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Triaxial-shape dynamics in the low-lying excited 0+ state: Role of the collective mass
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Background: Nonyrast states in neutron-rich nuclei are being investigated experimentally. These states reveal
various aspects and details of the nuclear structure, such as the fluctuation around the axially symmetric shape.
Purpose: The beyond-mean-field effects in neutron-rich nuclei with N � 28 are investigated. We focus on the
role of collective mass in triaxial-shape dynamics.
Method: We employ the five-dimensional quadrupole collective Hamiltonian method with the potential obtained
in a constrained Hartree-Fock-Bogoliubov approach with a Skyrme energy-density functional and the collective-
mass functions obtained by the cranking approximation. The method includes triaxial deformations.
Results: We find that 42Mg, 40Si, 44S, and 46S show γ -soft: A flat behavior in the potential energy surface along
the triaxial deformation. Their low-lying spectra show a strong nucleus dependence, while those obtained with
a collective mass assumed as constant are similar to each other. The energy ratio E (0+

2 )/E (2+
1 ) and the B(E2)

ratio B(E2; 0+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) show a unique property of the 0+
2 state, while the energy and B(E2)

ratios in neutron-deficient γ -soft nuclei with N = 78 do not depend on nucleus so much.
Conclusions: Low-lying spectra are determined by not only the potential energy but also the collective mass.
We clarify the important role of the collective mass in low-energy dynamics in the neutron-rich N ≈ 28 nuclei.

DOI: 10.1103/PhysRevC.108.014323

I. INTRODUCTION

Atomic nuclei exhibit various shapes according to the neu-
tron number, the proton number, and the excitation energy.
Since the ingredients are finite and their orbital motion is
described by quantum mechanics, it is essential to consider
the fluctuation in shape. The five-dimensional quadrupole
collective Hamiltonian (5DCH) [1–5] as a function of the
quadrupole deformation parameters β and γ has often been
employed in describing low-energy states. The parameters in
the model are the potential energy and the collective masses.

The shape dynamics is governed by the potential energy at
first glance. In nuclei near the magic numbers, the potential
energy surface (PES) shows the existence of the local min-
imum at the spherical configuration. As the system moves
away from the magic numbers, it becomes deformed, where
one mostly has the local minimum at the prolately deformed
configuration. Some nuclei show a soft PES against the triax-
ial deformation. Consequently, the low-lying 2+

2 state or the
so-called γ vibration shows up.

The vibration in the triaxial deformation is not always
harmonic. An ideal situation where the PES against the γ

direction is flat is investigated by the Wilets-Jean model [6]. In
this model, the mass parameters are assumed to be constant. A
characteristic feature of the low-lying states is that the 2+

2 state
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degenerates with the 4+
1 state and is lower than the 0+

2 state
among two-phonon states in a spherical harmonic-oscillator
potential and that the 0+

2 is degenerate with the 3+
1 , 4+

2 , and
6+

1 states. In addition to the flatness in the γ direction, another
ideal situation where the PES against the β direction is flat
is investigated in terms of the E(5) critical point symmetry
[7–10]. The PES in the β direction is described by an infinite
square-well potential. The degeneracy of the 2+

2 and 4+
1 is the

same as in the Wilets-Jean model, while the 0+
2 state is not

necessarily degenerate with the 3+
1 , 4+

2 , and 6+
1 states because

of the fluctuation in the β direction.
Neutron-rich nuclei around N = 28 have attracted interest

both experimentally [11–21] and theoretically [22–33]. The
authors in Refs. [23,28,32] found that the breaking of N = 28
magicity in 44S is due to a flat potential, which brings about
a wide configuration mixing in the β-γ deformation space.
In a neighboring nucleus 43S, the coexistence of prolately,
triaxially, and oblately deformed states was predicted due to
the breaking of N = 28 magicity in Ref. [26]. In N = 26
and 30 isotones, it was found that including the triaxial de-
gree of freedom lowers the energy of the 2+

2 state [27]. The
shape coexistence of prolate and oblate configurations and
that of oblate and spherical configurations were predicted
in 40Mg and 42Si, respectively [28]. The γ vibration was
predicted to appear for the prolate configuration in 40Mg
[33]. Those studies have shown that the triaxial deformation
plays an important role in low-energy dynamics in N ≈ 28
nuclei.
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Not only the PES but also the mass parameters may play
a role in describing the low-energy dynamics in a collective
Hamiltonian approach. The mass parameters, as well as the
potential energy, depend on the deformations. The terrain of
the PES and the deformation-dependence of mass parame-
ters are sensitively determined by the shell effect. Thus by
changing the neutron/proton number involving neutron-rich
and neutron-deficient nuclei, one can investigate the role of
the mass parameters in low-energy dynamics. Therefore, we
study in the present work the low-energy dynamics governed
by triaxial deformation in neutron-rich nuclei around N = 28,
putting a focus on the role of the mass parameters in the
collective Hamiltonian.

The paper is organized as follows. In Sec. II, we briefly
explain the 5DCH method. In Sec. III, we show the results
and discuss the roles of the mass parameters. Section IV
summarizes the paper.

II. METHOD

We briefly explain the five-dimensional quadrupole collec-
tive Hamiltonian method. For details, we refer to Refs. [1–5].

The collective Hamiltonian reads

H = Tvib + Trot + V (β, γ ), (1)

with the vibrational and rotational kinetic energies,

Tvib = 1

2
Dββ (β, γ )β̇2+Dβγ (β, γ )β̇γ̇ + 1

2
Dγ γ (β, γ )γ̇ 2, (2)

Trot = 1

2

3∑
k=1

Jk (β, γ )ω2
k . (3)

The functions Dββ (β, γ ), Dβγ (β, γ ), and Dγ γ (β, γ ) denote
the vibrational masses and Jk (β, γ ) = 4β2Dk (β, γ ) sin2(γ −
2πk/3) and ωk denote the rotational moments of inertia and
rotational angular velocities in the body-fixed frame of a
nucleus. After quantizing the Hamiltonian, we obtain the col-
lective Schrödinger equation as

[T̂vib + T̂rot + V (β, γ )]�αIM (β, γ ,�) = EαI�αIM (β, γ ,�),
(4)

where EαI and �αIM (β, γ ,�) are the excitation energies and
the collective wave functions with the total angular momen-
tum I , its z component M in the laboratory frame, and α

distinguishing the states with the same I and M. The collective
wave functions are functions of β, γ , and the three Euler
angles � and are written as

�αIM (β, γ ,�) =
I∑

K=even

	αIK (β, γ ) 〈�|IMK〉 (5)

with 〈�|IMK〉 being linear combinations of the Wigner rota-
tional wave functions and K being the z component of I in the
body-fixed frame. The vibrational wave functions 	αIK (β, γ )
are normalized as∫ ∞

0
dβ

∫ π/3

0
dγ |G(β, γ )|1/2

×
I∑

K=even

	∗
αIK (β, γ )	α′IK (β, γ ) = δαα′ , (6)

where the volume element |G(β, γ )|1/2 is given by

|G(β, γ )|1/2 = 2β4
√

W (β, γ )R(β, γ ) sin 3γ (7)

with W (β, γ ) = {Dββ (β, γ )Dγ γ (β, γ ) − [Dβγ (β, γ )]2}β−2

and R(β, γ ) = D1(β, γ )D2(β, γ )D3(β, γ ). Using the collec-
tive wave functions (5), the reduced quadrupole transition
probability is given by

B(E2; αI → α′I ′) = (2I + 1)−1| 〈αI||M̂(E2)||α′I ′〉 |2, (8)

where M̂(E2) is the electric quadrupole operator.
The collective potential V (β, γ ) is obtained by solving the

constrained Hartree-Fock-Bogoliubov (CHFB) equation con-
structed from a Skyrme energy density functional (EDF). The
vibrational masses and the rotational moments of inertia are
calculated by the so-called cranking approximation [34–36]
with the quasiparticle states obtained by the CHFB equation,
hereafter denoted as the cranking mass.

We solve the CHFB equation with the two-basis method
[37,38] in the three-dimensional Cartesian mesh of R =
12.4 fm with the mesh size of 0.8 fm. The single-particle states
at positive energies are cut off so as to become the equivalent
quasiparticle energy of EQP ≈ 30 MeV, which gives a good
convergence in both the collective potential and the cranking
mass in this paper. We used the SkM∗ EDF [39] and the pair-
ing EDF proposed in Ref. [40], which depends on the isoscalar
and isovector densities. Note that, since we used a different
pairing cutoff scheme [41,42] from the one in Ref. [40], we
refitted the pairing strength to reproduce the neutron pairing
gap of 156Dy. For the collective Hamiltonian in the β-γ plane,
we employ a triangular mesh of �β ≈ 0.035 in the region
0 < β < 0.6 and 0◦ < γ < 60◦, consisting of about 200 mesh
points.

III. RESULTS AND DISCUSSION

Figure 1 shows the PESs in the β-γ plane for the Mg,
Si, and S isotopes with N = 26, 28, and 30 calculated by
the constrained HFB. In the obtained PESs, one sees the
minimum at the prolate configuration in 38Mg and 42S and
at the oblate configuration in 42,44Si. The PES of 40Mg has
two local minima at the prolate and oblate sides. One can see
that 42Mg, 40Si, 44S, and 46S possess a unique property that
the potential shows a flat behavior from the spherical point to
a certain value of β, and along the γ direction, namely γ soft.

To see clearly a γ -soft behavior of PESs, Fig. 2 shows the
potential as a function of γ at a fixed β for the nuclei men-
tioned above. In this figure, the potential is shifted to become
V (γ = 0◦) = 0. For each nucleus, the value of β is chosen as
its mean value obtained with the ground-state collective wave
function (α = 1, I = K = 0),

〈β〉 =
∫

dβdγ |G(β, γ )|1/2|	100(β, γ )|2β, (9)

and indicated in the figure. The change in potential along the
γ direction is 0.2–0.4 MeV.

In what follows, we investigate the low-lying states unique
in γ -soft nuclei. The left panels of Fig. 3 show low-lying spec-
tra of 44S (top) and 46S (middle) obtained with the cranking
mass. In the spectra, I � 6 in the 0+

1 band and I � 4 in the
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FIG. 1. Potential energy surface in the β-γ plane of Mg, Si, and
S isotopes with N = 26, 28, and 30 obtained from constrained DFT
calculations with the SkM∗ EDF.

0+
2 and 2+

2 bands are plotted and the B(E2) values larger than
1 W.u. are shown. We find that the spectra between 44S and
46S are very different, especially the order of 4+

1 , 2+
2 , and 0+

2 ,
even though their PESs are very similar to each other as shown
in Fig. 1. The energy ratios defined as R0/2 = E (0+

2 )/E (2+
1 ),

R2/2 = E (2+
2 )/E (2+

1 ), and R4/2 = E (4+
1 )/E (2+

1 ) are R0/2 =
1.65 and 2.45, R2/2 = 1.86 and 1.89, and R4/2 = 2.34 and
2.49 for 44S and 46S, respectively. To understand the reason
for this difference, we focus on the role of the vibrational and
rotational masses on excitation spectra. To this end, we em-
ploy the Bohr Hamiltonian with a constant mass [43], where
the vibrational and rotational masses obtained by the cranking
approximation is replaced by a constant value, neglecting the

FIG. 2. Potential energy as a function of γ at a fixed β for the
selected nuclei. The potential is shifted to V (γ = 0◦) = 0.

FIG. 3. Low-lying excitation spectra and B(E2) values in units
of e2 fm4 of 44S (top) and 46S (middle) with the cranking mass (left)
and the constant mass (right). Those of the E(5)–β4 and Wilets-Jean
models are shown at the bottom. In the E(5)–β4 and Wilets-Jean
models, the value of D in the constant mass is determined by
fitting E (0+

2 ) = 4 MeV and the B(E2) values are normalized to
B(E2; 2+

1 → 0+
1 ) = 50 e2 fm4.

β-γ dependence. Namely [43],

Dββ = Dγ γ /β2 = D1 = D2 = D3 ≡ D, Dβγ = 0. (10)

The right panels in Fig. 3 show the spectra of 44S and 46S
obtained with the constant mass. The value of D is determined
to reproduce the 0+

2 energy obtained with the cranking mass.
Clearly, the patterns of the spectra obtained with the constant
mass are similar to each other. The energy ratios are R0/2 =
2.24 and 2.24, R2/2 = 2.07 and 2.08, and R4/2 = 2.06 and
2.06 for 44S and 46S, respectively. Note that how to determine
the value of D does not change these energy ratios, though the
absolute value of energy changes. If D is determined to give
the 2+

2 energy with the cranking mass, we obtain R0/2 = 2.23,
R2/2 = 2.07, and R4/2 = 2.06 for 44S.
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FIG. 4. Same as Fig. 1, but for the neutron-deficient N =
78 134Ba, 136Ce, 138Nd, 140Sm, and 142Gd nuclides.

To see whether the low-lying spectra are sensitive to the
collective mass in other mass regions, we study low-energy
dynamics of neutron-deficient N = 78 nuclei 134Ba, 136Ce,
138Nd, 140Sm, and 142Gd, whose PESs show flat in the β

direction and γ soft similarly to those of 44S and 46S. Figures 4
and 5 show how PESs of those nuclei are γ soft. The change
in PESs is 0.2–0.6 MeV. As the proton number decreases, the
PES becomes flatter.

Figure 6 shows the R4/2, R2/2, and R0/2 values of 42Mg,
40Si, 44S, and 46S and those of the selected N = 78 nuclei. The
top panel shows the ratios obtained with the cranking mass,
while the middle depicts those with the constant mass. In the
light nuclei with the cranking mass, R0/2 strongly depends on
the nucleus, while the variation of R4/2 and R2/2 is small. The
ratios in N = 78 nuclei are almost constant, R2/2 ≈ 2.0 and
R0/2 ≈ R4/2 ≈ 2.2–2.3 by changing nucleus. Compared with
the cranking mass case, the variation of R0/2 in the light nuclei
becomes significantly small in the constant mass case. In the
N = 78 nuclei, R4/2, R2/2, and R0/2 values are almost constant
around 2.1, 2.1, and 2.5, respectively.

FIG. 5. Same as Fig. 2, but for the N = 78 nuclei.

FIG. 6. R0/2 (filled square), R2/2 (filled circle), and R4/2 (filled
triangle) for the selected nuclei with the cranking mass (a) and
constant mass (b). The ratios obtained with the E(5)–β4 and E(5)–β6

models and the Wilets-Jean model (WJ) are included in (b). Note that
the R0/2 value for the Wilets-Jean model is 3.9. (c) shows the ratios
of the available experimental data from [14] for 44S, from [20] for
40Si, and from [44] for the N = 78 nuclei.

Properties of the low-energy states in γ -soft nuclei have of-
ten been discussed in view of the E(5) critical point symmetry
[7–9]. The E(5) symmetry is realized in the Bohr Hamiltonian
with an infinite square-well potential in β and a constant in
γ . The β2n form of the potential instead of the infinite-well
potential is introduced to describe realistic systems [9,10]. In
Fig. 6, the energy ratios in the E(5)–β4 and E(5)–β6 models
are included and denoted as β4 and β6, respectively. The en-
ergy ratios in the light N ≈ 28 nuclei and N = 78 nuclei with
the constant mass are close to those in the E(5)–β4 and E(5)–
β6 models. The Wilets-Jean model, which describes γ -flat
PES, gives higher energy ratios than the ones with the constant
mass and with the E(5)–β4 and E(5)–β6 models. In the bottom
panels of Fig. 3, the low-lying spectra of the E(5)–β4 and the
Wilets-Jean models are shown up to seniority three. These
spectra are obtained by V (β, γ ) = Cβ4 with C = 80 MeV for
E(5)–β4 and by V (β, γ ) = C(β − 0.3)2 with C = 200 MeV
for the Wilets-Jean model, and with the constant mass D
giving E (0+

2 ) = 4 MeV. The pattern of low-lying spectra in
the E(5)–β4 is close to those of 44S and 46S with the constant
mass: The degeneracy of the 2+

2 and 4+
1 states and that of the

0+
3 , 3+

1 , 4+
2 , and 6+

1 states.
The energy ratios obtained from the available experimental

data in neutron-rich N ≈ 28 nuclei are R4/2 = 1.86, R2/2 =
1.63 and R0/2 = 1.03 in 44S [14], and R4/2 = 2.56 in 40Si [20],
as shown in Fig. 6(c). The energy ratio R0/2 with the crank-
ing mass shows a strong nucleus dependence in neutron-rich
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FIG. 7. Decomposition of the 0+
2 energy to the vibrational kinetic

energy Tvib and the potential energy V divided by the total energy
with the cranking mass for the selected nuclei.

N ≈ 28 nuclei, and one sees a sudden drop in 44S although the
measured value is even lower than the calculated one. In the
N = 78 nuclei, the energy ratios of the available experimental
data in Fig. 6(c) are almost constant, though some of the
R0/2 values are not available. These energy ratios are similar
to those with both the cranking and constant mass cases in
N = 78. More experimental data on the low-lying 0+ state
will give insight into roles of the collective mass.

To further investigate the origin of the different behaviors
of R0/2 in the N ≈ 28 and N = 78 nuclei, we decompose
the energy of the 0+

2 state to the vibrational kinetic energy
and potential energy. These energies are calculated with the
vibrational wave function of the 0+

2 state as

E =
∫

dβdγ |G(β, γ )|1/2	∗
200(β, γ )Ê	200(β, γ ), (11)

where Ê = T̂vib or V (β, γ ). Figure 7 shows the vibrational
kinetic energy Tvib and the potential energy V divided by
their sum Etotal = 〈Tvib〉 + 〈V 〉, the absolute value of the 0+

2
energy, for the N ≈ 28 and N = 78 nuclei. Note that there is
no contribution of rotation in the I = 0 states. In the N ≈ 28
nuclei, Tvib is larger than V . A large Tvib with the deformation-
dependent cranking mass enhances the nucleus dependence
of the 0+

2 energy. Furthermore, we found that the ratios of
Tvib, Trot, and V to the total energy in the 0+

1 and 2+
1 states

are almost the same and do not depend on the nucleus so
much. Therefore, we observe the strong nucleus-dependent
R0/2 values. In N = 78, the two energies are close to each
other and do not much depend on the nucleus. Thus, we have
obtained that the R0/2 values do not depend on the nucleus
even with the deformation-dependent cranking mass.

The similar feature to the energy ratios is indeed ob-
tained in the B(E2) ratios. Figure 8 shows the B(E2)
ratios RB0/2 = B(E2; 02 → 21)/B(E2; 21 → 01), RB2/2 =
B(E2; 22 → 21)/B(E2; 21 → 01), and RB4/2 = B(E2; 41 →
21)/B(E2; 21 → 01) for the selected nuclei with the cranking
mass (top) and the constant mass (bottom). The RB0/2 value in
the light N ≈ 28 nuclei with the cranking mass shows a strong
dependence on the nucleus. The change in the RB0/2 value in
the light nuclei with the constant mass is relatively moderate.
In the N = 78 nuclei, however, all the B(E2) ratios considered

FIG. 8. B(E2) ratio for the selected nuclei with the cranking
mass (a) and constant mass (b) together with E(5)–β4 and E(5)–β6

models and the Wilets-Jean model (WJ).

do not depend on the nucleus with both the cranking mass and
the constant mass. The B(E2) ratios in both the light N ≈ 28
nuclei and N = 78 nuclei with the constant mass are close to
those in the E(5)–β4 and E(5)–β6 models. These results imply
that the 0+

2 state in the light nuclei is sensitive to the collective
mass. We are going to investigate the 0+

2 state in terms of the
collective wave functions below. Furthermore, we conclude
that the sensitivity of the collective mass to the low-lying spec-
tra is strong in the light neutron-rich nuclei around N = 28
uniquely.

We discuss the structure of the collective wave functions
(WFs) of the 0+

1 and 0+
2 states. First, we look into the WFs

with the constant mass shown in Fig. 9. Here, the WFs are
multiplied by β4√W (β, γ )R(β, γ ), the volume element with-
out sin 3γ . The WF of the 0+

1 state is spread over along the
γ direction. This is indeed expected from the γ -soft prop-
erty in the PESs. The WF of 0+

2 has a node along the β

direction. This is common in 44S and 46S. As expected from
the PESs in 44S and 46S, the WFs with the constant mass
look similar to those in the E(5)–β4 model shown in the
fifth column in Fig. 9. Next, we discuss the WFs with the
cranking mass. The WF of the 0+

1 state is spread along the
γ direction as obtained with the constant mass and peaks
at γ ≈ 20◦ in 44S and at the oblate side in 46S. The WF of
the 0+

2 state in 44S is more or less similar to that obtained
with the constant mass, although the localization around the
prolate side is strong. In 46S, the structure of the WF of 0+

2 is
different from that obtained with the constant mass: The WF
has two peaks at the prolate and oblate sides. The two-peak
structure in the collective WF of the 0+

1 and 0+
2 states is a

typical feature of shape coexistence, such as in 72Kr [45].
The collective WF of the only 0+

2 state in 46S looks similar
to the collective WFs of the 0+

1 and 0+
2 states in 72Kr. Thus,

the 0+
1 and 0+

2 states in 46S are not interpreted as a usual
shape coexistence. This result is rather similar to the one
obtained in the Wilets-Jean model shown in the sixth column
in Fig. 9.
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FIG. 9. Vibrational wave functions |�α00(β, γ )|2 multiplied by β4|W (β, γ )R(β, γ )|1/2 of the 0+
1 (top) and 0+

2 (bottom) states with the
cranking and constant masses for 44S and 46S. The right two columns show those with the E(5)–β4 and Wilets-Jean models.

IV. SUMMARY

We have investigated the role of the mass parameters in
the collective Hamiltonian for the triaxial-shape dynamics in
neutron-rich nuclei with N � 28. The PESs are obtained by
the constrained HFB method with a Skyrme-type EDF. We
found that the PES in 42Mg, 40Si, 44S, and 46S possesses a
topography similar to each other and is soft against triaxial
deformation. The low-lying spectra obtained by assuming the
mass parameters as constant are similar. However, the spectra
obtained considering the deformation dependence of the mass
parameters with the cranking approximation show character-
istic features. The second 0+ state is sensitive to the treatment
of the mass parameters. The energy ratio R0/2 and the B(E2)

ratio RB0/2 show a strong nucleus dependence. The depen-
dence of R0/2 and RB0/2 on the nucleus in neutron-deficient
N = 78 nuclei, which also exhibit the γ -soft nature, is less
pronounced. We clarified the unique role of the collective
mass in N ≈ 28 nuclei.
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