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Cluster radioactivity preformation probability of trans-lead nuclei in the NpNn scheme

Lin-Jing Qi,1 Dong-Meng Zhang,1 Song Luo,1 Gui-Qing Zhang ,2,* Peng-Cheng Chu ,3,†

Xi-Jun Wu,4,‡ and Xiao-Hua Li 1,5,6,§

1School of Nuclear Science and Technology, University of South China, 421001 Hengyang, People’s Republic of China
2College of Science, University of Science and Technology, 300457 Tianjin, People’s Republic of China

3The Research Center for Theoretical Physics, Science School,
Qingdao University of Technology, Qingdao 266033, People’s Republic of China

4School of Math and Physics, University of South China, Hengyang 421001, People’s Republic of China
5Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,

University of South China, 421001 Hengyang, People’s Republic of China
6National Exemplary Base for International Science and Technology Collaboration of Nuclear Energy and Nuclear Safety,

University of South China, Hengyang 421001, People’s Republic of China

(Received 21 April 2023; revised 18 June 2023; accepted 11 July 2023; published 25 July 2023)

In the present work, the cluster radioactivity preformation probability Pc in the scheme of NpNn for the
effective number of the valence particles (holes) in trans-lead nuclei has been systematically investigated. This
quantity has been explored in the simplified parametrization of NpNn as well as the multiplication NpNnI of
this product with the isospin asymmetry I . The calculations for Pc are both performed in microscopic and
model-dependent way. Within the microscopic approach, based on our previous work [Chin. Phys. C 47, 014101
(2023)], Pc is calculated in cluster formation model combined with the exponential relationship of Pc to the α

decay preformation probability Pα when the mass number of the emitted cluster Ac � 28. While Ac � 28, Pc

is obtained through the charge-number dependence of Pc on the decay products proposed by Ren et al. [Phys.
Rev. C 70, 034304 (2004)]. In the model-dependent approach, Pc is extracted through the ratios from calculated
cluster radioactivity half-lives in the framework of unified fission model proposed by Dong et al. [Eur. Phys.
J. A 41, 197 (2009)] to experimental ones. Both of the results show Pc in logarithmic form are linear to NpNn

as well as NpNnI . For comparison, the parent-mass-number dependence analytical formula as well as the model
proposed by Wei and Zhang [Phys. Rev. C 96, 021601(R) (2017)] are also used. Furthermore, the preformation
mechanic for cluster radioactivity has also been discussed.

DOI: 10.1103/PhysRevC.108.014325

I. INTRODUCTION

Nuclear physics was originated from the discovery of
natural radioactivity. Nuclear spontaneous disintegration has
always been the effective probe for investigating nuclear struc-
ture. In 1980, Sǎndulescu, Poenaru, and Greiner primarily
predicted a novel spontaneous emission phenomenon in unsta-
ble nuclei whose emitted fragments, heavier than α particles
but less than fission fragments, generally are known as cluster
radioactivity [1–5]. Soon afterwards, this decay mode was ex-
perimentally confirmed by Rose and Jones through observing
14C particle emitted from a 223Ra isotope [6–9]. Since then,
an increasing number of clusters heavier than a 14C particle
such as 20O, 23F, 22,24–26Ne, 28,30Mg, and 32,34Si isotopes
are availably observed on experiments in the parent nuclei
ranging from 221Fr up to 242Cm in trans-lead region decaying
to the doubly magic nucleus 208Pb or its neighboring nuclei
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[10–13], further providing a unique way to explore various
nuclear structures.

Since cluster radioactivity, proton radioactivity, two-proton
radioactivity, and α decay are similarly explained as the
quantum mechanical effect [14–24], in particular, due to the
immediate characteristic between α decay and spontaneous
fission, there are generally two kinds of theoretical methods
within Gamow’s theory well established to interpret this rare
decay mode: α-like models and fission-like models [25]. Fur-
thermore, the cluster radioactivity preformation probability is
dealt with differently in these two models [4,26–28]. In α-like
models, the cluster is assumed to already be preborn in the
parent nuclei with certain probability before penetrating the
interacting barrier between the emitted cluster and the daugh-
ter nucleus [29–32]. For actually, in density-dependent cluster
model (DDCM) proposed by Ren et al., the cluster preforma-
tion probability is assumed as an exponential function as the
multiplication of the emitted cluster charge number as well as
daughter charge number employed to calculate the half-lives
of cluster radioactivity [33,34]. In preformed cluster model
(PCM), it is obtained by solving the stationary Schrödinger
equation for the dynamical flow of mass and charge
[35]. However, in fission-like models, cluster radioactivity
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preformation probability is regarded as the penetration prob-
ability of the pre-scission part for the interacting barrier
[36,37]. For instance, in Coulomb and proximity potential
(CPPM) proposed by Santhosh et al. [38], the cluster forma-
tion probability is calculated as the penetrability probability
through the internal part of the potential barrier through the
simple power-law interpolation.

Noticeably, Pc plays an indispensable incorporated part in
calculating cluster radioactivity half-lives [39]. Moreover, it
is an important indicator possessing abundant information of
nuclear structure such as shell effects, surface deformation
and neutron-proton (n-p) interaction in our previous study and
investigation from other researchers [40–43]. Since cluster
radioactivity is closely related to shell effects and Pc can
be considered as the penetrability for the overlapping region
between the actual ground state configuration of the parent
and the configuration described by the emitted cluster coupled
to the ground state of the daughter nucleus [44], the tunneling
probability of the emitted cluster is expected to be signifi-
cantly dependent on the n-p interaction. Various quantities,
such as deformation, ground band energy systematics, and
properties of excited states, can be parametrized in the scheme
of NpNn or obtained through the simple functions of Np and/or
Nn which may also bear smooth relationships with the ob-
servables [45]. The n-p interaction can be well represented by
these parametrization and simple functions [45,46]. Previous
work has indicated the general behavior of Pc in logarithmic
form linearly decreases with the neutron number arriving at a
local minimum as the magic shell closures and then linearly
increase again [41]. This phenomenon may imply Pc exhibits
a certain correlation when it is expressed as a function of the
product of Np and Nn. In the present work, we make attempts
to explore the relationship of cluster radioactivity preforma-
tion probability versus valence nucleons (holes) in the scheme
of NpNn, while cluster radioactivity preformation probability
is calculated both microscopically and model-dependently.
In the microscopic approach, based on our previous work,
the cluster radioactivity preformation probability is dealt with
cluster formation model (CFM) combined with the exponen-
tial relationship of Pc to the α decay preformation probability
Pα when the number of the emitted cluster Ac � 28. It should
be noted that, as is clearly indicated in Fig. 2 from Ref. [42],
Pc in logarithmical form keeps a good linear relationship
with the mass number of the emitted cluster. The curve is
bent obviously when Ac > 28 and the slope of the curve
begin to decrease with the increasing of the emitted cluster
mass number. Therefore, in the present work, while Ac �
28, Pc is obtained through the charge-number dependence
of Pc on the decay products proposed by Ren et al. [33].
In the model-dependent approach, Pc is extracted through
the ratios from the calculated cluster radioactivity half-lives
to experimental ones, while the cluster radioactivity half-
lives calculations are preformed in the unified fission model
(UFM) [47].

This article is organized as follows. A brief introduction
of the theoretical framework for the UFM and CFM is briefly
presented in Sec. II. Detailed numerical results and discussion
are given in Sec. III. Section IV is a simple summary.

II. THEORETICAL FRAMEWORK

A. Model-dependent approach

In UFM, for the emitted cluster-daughter system, the
barrier penetration probability P can be obtained by the
Wentzel-Kramers-Brillouin (WKB) approximation action in-
tegral [47]

P = exp

{
−2

h̄

∫ Rout

Rin

√
2μ(V (r) − Qc)dr

}
, (1)

where h̄ is the reduced Planck constant and μ = McMd
Mc+Md

is the
reduced mass of emitted cluster-daughter nucleus system with
Mc and Md being the masses of emitted cluster and daughter
nucleus, respectively [48]. Qc is the cluster radioactivity decay
energy. It can be obtained by [49]

Qc = B(Ac, Zc) + B(Ad , Zd ) − B(A, Z ), (2)

where B(Ac, Zc), B(Ad , Zd ), and B(A, Z ) are, respectively,
the binding energy of the emitted cluster, daughter and par-
ent nuclei taken from AME2020 [50] and NUBASE2020
[51]. Ac, Zc, Ad , Zd , and A, Z are the mass numbers and
proton numbers of the emitted cluster, daughter, and par-
ent nucleus, respectively. Rin = R1 + R2 and Rout = ZcZd e2

2Qc
+√

( ZcZd e2

2Qc
)2 + l (l+1)h̄2

2μQc
are the radius for the separation config-

uration and the outer turning point [47] with R1 and R2 being
the equivalent sharp radii of the daughter nucleus and the
emitted cluster, respectively. They can be obtained by [49]

Ri = (
1.28A1/3

i − 0.76 + 0.8A−1/3
i

)
fm, i = 1, 2. (3)

The total interacting potential V (r) between the emitted
cluster and daughter nucleus consists of the repulsive long-
range Coulomb potential VC (r), the attractive short-range
nuclear proximity potential Vp, and the centrifugal potential
Vl (r) when the fragments are separated. It is expressed as [47]

V (r) = Vp(r) + VC (r) + Vl (r), (4)

where r is the distance between the fragment centers. The
inclusion of the proximity potential reduces the height of the
barrier which closely agrees with the experimental values. The
nuclear proximity potential takes the following form [47]:

Vp(r) = 4π
C1C2

C1 + C2
γ b�(s), (5)

where the Süsmann central radii Ci = Ri- b2

Ri
with b = 0.99 fm

being the surface width. The nuclear surface tension coeffi-
cient γ is given as [27]

γ = 0.9517[1 − 1.7826

(
N − Z

A

)2

]MeV fm−2, (6)

where N represents the neutron number of the parent nucleus.
The universal function �(s) is parametrized as [27]

�(s) =
{

1
2 (s− 2.54)2− 0.00852(s − 2.54)3, s � 1.2511,

−3.437 exp
(− s

0.75

)
, s � 1.2511,

(7)
where s = (r − C1 − C2)/b is the overlap distance in units of
b for the colliding surfaces.
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The Coulomb potential in Eq. (4) is given as [40]

VC (r) = e2ZcZd

r2
, (8)

where e2 = 1.4399652 MeV fm is the square of the elec-
tronic elementary charge [40]. As for the centrifugal potential
Vl (r), since l (l + 1) → (l + 1

2 )2 is a necessary correction for
one-dimensional problems [52], we choose it as the Langer
modified form in this work. It can be expressed as

Vl (r) = h̄2
(
l + 1

2

)2

2μr2
, (9)

where l is the angular momentum carried by the emitted
cluster. It can be obtained by [53]

l =

⎧⎪⎪⎨
⎪⎪⎩

� j, for even � j and πp = πd ,

� j + 1, for even � j and πp �= πd ,

� j, for odd � j and πp �= πd ,

� j + 1, for odd � j and πp = πd ,

(10)

where � j = | jp − jd − jc|, jc, πc, jp, πp, and jd , πd are the
isospin and parity values of the emitted cluster, parent, and
daughter nuclei, respectively.

The assault frequency ν0 is calculated by [47]

ν0 = 1

R0

√
2Ek

M
, (11)

where Ek = A−AC
A Qc and M are the kinetic energy and mass

of the emitted cluster, respectively. R0 is the equivalent sharp
radius of the parent nucleus. With the experimental cluster
radioactivity half-life, the preformation probability can be
extracted from [47]

Pc = ln 2

Texpν0P
. (12)

B. Microscopic approach

Within the framework of CFM, the total initial clusteriza-
tion state ψ of the emitted cluster-daughter nucleus system
is considered as a linear superposition of all its n possible
clusterization ψi states [54]. It can be expressed as

ψ =
N∑
i

aiψi, (13)

ai =
∫

ψi
∗ψdτ, (14)

where ai represents the superposition coefficient of ψi which
satisfies the orthogonality condition [55]

N∑
i

|ai|2 = 1. (15)

Correspondingly, the total Hamiltonian H consists of the
Hamiltonian Hi for different clusterization configuration ψi

which can be expressed as [56]

H =
N∑
i

Hi. (16)

By virtue of all the clusterization states describing the same
emitted cluster-daughter nucleus system, they are assumed
as sharing the same total eigenenergy E of the total wave
function [57]. Furthermore, considering the orthogonality of
the clusterization wave functions, E can be expressed as

E =
N∑
i

|ai|2E =
N∑
i

E fi , (17)

where E fi represents the formation energy for the cluster in
the i-th clusterization state ψi. For α decay, the preformation
probability Pα can be obtained by [56]

Pα = |aα|2 = E fα

E
. (18)

Here, aα and E fα are the coefficient of the α clusterization state
and the formation energy of the α particle, respectively.

Moreover, the α formation energy E fα and total system en-
ergy E can be classified as four different cases in the following
expressions [53].

Case I for even-even nuclei:

E fα = 3B(A, Z ) + B(A − 4, Z − 2)

− 2B(A − 1, Z − 1) − 2B(A − 1, Z ), (19)

E = B(A, Z ) − B(A − 4, Z − 2). (20)

Case II for even-odd nuclei:

E fα = 3B(A − 1, Z ) + B(A − 5, Z − 2)

− 2B(A − 2, Z − 1) − 2B(A − 2, Z ), (21)

E = B(A, Z ) − B(A − 5, Z − 2). (22)

Case III for odd-even nuclei:

E fα = 3B(A − 1, Z − 1) + B(A − 5, Z − 3)

− 2B(A − 2, Z − 2) − 2B(A − 2, Z − 1), (23)

E = B(A, Z ) − B(A − 5, Z − 3). (24)

Case IV for odd-odd nuclei:

E fα = 3B(A − 2, Z − 1) + B(A − 6, Z − 3)

− 2B(A − 3, Z − 2) − 2B(A − 3, Z − 1), (25)

E = B(A, Z ) − B(A − 6, Z − 3). (26)

When Ac < 28, Pc in logarithmic form keeps a good linear
relationship with Pα . Using this relation, Pc can be obtained
by [58]

Pc = [Pα]
(Ac−1)

3 . (27)

As for Ac > 28, the calculations for the Pc are completed by
a formula proposed by Ren et al. [33] for this law may not
work. It can be expressed as

log10 Pc =

⎧⎪⎪⎨
⎪⎪⎩

−(0.01674ZcZd − 2.035466),
for even-even nuclei,
−(0.01674ZcZd − 2.035466) − 1.175,

for odd-A nuclei.

(28)
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TABLE I. Cluster radioactivity preformation probability in microscopic and model-dependent approaches. See text for details.

decay Qc(MeV) T exp
1/2 Np Nn I CFM UFM

221Fr → 207Tl + 14C 31.29 14.56 5 8 0.213 −3.204 −6.420
221Ra → 207Pb + 14C 32.40 13.39 6 7 0.204 −3.126 −6.388
222Ra → 208Pb + 14C 33.05 11.22 6 8 0.207 −3.037 −5.547
223Ra → 209Pb + 14C 31.83 15.05 6 9 0.211 −3.440 −7.160
224Ra → 210Pb + 14C 30.53 15.87 6 10 0.214 −3.186 −5.593
226Ra → 212Pb + 14C 28.20 21.2 6 12 0.221 −3.211 −6.014
223Ac → 209Bi + 14C 33.06 12.6 8 12 0.202 −3.341 −6.060
228Th → 208Pb + 20O 44.72 20.73 8 12 0.211 −4.670 −8.174
231Pa → 208Pb + 23F 51.88 26.02 9 14 0.212 −5.999 −12.495
230Th → 206Hg + 24Ne 57.76 24.63 8 14 0.217 −5.661 −11.349
231Pa → 207Tl + 24Ne 60.41 22.89 9 14 0.214 −6.271 −12.074
232U → 208Pb + 24Ne 62.31 20.39 10 14 0.207 −5.924 −11.195
233U → 209Pb + 24Ne 60.49 24.84 10 15 0.210 −6.672 −13.145
234U → 210Pb + 24Ne 58.82 25.93 10 16 0.214 −6.313 −11.904
233U → 208Pb + 25Ne 60.70 24.84 10 15 0.210 −6.962 −13.126
234U → 208Pb + 26Ne 59.41 25.93 10 16 0.214 −6.862 −12.074
234U → 206Hg + 28Mg 74.11 25.53 10 16 0.214 −7.411 −13.928
236Pu → 208Pb + 28Mg 79.67 21.52 12 16 0.203 −7.689 −14.132
238Pu → 210Pb + 28Mg 75.91 25.7 12 18 0.210 −7.547 −13.903
238Pu → 208Pb + 30Mg 76.79 25.7 12 18 0.210 −9.452 −14.561
238Pu → 206Hg + 32Si 91.19 25.28 12 18 0.210 −11.039 −15.625
242Cm → 208Pb + 34Si 96.54 23.15 14 20 0.207 −11.366 −16.511

III. RESULTS AND DISCUSSION

The aim of this work is to systematically investigate
the behavior of cluster radioactivity preformation probabil-
ity of trans-lead nuclei in the scheme of NpNn. Numerous
researchers have discovered such dependence in α decay.
For instance, the works of Seif et al. reported that α de-
cay preformation probability of even-even nuclei around the
Z = 82, N = 126 closed shells linearly depend on the product
of the valance protons (holes) and neutrons (holes) N pNn
[59,60]. Furthermore, in our previous works, we systemati-
cally studied the Pα of the favored and unfavored α decay for
odd-A and doubly odd nuclei, where Pα is extracted from the
ratios of calculated α decay half-lives to experimental values
[24,61]. The results indicated that Pα is linearly to N pNn
although it is model dependent. Before long, Deng et al.
further pointed out that this linear relationship simultaneously
satisfies all types of nuclei well in α decay [62]. For α decay
and cluster radioactivity share the same physical mechanism,
it is interesting to explore whether it is a possibility for the
cluster radioactivity preformation probability to have certain
correlation with the product of valance protons (holes) and
neutrons (holes) N pNn. For further verifying this assump-
tion, in the present work, we use two different approaches
to deal with preformation probability of cluster radioactiv-
ity. In UFM, Pc is usually treated as unity. Theoretically, it
can be extracted by the ratios from the calculated cluster ra-
dioactivity half-lives to experimental ones. Using this method,
the cluster radioactivity preformation probability is deduced
model-dependently. To this end, based on our previous work,
when the mass number of the emitted cluster Ac � 28, we
calculate the preformation penetrability of cluster radioactiv-
ity through the famous exponential law of Pc to the α decay

preformation probability Pα , while Pα is obtained within mi-
crocosmic model CFM. Whereas Ac � 28, the preformation
factor can be obtained through the charge-number dependence
of Pc on the decay products proposed by Ren et al. [33]. A
detailed discussion about the later approach has been given in
Ref. [40]. Both the calculated results are well listed in Table I.
In this table, the first to third columns represent the decay pro-
cess, cluster radioactivity decay energies, and experimental
cluster radioactivity half-lives in logarithmic form taken from
Refs. [38,52] denoted as decay, Qc and T exp

1/2 , respectively.
The effective number of valence protons and neutrons for the
parent nucleus expressed as Np = Z − Z0 and Nn = N − N0

are presented in fourth and fifth columns denoted as Np and
Nn with Z0 and N0 being the nearest proton and neutron
closed shells, respectively. In this work, we choose (Z0 = 82,
N0 = 126) as the considered doubly magic core for the cluster
radioactivity whose decaying daughter nucleus are around the
doubly magic nucleus 208Pb or its neighboring nuclei in trans-
lead region. Then Np and Nn can be obtained by Np = Z − 82
and Nn = N − 126. The sixth column represents the isospin
asymmetry of the parent nuclei I = (N − Z )/(N + Z ). The
seventh and eighth columns represent the cluster radioactivity
preformation factor deduced from microscopic and model-
dependent approaches in logarithmic form denoted as CFM
and UFM, respectively. From this table, it is obviously to see
that the cluster radioactivity preformation probability Pc val-
ues even for the order of magnitude are comparably different
obtained by using above two methods while the tendency of
the individual variations for Pc values are basically consistent.
The results have indicated that exploring the cluster radioac-
tivity preformation probability in both model-dependent and
microscopic way is of necessity. It is well acknowledged that
conventional counting of valence protons and neutrons can
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FIG. 1. The linear relationship of the cluster radioactivity pre-
formation probability in logarithmic form by using microscopic
approach with the product of the valance protons (holes) and neu-
trons (holes) N pNn.

be inadequate on account of change in magic number and
shell structure in diverse mass regions [45]. Making use of
effective number of valence particles in the NpNn scheme may
significantly improve the predictability of the scheme as well
as point to the emergence of new shell structure in various
mass regions. In that regard, in order to have an intuitive
insight to the dependence for Pc along with valence particles
(holes), the correlation between Pc in logarithmic form ob-
tained through UFM as well as CFM with valence particles
(holes) in the form of NpNn

N0+Z0
are plotted in Figs. 1 and 2. As can

FIG. 2. The linear relationship of the cluster radioactivity pre-
formation probability in logarithmic form by using model-dependent
approach with the product of the valance protons (holes) and neu-
trons (holes) N pNn.

FIG. 3. The linear relationship of the cluster radioactivity prefor-
mation probability obtained by microscopic approach in logarithmic
form versus the quantity N pNnI .

be clearly seen from these two pictures, Pc in logarithmic form
are similarly varying smoothly and have linear relationships
with the products of the number of the valence protons and
neutrons. It can be expressed as

log10Pc = a
NpNn

N0 + Z0
+ b, (29)

where a and b are the adjustable parameters extracted from
the fittings of Figs. 1 and 2.

Moreover, we introduce the statistical quantities, the mini-
mum residual sum of squares (RSS) which represents the sum
of squares due to error as well as the coefficient of determina-
tion R2, to estimate the degree of fitting. In the present work,
RSS can be defined as

RSS =
∑(

log10T calc
1/2 − ˆlog10T calc

1/2

)2
, (30)

where log10T calc
1/2 and ˆlog10T calc

1/2 are the logarithmic form of
calculated cluster radioactivity half-lives and the value for the
corresponding spot on the regression straight line. The total
sum of squares (TSS) can be obtained by

TSS =
∑(

log10T calc
1/2 − ¯log10T calc

1/2

)2
, (31)

where ¯log10T calc
1/2 denotes the average value for the logarithmic

form of calculated cluster radioactivity half-lives. To this end,
the coefficient of determination R2 can be expressed as

R2 = TSS − RSS

TSS
= 1 − RSS

TSS
. (32)

The smaller the value of RSS and the larger the value of R2

approaching 1, the better the degree of fit. a and b are fitted
with the minimum RSS and R2 ≈ 1. The detailed correspond-
ing values of a, b, RSS, and R2 are given in Figs. 1 and 2.
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FIG. 4. The linear relationship of the cluster radioactivity pre-
formation probability obtained by model-dependent approach in
logarithmic form versus the quantity N pNnI .

The general behavior of Pc in logarithmic form shows a
decrease with the increase of NpNn. Furthermore, for the value
of parent nucleus isospin asymmetry depends on the doubly
magic core at (N0, Z0), we size up the Pc by incorporating the
isospin asymmetry into NpNn, which can be expressed as

log10Pc = cNpNnI + d, (33)

where c and d are the adjustable parameters by fitting to
Figs. 3 and 4 whose RSS value is minimum and coefficient

of determination R2 ≈ 1. The plots of the dependence for the
Pc in logarithmic form with NpNnI have been presented in
Figs. 3 and 4. From these two figures, the linear correlations of
the deduced cluster radioactivity preformation probability in
logarithmic form with the valence nucleons (holes) numbers
become more distinct when they are plotted as a function
of NpNnI . It is clearly to see that cluster radioactivity pre-
formation probability in logarithmic form are proportional to
the products of effective numbers of valence particles (holes)
NpNn as well as the multiplication of the isospin asymmetry
with this product NpNnI .

For further investigating the preformation mechanics for
cluster radioactivity, we also compare the Pc results extracted
from the experimental decay energy and half-life as well as the
results obtained by using the parent-mass-number dependence
analytical formula and model proposed by Wei and Zhang
[42] with our work. The calculated results are well listed in
Table II. In this table, the first three columns are the same
as Table I. The fourth to seventh columns are shown the
cluster radioactivity preformation probability in logarithmic
form obtained by using CFM, UFM, Wei’s model as well
as Wei’s formula denoted as CFM, UFM, WZM, and WZF,
respectively. It is obvious to find that the general tenden-
cies of the preformation probability in logarithmic form are
similar to the pattern for the variations of Pc observed from
Table I. For a more deeper insight into this phenomenon, the
tendency of the variations for Pc in logarithmic form obtained
by using CFM, UFM, Wei’s model, and Wei’s formula has
been plotted in Fig. 5. From this figure, it is easy to see that
the values of Pc are generally decreasing with an increasing
of the mass number parent nuclei as well as the emitted
cluster. For neutrons, pairing is more influential than protons

TABLE II. Cluster radioactivity preformation probability in different formulas and models. See text for details.

decay Qc(MeV) T exp
1/2 CFM UFM WZM WZF

221Fr → 207Tl + 14C 31.29 14.56 −3.204 −6.420 −10.00 −10.18
221Ra → 207Pb + 14C 32.40 13.39 −3.126 −6.388 −9.95 −10.18
222Ra → 208Pb + 14C 33.05 11.22 −3.037 −5.547 −8.98 −10.94
223Ra → 209Pb + 14C 31.83 15.05 −3.440 −7.160 −10.68 −11.68
224Ra → 210Pb + 14C 30.53 15.87 −3.186 −5.593 −9.06 −12.39
226Ra → 212Pb + 14C 28.20 21.20 −3.211 −6.014 −9.52 −13.75
223Ac → 209Bi + 14C 33.06 12.60 −3.341 −6.060 −9.55 −11.68
228Th → 208Pb + 20O 44.72 20.73 −4.670 −8.174 −12.76 −15.02
231Pa → 208Pb + 23F 51.88 26.02 −5.999 −12.495 −17.60 −16.76
230Th → 206Hg + 24Ne 57.76 24.63 −5.661 −11.349 −16.62 −16.20
231Pa → 207Tl + 24Ne 60.41 22.89 −6.271 −12.074 −17.50 −16.76
232U → 208Pb + 24Ne 62.31 20.39 −5.924 −11.195 −16.43 −17.30
233U → 209Pb + 24Ne 60.49 24.84 −6.672 −13.145 −18.44 −17.82
234U → 210Pb + 24Ne 58.82 25.93 −6.313 −11.904 −17.18 −18.32
233U → 208Pb + 25Ne 60.70 24.84 −6.962 −13.126 −18.56 −17.82
234U → 208Pb + 26Ne 59.41 25.93 −6.862 −12.074 −17.65 −18.32
234U → 206Hg + 28Mg 74.11 25.53 −7.411 −13.928 −19.82 −18.32
236Pu → 208Pb + 28Mg 79.67 21.52 −7.689 −14.132 −19.98 −19.26
238Pu → 210Pb + 28Mg 75.91 25.70 −7.547 −13.903 −19.80 −20.13
238Pu → 208Pb + 30Mg 76.79 25.70 −9.452 −14.561 −20.72 −20.13
238Pu → 206Hg + 32Si 91.19 25.28 −11.039 −15.625 −22.09 −20.13
242Cm → 208Pb + 34Si 96.54 23.15 −11.366 −16.511 −23.20 −21.64

014325-6



CLUSTER RADIOACTIVITY PREFORMATION … PHYSICAL REVIEW C 108, 014325 (2023)

FIG. 5. The tendency of the negative values for cluster radioac-
tivity preformation probability obtained by using different models
and formulas extracted from Table II in logarithmic form.

in cluster radioactivity and most of the cluster emitters as
well as the emitted cluster are neutron-rich nuclides, it is
less possible for the cluster to be formed in the parent nu-
clei in trans-lead region far away from neutron shell closure
at 126 [41].

The results of our work further validate that cluster ra-
dioactivity is closely to the nuclear shell effect. Investigation
for the cluster radioactivity preformation probability explored
in the scheme of NpNn could well simply reflect the shell
effects of nuclear structure and can be easily acquired as
they are parametrized in the simplified functions of Np and
Nn. We hope this study could be useful for studying cluster
radioactivity and further probing the nuclear structure in the
trans-lead region.

IV. SUMMARY

In summary, we systematically investigate the depen-
dence of cluster radioactivity preformation probability versus
valence protons and neutrons both microscopically and
model-dependently. In the microscopic approach, based on
our previous work, the cluster radioactivity preformation
probability is dealt with a cluster formation model (CFM)
combined with the exponential relationship of Pc to the α

decay preformation probability Pα when the number of the
emitted cluster Ac � 28. Whereas Ac � 28, Pc is obtained
through the charge-number dependence of Pc on the decay
products proposed by Ren et al. In the model-dependent ap-
proach, Pc is extracted through the ratios from the calculated
cluster radioactivity half-lives to experimental ones, while the
cluster radioactivity half-lives are obtained within the frame-
work of UFM. Both of the results have shown that the cluster
radioactivity preformation probability Pc in the logarithmic
form is proportional to the products of the valence protons and
neutrons as well as the multiplication of this product with the
isospin asymmetry. We also compare the results obtained by
using the parent-mass-number dependence analytical formula
as well as the model proposed by Wei and Zhang with our
work and make a discussion about preformation mechanic for
cluster radioactivity.
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[1] A. Sǎndulescu, J. Phys. G: Nucl. Part. Phys. 15, 529 (1989).
[2] R. K. Gupta and W. Greiner, Int. J. Mod. Phys. E 3, 335 (1994).
[3] D. N. Poenaru and W. Greiner, J. Phys. G: Nucl. Part. Phys. 17,

S443 (1991).
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