopes.

reasons mainly include two aspects. On the one hand, the
sophisticated α-decay models are built on the basis of the
quantum-tunneling effect. Since the primary physical essence
is clearly captured, the decay models can describe the general
trend of the changes in α-decay half-lives. On the other hand,
the BNN method can detect inner physical interactions in
nuclei that cannot be elucidated by parameters in theoretical
models. The grasp of details allows BNN to fine-tune the
results of the theoretical α-decay models. From the results
in Tables I and III, both global and extrapolated results show
satisfactory improvements in the description of the α-decay
half-lives. Thus, we can use the BNN method to make reliable
predictions for the regions lacking experimental data.

C. The BNN refinements for the isotopic and isotonic chains

After illustrating the global descriptions and extrapolating
abilities of the BNN method, we further present the refinement
behavior of the BNN on T1/2 of isotopic and isotonic chains.
Although the theoretical models qualitatively reflect the major
physical characteristics, there are still some deficiencies in
calculating the T1/2 affected by the shell structure effect. It
is necessary to apply the BNN method to refine the theoretical
α-decay models by considering these physical effects more
comprehensively.

In the previous discussion, we have demonstrated that
the improvements of model description by the BNN method
mainly come from the corrections of Pα . To pictorially illus-
trate the performance of the BNN method in refining the Pα ,
we present the T1/2 of the deformed tunneling model with and
without BNN corrections for Z = 84 and 89 isotopic chains
in Fig. 3, and for N = 127 and 128 isotonic chains in Fig. 4.
These figures display the α-decay half-lives of each nucleus
with the largest branching ratio. It can be seen from these
figures that the theoretical model can give a whole description

of the T1/2. When corrected by the BNN method, the refined
T1/2 achieve more consistent with the experimental data.

In Fig. 3(a), we present the T1/2 of even-even and even-odd
Po (Z = 84) isotopes. It can be seen that, for 212Po (N = 128),
the deformed tunneling model can reproduce the experimental
data well; but for 210Po (N = 126) and 211Po (N = 127), the
descriptions are unsatisfactory due to the inadequate consider-
ation of the shell structure effect. After corrected by the BNN
method, the refined T1/2 have achieved significant improve-
ments in the descriptions of 210Po and 211Po while retaining
the prediction accuracy of 212Po. The discussion of global
optimization of the BNN method in Sec. III A has indicated
that these corrections mainly come from the refinement of Pα .
For the 211Po, its preformation factor is adjusted to Pα = 0.026
after BNN refinement, which is much closer to the result given
in Ref. [35].

We further present the T1/2 of odd-even and odd-odd Ac
(Z = 89) isotopes in Fig. 3(b). Compared with the results in
Fig. 3(a), there is an overall decrease in describing the T1/2

of the Ac isotopic chain calculated by the deformed tunneling
model around the shell closures. It can be observed that the
deviations between the theoretical T1/2 and the experimental
data for the nuclei 216Ac (N = 127) and 217Ac (N = 128)
are noticeable due to the influence of the shell structure ef-
fect. After the BNN refinements, the theoretical model has
greatly improved the descriptions of T1/2 of these two nuclei.
By the BNN corrections, the preformation factor of 216Ac is
adjusted to Pα = 0.034, which is in good agreement with the
result given in Ref. [35]. This indicates that the BNN method
combined with the sophisticated α-decay model can well re-
produce the T1/2 by modifying the value of Pα to become more
accurately.

Additionally, we present the T1/2 of N = 127 and 128
isotonic chains in Fig. 4. For the N = 127 isotonic chain in
Fig. 4(a), the mostly theoretical T1/2 is slightly greater than
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FIG. 4. (a) The logarithm of T1/2 for the N = 127 isotonic chain. The green triangles denote the raw result from the deformed tunneling
model, and the red pentacles represent the corrected results from the BNN method. (b) The same as in (a), but for N = 128 isotonic chain.

the experimental data. This is mainly due to the Pα used in raw
decay model being generally small in this region. In particular,
the T1/2 of nuclei 210Bi (Z = 83) and 211Po (Z = 84) in the
shell region are not well presented in the raw decay model. Af-
ter the BNN refinements, the refined T1/2 of N = 127 isotonic
chains are more consistent with the experimental data overall,
especially with a marked improvement around the proton shell
Z = 82.

For the raw decay model of the N = 128 isotonic chain
in Fig. 4(b), there are better prediction results for even-even
nuclei compared to the even-odd nuclei. This indicates that
the Pα in α-decay calculations cannot well reflect the hidden
effects of unpaired nucleons. Similar to Fig. 4(a), the T1/2 of
nuclei 210Pb (Z = 82) and 211Bi (Z = 83) are not accurately
reflected in the theoretical model because of the strong shell
effect. When refined by the BNN method, the value of the Pα

is modified by further considering the shell and pairing effects.
The result demonstrates that the BNN method can acquire the
pairing effect and perfectly reproduce the odd-even staggering
phenomenon of T1/2 in isotonic chains. Combining with the
results of Figs. 3 and 4, the BNN method provides rational and
convincing corrections to the α-decay half-lives for isotopic
and isotonic chains.

IV. SUMMARY

In this work, through the analysis of 479 favored and
unfavored α transitions data, we have successfully achieved
better half-lives predictions by combining the Bayesian neural
network and α-decay models. The intrinsic relationship be-
tween Z, Qα, S, l , and residuals δ are established through the
network training. The choice of the experimental Qα confirms
that the improvement of α-decay half-lives with the BNN
method comes from the modification of the Pα by captur-
ing essential physical effects. These refinements are clearly

demonstrated in the global and extrapolated analyses of the
three selected theories.

For the global optimization of the BNN method, the
accuracy of the refined theoretical models has achieved satis-
factory improvements, which indicates that the BNN method
can provide trustworthy modifications by correcting the value
of the Pα . For the extrapolation capabilities, the compari-
son between the learning set and the validation set shows
that the BNN method has robust extrapolating capabilities
and can make convincing predictions for the regions lacking
experimental data. In addition, through pictorially illustrat-
ing the performance of the BNN method in isotopic and
isotonic chains, it is more clearly confirmed that the correc-
tions of the Pα come from the accurate grasp of important
physical effects such as shell and pairing effects. Generally,
our study indicates that the BNN method paves an effec-
tive way for describing nuclear decay processes, and has
a satisfactory advantage in the evaluation of Pα . It is ex-
pected that this work can be applied to other fields of nuclear
physics.
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