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Configuration mixing and intertwined quantum phase transitions in odd-mass niobium isotopes
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Nuclei in the Z ≈ 40, N ≈ 60 region have one of the most complicated structural evolutions across the
nuclear chart, with coexisting shapes arising from different mixed configurations. In such a region, it is
difficult to investigate odd-mass nuclei. In this paper a new algebraic framework is introduced: the interacting
boson-fermion model with configuration mixing. Using this framework, with a boson core and a proton in
the 1 f5/2, 2p3/2, 2p1/2, 1g9/2 orbits, a calculation is carried out to understand the structural evolution of the
odd-mass niobium isotopes (Z = 41) with neutron number 52–62. The calculated results are compared to energy
levels, two-neutron separation energies, E2 and M1 transition rates, and quadrupole and magnetic moments. The
detailed analysis discloses the effects of an abrupt crossing of states between normal and intruder configurations
[Type II quantum phase transition (QPT)], which is accompanied by a gradual evolution from spherical- to
deformed-core shapes within the intruder configuration (Type I QPT), where both types of QPTs occur around
the critical point of neutron number 60. The identification of both types of QPTs in the same chain of isotopes
provides an empirical manifestation of intertwined quantum phase transitions (IQPTs) in odd-mass nuclei and
the relevance of IQPTs to the niobium chain.

DOI: 10.1103/PhysRevC.108.014320

I. INTRODUCTION

A. Intertwined quantum phase transitions
in odd-mass nuclei

Quantum phase transitions (QPTs) [1,2] are structural
changes induced by variation of parameters in the Hamil-
tonian, and are considered pivotal for understanding the
dynamics of atomic nuclei [3] and other systems [4].

In nuclear structure, most of the attention has been devoted
to the evolution of structure exhibiting two types of phase
transitions. The first type of QPT, denoted as Type I [5], is a
shape-phase transition in a single configuration. One common
approach for investigating Type I QPTs is by using Hamilto-
nians composed of two (or more) different parts [6]:

Ĥ = (1 − ξ )Ĥ1 + ξ Ĥ2. (1)

In Eq. (1) one examines the equilibrium shape and symmetry
of the Hamiltonian, which vary from those of Ĥ1 to those of Ĥ2

as the control parameter ξ is varied from 0 to 1. Type I QPTs
have been established in the neutron number 90 region for
Nd-Sm-Gd-Dy isotopes, where the shape of the nuclei evolves
from spherical to deformed [3].

The second type of QPT, denoted as Type II, is a transition
in two (or more) configurations that coexist [7] and cross.
One common approach for investigating Type II QPTs is by
using Hamiltonians composed of a matrix form [8]. For two
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configurations, this reads

Ĥ =
[

ĤA(ξA) Ŵ (ω)

Ŵ (ω) ĤB(ξB)

]
, (2)

where ĤA and ĤB denote the A configuration (normal) and B
configuration (intruder) Hamiltonians and Ŵ their coupling.
In Eq. (2), one examines the evolution of structure from A
to B by varying the control parameters ξA, ξB and ω. Type II
QPTs have been established in nuclei near shell closure, e.g.,
in the light Pb-Hg isotopes, with strong mixing between the
configurations.

A Type II QPT occurs when protons and neutrons that
occupy spin-orbit partner orbitals, π (n��±1/2)–ν(n��∓1/2), in-
teract via the residual isoscalar proton-neutron interaction, Vpn

[9]. The resulting gain in n-p energy compensates the loss in
single-particle and pairing energy. As a consequence, a mutual
polarization effect occurs, which lowers single-particle or-
bitals of higher configurations to near (and effectively below)
the ground state configuration. If the mixing is small, the
Type II QPT can be accompanied by a distinguished Type I
QPT within each configuration separately. Such a scenario,
referred to as intertwined QPTs (IQPTs), was recently shown
to occur in the even-even zirconium (Zr) isotopes [10–12].

Most studies of QPTs in nuclei have focused on systems
with even numbers of protons and neutrons [3,6,7,13,14].
The structure of odd-mass nuclei is more complex due to
the simultaneous presence of both collective and single-
particle degrees of freedom. Consequently, QPTs in such
nuclei have been far less studied. Fully microscopic ap-
proaches to QPTs in medium-heavy odd-mass nuclei, such
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as large-scale shell model [15] and beyond-mean-field
methods [16], were suggested. However, they are com-
putationally demanding. Other approaches have also been
proposed including algebraic frameworks (shell-model in-
spired [17,18] and symmetry-based [19–26]) and density
functionals-based mean-field methods [27–30], involving
particle-core coupling schemes with boson-fermion or collec-
tive Hamiltonians. So far, these approaches were restricted
to Type I QPTs in odd-mass nuclei without configuration
mixing.

As mentioned in previous works [29,31–34], there is a
growing need to develop a tractable framework that incorpo-
rates mixing of multiple configurations in odd-mass nuclei.
This task is carried out in the present paper.

B. The niobium isotopes

One region in the nuclear chart that is considered to
accommodate mixed configurations and undergo a Type II
QPT is the Z ≈ 40 region near neutron number 60. In this
region, the ground state wave function seems to be domi-
nated by a spherical configuration for neutron number 50–58
and by a deformed configuration for neutron number 60 and
above [9,35–37].

The sudden onset of deformation has been ascribed
in the shell model to Vpn between nucleons that occupy
the π (1g9/2)–ν(1g7/2) spin-orbit partners [9,36–38],
which results in a crossing between the normal and
intruder configurations. The crossing arises as the
ν(2d5/2, 3s1/2, 2d3/2, 1g7/2, 1h11/2) orbits are filled, which
induces a promotion of the protons across the Z = 40 subshell
gap. This promotion creates 2p-2h intruder excitations [9,39]
and the so-called configuration mixing scenario in this
region. Promoting the protons also generates a quenching
in the difference between the single-particle energies of
the π (2p1/2)–π (2p3/2) orbits [40]. Subsequently, it was
also found [41] that alongside the π (2p1/2), π (2p3/2)
orbits the π (1 f5/2) orbit contributes significantly to the
intruder excitations of the π (1g9/2) orbit in the lighter
92,94,96Zr isotopes. This contribution was also demonstrated
in the recent Monte-Carlo shell model [42] calculation
for the chain of the even-even Zr isotopes with neutron
number 50–70.

These dramatic structural changes have attracted consid-
erable theoretical and experimental interest (for reviews see
[7,43]). For odd-A nuclei, different theoretical approaches
have studied this region, including nonrelativistic mean-
field based methods [29,32,44–46], shell model approaches
[41,47–50], and algebraic approaches [31,33,51–54], where
large-scale shell model approaches are scarce [55,56].

The structure of niobium (Nb) isotopes (Z = 41) with neu-
tron number 52–62 was recently investigated for first time
within the new framework of the interacting boson-fermion
model with configuration mixing [57]. The positive-parity
states were analyzed to exemplify the occurrence of IQPTs,
similarly to the adjacent even-even Zr isotopes [10,12]. In this
work, the analysis of Ref. [57] is extended to the negative-
parity states, along with more observables that are compared
to experimental data. This comparison is further supported by

analyzing the configuration and single-particle content of the
wave functions for the entire chain.

C. Layout

The paper is divided into the following sections. Section II
presents the theoretical framework, which includes the bo-
son Hamiltonian (Sec. II A), fermion Hamiltonian (Sec. II B),
boson-fermion interaction (Sec. II C), electromagnetic tran-
sitions operators (Sec. II D), and wave functions (Sec. II E).
In Sec. III QPTs in the Nb chain are discussed, presenting
Type I and Type II QPTs in odd-mass nuclei (Sec. III A) and
the Nb model space for the IBFM-CM (Sec. III B).

The results are divided into two main sections. In Sec. IV
the results for the individual isotopes are presented, which
include spectrum analysis. This section is further partitioned
into positive-parity states (Sec. IV A), in the 93–97Nb re-
gion (Sec. IV A 1) and the 99–103Nb region (Sec. IV A 2),
and negative-parity states (Sec. IV B), in the 93–97Nb region
(Sec. IV B 1) and the 99–103Nb region (Sec. IV B 2). Sec-
tion V presents results for the evolution of configuration and
single-particle content (Sec. V A), energy levels (Sec. V B),
two-neutron separation energies (Sec. V C), E2 transition
rates and quadrupole moments (Sec. V D), and M1 and mag-
netic moments (Sec. V E). The conclusions and outlook are in
Sec. VI.

II. THEORETICAL FRAMEWORK

For the study of QPTs in the Nb isotopes the algebraic
framework of the interacting boson-fermion model (IBFM)
[18] is used. The IBFM treats odd-A nuclei as a system of
monopole (s) and quadrupole (d) bosons, representing valence
nucleon pairs, and a single (unpaired) nucleon. In a previous
paper [57], the IBFM was extended to include core excitations
and obtain a boson-fermion model with configuration mixing
(IBFM-CM). In such a model, the Hamiltonian has the form

Ĥ = Ĥb + Ĥf + V̂bf , (3)

where Ĥb is the boson core Hamiltonian, Ĥf is fermion
single-particle Hamiltonian, and V̂bf is the boson-fermion
interaction.

A. The boson Hamiltonian

For a single configuration, the interacting boson model
(IBM) Hamiltonian consists of Hermitian and rotational-
scalar interactions that conserve the total number of s and d
bosons,

N̂ = n̂s + n̂d = s†s +
∑

μ

d†
μdμ. (4)

The latter is fixed by the microscopic interpretation of the
IBM [58] to be N = Nπ + Nν , where Nπ (Nν) is the num-
ber of proton (neutron) particle or hole pairs counted from
the nearest closed shell. For multiple shell model configura-
tions, different shell model spaces of 0p-0h, 2p-2h, 4p-4h, . . .

particle-hole excitations are associated with the corresponding
boson spaces of N, N + 2, N + 4, . . . bosons, respectively,
which are subsequently mixed. The boson Hamiltonian (Ĥb) is
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that of the configuration mixing model (IBM-CM) of [59,60],
and has the form [8]

Ĥb =
[

ĤA
b (ξ (A)) Ŵb(ω)

Ŵb(ω) ĤB
b (ξ (B))

]
. (5)

Here ĤA
b (ξ (A)) represents the normal A configuration (N

boson space) and ĤB
b (ξ (B)) represents the intruder B con-

figuration (N + 2 boson space), corresponding to 2p-2h
excitations across the (sub)shell closure. Standard forms of
Ĥ i

b(ξ i ) with i = A, B include pairing, quadrupole, and rota-
tional terms, in the following form [12]:

Ĥ i
b = ε

(i)
d n̂d + κ (i)Q̂χ · Q̂χ + κ ′(i)L̂ · L̂ + δi,B�, (6)

where � is the offset energy between configurations A and B,
the quadrupole operator is

Q̂χ = d†s + s†d̃ + χ (d†d̃ )(2), (7)

and the mixing term is

Ŵb = ω[(d†d†)(0) + (s†)2] + H.c., (8)

where H.c. stands for Hermitian conjugate. In Eqs. (7) and (8)
d̃μ = (−)μd−μ. Such IBM-CM Hamiltonians have been used
extensively for the study of shape coexistence, configuration
mixing, and QPTs in even-even nuclei [10–12,59–67].

B. The fermion Hamiltonian

The fermion Hamiltonian (Ĥf ) of Eq. (3) has the form

Ĥf =
[∑

j ε
(A)
j n̂ j 0

0
∑

j ε
(B)
j n̂ j

]
, (9)

where j is the angular momentum of the occupied or-
bit, n̂ j = ∑

μ a†
jμa jμ the corresponding number operator

and ε
(i)
j (i = A, B) are the single-particle energies for each

configuration, A or B. In this work, the single-particle
energies are determined using the microscopic interpre-
tation of the IBFM [18] (see the Appendix for more
details).

C. The boson-fermion interaction

The boson-fermion interaction has the form

V̂bf =
[

V̂ A
bf (ζ (A)) Ŵbf (ω j )

Ŵbf (ω j ) V̂ B
bf (ζ (B))

]
. (10)

Here, V̂ (i)
bf (i = A, B) is the general boson-fermion interaction

[18] for each configuration. In this work it involves monopole,
quadrupole, and exchange terms

V̂ (i)
bf = V MON(i)

bf + V QUAD(i)
bf + V EXC(i)

bf , (11)

which read
V MON(i)

bf =
∑

j

A(i)
j [[d† × d̃](0) × [a†

j × ã j]
(0)](0)

0 , (12a)

V QUAD(i)
bf =

∑
j j′


(i)
j j′[Q̂χ · [a†

j × ã j′ ]
(2)](0)

0 , (12b)

V EXC(i)
bf =

∑
j j′ j′′

�
j′′(i)
j j′ : [[d† × ã j]

( j′′ ) × [d̃ × a†
j′ ]

( j′′ )](0)
0 :,

(12c)

where ã jμ = (−) j+μa j−μ. Using the microscopic interpreta-
tion of the IBFM [18], these couplings can be expressed in
terms of strengths (A(i)

0 , 
(i)
0 ,�

(i)
0 ) and occupation probabil-

ities (u j, v j ) (see the Appendix for more details). The new
off-diagonal term contributes to the j-dependent mixing

Ŵbf (ω j ) =
∑

j

ω j n̂ j[(d
†d†)(0) + (s†)2 + H.c.]. (13)

D. Electromagnetic transitions operators

Operators inducing electromagnetic transitions of type σ

and multipolarity L contain boson and fermion parts,

T̂ (σL) = T̂b(σL) + T̂f (σL). (14)

For σL = E2 transitions, the boson and fermion parts of
Eq. (14) are

T̂b(E2) = e(A)Q̂(N )
χ + e(B)Q̂(N+2)

χ , (15a)

T̂f (E2) =
∑

j j′
f (2)

j j′ [a†
j × ã j′ ]

(2), (15b)

In Eq. (15a), e(A), e(B) are the boson effective charges for con-
figuration A and B, respectively. The superscript (N ) denotes
a projection onto the [N] boson space, and in Eq. (15b) f (2)

j j′
reads

f (2)
j j′ = − e f√

5
〈 j||Y (2)

lm || j′〉, (16)

where e f is the effective charge for E2 transitions.
For σL = M1 transitions, the boson and fermion parts of

Eq. (14) are

T̂b(M1) =
∑

i

√
3

4π
g(i)L̂(Ni ) + g̃(i)[Q̂(Ni )

χ × L̂(Ni )
](1)

. (17a)

T̂f (M1) =
∑

j j′
f (1)

j j′ [a†
j × ã j′ ]

(1), (17b)

with

f (1)
j j′ = − f1√

3
〈 j||gl l̂ + gsŝ|| j′〉. (18)

Here, i = (A, B) and NA = N, NB = N + 2. For a proton, the
free value for the spin g factor is gs = 5.5857 µN , and for the
angular g factor it is gl = 1 µN (see the Appendix for more
details about the quenching of gs).

E. Wave functions

The Hamiltonian of Eq. (3) is diagonalized numerically.
The resulting eigenstates, |�; J〉, are linear combinations of
wave functions �A and �B, involving bosonic basis states
in the two spaces |[N], α, L〉 and |[N + 2], α, L〉, where α

denotes additional quantum numbers characterizing the boson
basis used. The boson (L) and fermion ( j) angular momenta
are coupled to J and the combined wave function has the form

|�; J〉 =
∑
α,L, j

C(N,J )
α,L, j |�A; [N], α, L, j; J〉

+
∑
α,L, j

C(N+2,J )
α,L, j |�B; [N + 2], α, L, j; J〉. (19)
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For such a wave function, it is possible to examine the proba-
bility of normal-intruder mixing,

P(Ni,J ) =
∑

j

P(Ni,J )
j , (20)

with P(NA,J ) + P(NB,J ) = 1. Here, P(Ni,J )
j is the probability of a

single-particle orbit j within a certain configuration i:

P(Ni,J )
j =

∑
α,L

∣∣C(Ni,J )
α,L, j

∣∣2
. (21)

III. QPTs IN THE NIOBIUM CHAIN

A. Type I and Type II QPTs

The occurrence of QPTs in Bose-Fermi systems for a
single-configuration in the framework of the IBFM is more
complicated than in the case of boson systems (IBM) [24].
QPTs in odd-mass nuclei consider the effect of the odd nu-
cleon on the phase transitions of the boson core. Considering
the U(5)-SU(3) boson QPT (Type I), in the adjacent odd-mass
system the transition is from a weak coupling [spherical U(5)
boson core] to a strong coupling [axially deformed SU(3)
boson core] spectrum.

A U(5) spherical spectrum is typically identified with
couplings of the fermion orbits j with states L of the ad-
jacent even-even system to give a total angular momentum
J = L ⊗ j,

|L − j| � J � |L + j|. (22)

For the ground state 0+ of the adjacent even-even isotope, this
results in states with a total J = j, while for a first-excited 2+
it results in a multiplet of states, for each of the j orbits. Their
respective irreducible representations (irreps) in the boson
U(5) limit are nd = 0 and 1. For a single- j coupling, L ⊗ j,
one can compare the energy of the state L of the adjacent
even-even nuclei to the “center of gravity” (CoG) [68] of a
multiplet of states Eq. (22) by calculating

�ECoG =
∑

J (2J + 1)EJ

(2L + 1)(2 j + 1)
, (23)

where EJ are the excitation energies of the states with total J
that belong to the multiplet. The E2 [M1] transitions between
members of the weakly deformed multiplet (originating from
the 2+ with nd = 1) and the single state (originating from the
0+ with nd = 0) are comparable to [weaker than] those of the
adjacent even-even isotope while E2 [M1] transitions between
the multiplet members are weak [strong].

An SU(3) deformed spectrum is typically identified with
rotational bands starting at some value K of angular momen-
tum. For a single- j scenario (ignoring K bands mixing), the
energy typically behaves as

EK (J ) = BJ (J + 1), (24)

where B is the moment of inertia. The magnetic and
quadrupole moments for each of the states in the band and
the M1 and E2 transitions among them can be compared

to the geometric collective model expressions of Bohr and
Mottelson (BM) [69] for K 	= 1/2:

Q(J, K ) = Q0〈J, K, 2, 0|J, K〉〈J, J, 2, 0|J, J〉, (25a)

μ(J, K ) = gRJ + (gK − gR)
K2

J + 1
, (25b)

and

B(E2; J ′, K → J, K ) = Q2
0

(
5

16π

)

×〈J ′, K, 2, 0|J, K〉2
, (26a)

B(M1; J ′, K → J, K ) = 3

4π
(gK − gR)2K2

×〈J ′, K, 1, 0|J, K〉2
, (26b)

where Q0, gR, and gK are fitted to the data, and gR is expected
to behave as gR ≈ Z/A.

For multiple configurations, one would expect, as in the
adjacent even-even case, to observe a crossing of states that
are associated with the different configurations that are mixed
(Type II QPT), where in a weak mixing scenario the above
considerations for transitions would apply for each configura-
tion separately.

B. Niobium model space for IBFM-CM

The A
41Nb isotopes with mass number A = 93–103 are de-

scribed by coupling a proton to their respective 40Zr cores
with neutron number 52–62. The latter isotopes have been
suggested to have [10–12] a normal A configuration that
corresponds to having no active protons above the Z = 40
subshell gap, and an intruder B configuration that corre-
sponds to two-proton excitation from below to above this
gap, creating 2p-2h states. The parameters of Ĥb (5) and
boson numbers are taken to be the same as in a previous
calculation of these Zr isotopes. According to the usual bo-
son counting, the corresponding bosonic configurations have

FIG. 1. Schematic representation of the two coexisting shell-
model configurations (A and B) for 99

41Nb58. The corresponding
numbers of proton bosons (Nπ ) and neutron bosons (Nν), relevant
to the IBM-CM, are listed for each configuration and are depicted by
a pair of particles (in red or blue) and a pair of holes (in white). There
are no active proton bosons for configuration A. Alongside them, the
extra proton (in yellow) is shown at the proton π (1g9/2) orbit.
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FIG. 2. Parameters of the IBFM-CM boson-fermion interaction,
Eq. (11), in MeV. For more details see the Appendix.

proton bosons Nπ = 0 for configuration A and Nπ = 2 for
configuration B. Both configurations have neutron bosons
Nν = 1, 2, . . . , 6 for neutron number 52–62, which sums
to a total of N = 1, 2, . . . 6, for 92–102Zr, respectively (see
Table V of [12] for more details). For the odd particle, the
valence protons are assumed to reside in the Z = 28–50 shell
with the π (1 f5/2), π (2p3/2), π (2p1/2), π (1g9/2) orbits. The
two configurations and the odd proton are shown schemati-
cally in Fig. 1 for 99Nb.

IV. RESULTS: DETAILED QUANTUM ANALYSIS
OF INDIVIDUAL ISOTOPES

The quantum analysis for 93–103Nb entails a detailed com-
parison of the experimental energies and E2 and M1 transition
rates with the results of the calculation for the positive-
and negative-parity states. The strengths of the boson-
fermion interaction and single quasiparticle energies take
the same value for both configurations, i.e., A(i)

0 , 
(i)
0 ,�

(i)
0 =

A0, 0,�0 and ε
(i)
j = ε j for i = A,B, and are shown in

Fig. 2 and Tables I and II. The BCS calculation and fit-
ting procedure employed to obtain them are discussed in the
Appendix.

The wave functions obtained are of the form of Eq. (19)
with j = π (1g9/2) for the positive-parity sector and j =
π (2p1/2), π (2p3/2), π (1 f5/2) for the negative-parity sector.
The negative- and positive-parity calculations are done inde-
pendently, where the ground state is always positive parity.
Therefore, a shift in energy is added to the excitations of
the negative-parity energies that places the lowest calculated
energy at the experimental value. In Figs. 3–12, and 14
states in black (blue) belong to the normal (intruder) A (B)
configuration.

TABLE I. Empirical single-particle energies (Ej) taken from Ta-
ble XI of [83] and calculated single-quasiparticle energies (ε j) in
MeV with occupation probabilities (v2

j ) for the different j orbits, with
a resulting Fermi energy of λF = 2.024 MeV.

Orbit Ej ε j v2
j

1g9/2 2.684 1.639 0.299
2p1/2 1.753 1.524 0.589
2p3/2 0.486 2.148 0.858
1 f5/2 0.000 2.519 0.902

TABLE II. Parameters in MeV of the boson-fermion interactions,
V̂ (i)

bf of Eq. (11), obtained from a fit assuming A(i)
0 = A0, 

(i)
0 = 0,

and �
(i)
0 = �0, where (i = A, B).

Neutron number 52 54 56 58 60 62

A0 0 0 0 −0.11 −0.2 −0.2
0 1.0 1.0 1.0 1.0 1.0 1.0
�0 1.0 1.0 3.0 3.0 3.8 3.8

A. Positive-parity states

For the positive parity states only the π (1g9/2) orbit plays a
role, which reduces the calculation to a single- j one. The indi-
vidual isotopes are divided into two regions: a weak coupling
region for 93–97Nb and the IQPT region for 99–103Nb, which
also incorporates strong coupling.

For the region of 93–97Nb, the calculation is compared to
the experimental levels in Figs. 3–5, including E2 and M1
transitions among them. For each isotope, the spectrum ex-
hibits coexistence of two spherical configurations with weak
mixing between them. The corresponding spectra of 92,94,96Zr,
the even-even cores, are also shown with an assignment of
selected levels L to the normal A or intruder B configurations
(in subscript), based on the analysis in Ref. [12], which also
showed that the two configurations in 92,94,96Zr are spherical
and weakly deformed, respectively.

For the 99–103Nb region, the calculation is compared to
the experimental levels in Figs. 6–8, including E2 and M1
transitions among them. For 99Nb, the spectrum exhibits co-
existence of two configurations, one spherical and one weakly
deformed, where only the ground state seems to belong to the
normal A configuration. For 101,103Nb, the spectrum exhibits
a rotational pattern that resembles a strong coupling scenario
within the intruder B configuration.

1. The 93–97Nb region: Weak coupling

For 93–97Nb, shown in Figs. 3–5, the weak coupling be-
tween the ground state, 0+

1;A, of 92–96Zr and the π (1g9/2) yields
the ground state 9/2+

1 of 93–97Nb. For the 2+
1;A, the coupling to

the π (1g9/2) yields a quintuplet of states. For 93Nb, the ex-
perimental states 7/2+

1 (0.744), 5/2+
1 (0.809), 11/2+

1 (0.979),
13/2+

1 (0.950), 9/2+
3 (1.297) (in parentheses are energies

in MeV), are the members of this quintuplet. They have a
CoG (23) of 0.976 MeV, which is close to the observed
energy 0.935 MeV of the 2+

1 in 92Zr. For 95Nb, the ex-
perimental states 7/2+

1 (0.724), 5/2+
1 (0.73), 13/2+

1 (0.825),
5/2+–13/2+(1.149), 9/2+

4 (1.337) are members of this quin-
tuplet. They have a CoG (23) of 0.9776 MeV, which is close
to the observed energy 0.919 MeV of the 2+

1 in 94Zr. For both
93,95Nb the calculation reproduces the energies of the quintu-
plet to a good degree. For 97Nb there are not enough data to
clearly assign the existing states to a given configuration, and
this remains to be explored.

The E2 transitions from the quintuplet states to the ground
state are comparable in magnitude to the 2+

1;A → 0+
1;A transi-

tion in 92–96Zr [6.4(6), 4.9(3), 2.3(3) W.u., respectively]. For
93Nb, the calculation reproduces the data to a good degree,
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FIG. 3. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 93Nb and 92Zr. Normal (intruder) states are depicted in black (blue). Lines connecting L-levels in 92Zr to sets of J-levels in 93Nb
indicate the weak coupling (L ⊗ 9

2 )J . Data taken from [50,70]. Note that the observed 4+
1;A state in 92Zr is outside the boson N = 1 model

space.

except for 9/2+
3 , whose experimental decay [1.52(10) W.u.]

is weaker than the others and the calculation (3.29). For
95–97Nb there are no measured E2 or M1 transitions. The M1
transitions of 93Nb from the quintuplet to the ground state
are weak, the 7/2+

1 → 9/2+
1 , 11/2+

1 → 9/2+
1 , have B(M1) of

0.099(8), 0.085(6) W.u., while M1 transitions within states
of the quintuplet are strong, the 5/2+

1 → 7/2+
1 , 9/2+

3 →
11/2+

1 , 9/2+
3 → 7/2+

1 have B(M1) of 0.160(12), 0.73(18),
0.16(3) W.u., as expected for weak coupling to a spheri-
cal vibrator [18] and which the calculation suggests. The

situation for calculated E2 and M1 transitions is similar
in 95–97Nb.

In Fig. 3, one can also identify a nonuplet of states, from
(1/2+

1 ) to 17/2+
1 , built on the 4+

1;A state of 92Zr in the empirical
spectrum of 93Nb, with a CoG of 1.591 MeV, close to the
1.495 MeV of 4+

1;A. This 4+
1;A is outside the calculated 92Zr

model space (with boson number Nb = 1 for the normal A
configuration; see [12] for more details) and as a consequence
so are the resulting states of 93Nb. Nevertheless, it supports
the weak coupling scenario. In Fig. 4, one can also identify

FIG. 4. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 95Nb and 94Zr. Normal (intruder) states are depicted in black (blue). Lines connecting L-levels in 94Zr to sets of J-levels in 95Nb
indicate the weak coupling (L ⊗ 9

2 )J . Data taken from [71]. Note that the observed 4+
1;A state in 94Zr is considered outside the boson N = 2

model space.
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FIG. 5. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 97Nb and 96Zr. Normal (intruder) states are depicted in black (blue). Lines connecting L-levels in 96Zr to sets of J-levels in 97Nb
indicate the weak coupling (L ⊗ 9

2 )J . Data taken from [72].

a nonuplet of states, built on the 4+
1;A state of 94Zr in the

experimental spectrum of 95Nb; however, data to identify all
of them and calculate their CoG are lacking.

The IBFM-CM also allows one to identify and analyze the
intruder B configuration of 93–97Nb, where the weak coupling
scenario is also valid. As shown in Figs. 3–5, the coupling
of π (1g9/2) to the 0+

2;B state in 92–96Zr, yields the excited
9/2+

2 state in 93–97Nb. For the 2+
2;B state the coupling yields

another quintuplet of states. For 93Nb, it is the experimental
7/2+

3 (1.484), 5/2+
3 (1.666), 9/2+

4 (1.683), 13/2+
2 (1.686),

11/2+
3 (1.969) that are reproduced to a good degree by the

calculation and whose experimental CoG is 1.719 MeV, a bit
lower than the energy 1.847 MeV of the 2+

2;B of 92Zr. For 95Nb,
it is the 7/2+

3 (1.704), (5/2–13/2)+(1.686), 5/2+
2 (1.813),

(5/2+–13/2)+(1.969), 9/2+
4 (1.903) that are reproduced to a

good degree by the calculation and whose experimental CoG
is 1.803 MeV, a bit higher than the energy 1.671 MeV of the
2+

2;B of 94Zr. It is interesting to note that the energy difference
from the 0+

2;B, and the 9/2+
2 that is associated with it,

E (0+
2;B) − E (9/2+

2 ), becomes larger when going from 93,95Nb

FIG. 6. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates
in W.u., for 99Nb. The 9/2+

1 state is assigned to the normal A configuration (depicted in black) and the rest of the states to the intruder B
configuration (depicted in blue). Data taken from [73].
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FIG. 7. Experimental and calculated energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in W.u. for
101Nb. Shown are states that were assigned to different bands in the intruder configuration up to ≈1.5 MeV (a few other states not shown could
not be associated with a certain band), except the 9/2+

9 , which is normal. Data taken from [75,76].

(where the differences are 0.3, 0.212 MeV, respectively) to
97Nb (where the difference is 0.422 MeV), suggesting the
additional fermion increases collectivity, which reduces the
energy of the 9/2+

2 state compared to the 0+
2;B state of 92–96Zr.

For 93Nb, the observed B(E2; 9/2+
2 → 9/2+

1 ) = 1.03(9) W.u,
is close to the calculated value 0.85 W.u., but is smaller than
the observed value B(E2; 9/2+

3 → 9/2+
1 ) = 1.52(10) W.u.,

suggesting that the 9/2+
2 is associated with the B

configuration, but that the mixing between these states
is possibly stronger than predicted. This is contrary to
previous works [50,74] that assigned the 9/2+

2 as part of the

configuration A quintuplet. A similar situation occurs with
11/2+

3 state. The observed B(E2; 11/2+
3 → 9/2+

2 ) = 6(3) and
B(E2; 11/2+

3 → 9/2+
3 ) = 5(2) W.u. suggest a fragmentation

of the 11/2+
3 compared to the calculated values of 16 and

0.6 W.u., respectively. The observed value of B(E2; 11/2+
3 →

11/2+
1 ) = 21(7) W.u., which is calculated to be 0.1 W.u.,

suggests that this fragmentation is possibly due to stronger
mixing between the 11/2+ states, also due to the stronger
B(E2; 11/2+

2 → 7/2+
1 ) = 17(7). The strong B(E2; 5/2+

3 →
7/2+

1 ) = 90(35) [50], calculated to be weak (0.1) might
suggest stronger mixing for either the 5/2+

3 or 7/2+
1 states.

FIG. 8. Experimental and calculated energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in W.u. for
103Nb. All states are assigned to the intruder configuration. Data taken from [76,77].
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2. The 99–103Nb region: IQPT and strong coupling

For 99Nb, shown in Fig. 6, the ground state is a re-
sult of the weak coupling between the 0+

1;A of the 98Zr
core and the π (1g9/2) orbit. The higher lying states, how-
ever, are all intruder. This is in line with the case of 98Zr,
where some of the configuration B states lie below the
first excited 2+ of configuration A. For example, although
mixing is stronger, the calculated 7/2+

1 has a large nd = 1
component (�60%), which associates it as part of the quin-
tuplet that originates from the coupling of the π (1g9/2) with
the 2+

1;B of 98Zr. The higher lying calculated states have
larger nd mixing. The calculated 7/2+

1 is lower in energy
than the 9/2+

2 , which is mainly composed of the coupling
between the π (1g9/2) and the 0+

2;B of 98Zr. This is an ex-
ample for the onset of deformation that has been identified
in 98Zr [10,12]. The few measured E2 and M1 transitions
are reproduced qualitatively for the B(E2; 5/2+

1 → 9/2+
1 ) =

4.6(6) W.u. [1], B(M1; 7/2+
1 → 9/2+

1 ) = 0.031(13) W.u.
[0.006] and B(E2; 3/2+

2 → 5/2+
1 ) > 45 W.u. [51], where in

square brackets are the calculated values.
For 101–103Nb, shown in Figs. 7 and 8, the yrast states

belong to the intruder B configuration and are arranged in
a Kπ = 5/2+ rotational band, with an established Nilsson
model assignment 5/2+[422] [78]. The band members can be
interpreted in the strong coupling scheme, where a particle
is coupled to an axially deformed core. The indicated states
are obtained by coupling the π (1g9/2) state to the ground
band (L = 0+

1 , 2+
1 , 4+

1 , . . .) of 100–102Zr, which are all part
of the intruder B configuration. For 103Nb, the calculation
reproduces well the observed particle-rotor splitting, with a
moment of inertia, Eq. (24), B = 0.018 MeV. For 101Nb, the
experimental levels follow a less rotational pattern. The ex-
perimental E2 and M1 transitions within the band of both
101–103Nb are reproduced well by the calculation. In Fig. 9, the
trend in E2 transitions and quadrupole moments as a function
of angular momentum J seems to be very similar to that of
the geometric collective model, Eqs. (26a) and (25a). The
trend of the M1 transitions and magnetic moments is less
similar, as these observables are less collective in nature and
are strongly affected by the single-particle character of the
wave function.

Besides the calculated ground state band, there are differ-
ent Kπ bands for which states are grouped together according
to strong E2 transitions between them. The rightmost one of
them in Fig. 7 of 101Nb is the 9/2+

9 state, which is spherical
with about 76% for the nd = 0 component. Therefore, one can
observe the change of configuration in the ground state, from
A to B (Type II QPT), and also a change in the B configuration
from spherical spectrum, beginning at 99Nb, to deformed in
101Nb (Type I QPT).

Altogether, there is an evolution of structure from weak
coupling of a spherical shape in 93Nb to strong coupling of a
deformed shape in 103Nb. Such shape changes within the B
configuration (Type I QPT), superimposed on an abrupt con-
figuration crossing (Type-II QPT), are the key defining feature
of intertwined QPTs (IQPTs). Interestingly, the intricate
IQPTs scenario, originally observed in the even-even Zr iso-
topes [10,12], persists in the adjacent odd-even Nb isotopes.

FIG. 9. Comparison between the present calculation and the
Bohr and Mottelson model (BM). (a) E2 transition rates in W.u.
between members of the Kπ = 5/2+ band of 103Nb calculated in
this work and using the collective model (BM), Eq. (26a), with
�J = Jf − Ji. (b) Quadrupole moments in eb for members of the
Kπ = 5/2+ band in 103Nb calculated in this work and using the
collective model, Eq. (25a).

B. Negative-parity states

For the negative parity states, the individual isotopes are
divided to two regions: a weak coupling region for 93–97Nb and
the IQPT region for 99–103Nb, which also incorporates strong
coupling.

For the region of 93–97Nb the calculation is compared to
the experimental levels in Figs. 10–12. For each isotope,
the lowest levels with Jπ = 1/2−, 3/2−, 5/2− in each con-
figuration are associated with the single-particle orbits j =
π (2p1/2), π (2p3/2), π (1 f5/2).

For the region of 99–103Nb the calculation is compared to
the experimental levels in Figs. 14–16. For each isotope the
spectrum exhibits rotational bands that belong to the intruder
B configuration, except in 99Nb where the normal A configu-
ration can be identified.

1. The 93–97Nb region: Weak coupling

As shown in Figs. 10–12, the levels with Jπ = 1/2−
1 , 3/2−

1 ,

5/2−
1 in 93–97Nb have a quasiparticle character. They originate

from the coupling of the 0+
1;A of the adjacent 92–96Zr isotopes

with the π (2p1/2), π (2p3/2), π (1 f5/2) orbits, and are clearly
identified in the calculation with a good agreement to the data.
On top of each of them are other levels that have a large
component P(Ni,J )

j of Eq. (21), with the same single-particle
j-orbit, where i = A or B and J is the total angular mo-
mentum. However, these higher lying states are more mixed
between the different configurations. For 93Nb in Fig. 10 the
single quasiparticle levels that are associated with configura-
tion B can be identified in the experimental spectrum—the
(1/2−, 3/2−), (1/2−, 3/2−) and 5/2−

3 state at energy 0.97,
1.29, and 1.37 MeV, respectively. They are reproduced well by
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FIG. 10. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 93Nb. Data taken from [50,70].

FIG. 11. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 95Nb. Normal (intruder) states are depicted in black (blue). Data taken from [71].

FIG. 12. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 97Nb. Normal (intruder) states are depicted in black (blue). Data taken from [72].
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FIG. 13. Percentage of the single-particle components of the nor-
mal A and intruder B configurations, Eq. (21), for the calculated
1/2−

1 , 3/2−
1 , 5/2−

1 states of 93–97Nb isotopes.

the calculation, depicted in blue in Fig. 10. For 95Nb, Fig. 11,
there are not enough data to identify configuration B states,
and for 97Nb some states could possibly belong as well to
configuration B, as depicted in Fig. 12.

E2 transitions are measured only for 93Nb and are re-
produced more qualitatively rather than quantitatively, where
some of them are large and at variance with the calcu-
lation (written in square brackets), B(E2; 5/2−

2 → 1/2−
1 ) =

32+10
−9 W.u. [2], B(E2; 3/2−

2 → 3/2−
1 ) = 37+15

−30 W.u. [4] and
B(E2; 9/2−

1 → 5/2−
1 ) = 24(8) W.u. [3]. The first value of

the 5/2−
2 → 1/2−

1 is surprising due to the small value of the
B(E2; 2+

1 → 0+
1 ) = 6.4(6) W.u. of the core, 92Zr, which is

expected to be comparable in the weak coupling scenario.
They might also suggest a more unique mixing between the
individual orbits, which is not considered in this work for
simplicity. On the other hand, M1 transitions, measured only
for 93Nb, are all reproduced by the calculation to a good de-
gree. The latter confirms the calculated orbital structure of the
states involved in theses transitions—the 1/2−

1 , 3/2−
1 , 5/2−

1

states have large P
(NA,1/2−

1 )
π (2p1/2 ) , P

(NA,3/2−
1 )

π (2p3/2 ) , P
(NA,5/2−

1 )
π (1 f5/2 ) probabili-

ties, and the calculated 3/2−
3 , 5/2−

3 , 5/2−
4 states have large

P
(NA,3/2−

3 )
π (2p1/2 ) , P

(NA,5/2−
3 )

π (2p1/2 ) , P
(NA,5/2−

4 )
π (2p3/2 ) probabilities, respectively.

Wave functions.For 93–97Nb, as shown in Fig. 13, the lowest
state 1/2−

1 has a dominant π (2p1/2) component of the nor-

mal A configuration, P
(NA,1/2−

1 )
π (2p1/2 ) ≈ 80%, 70%, 90%, with weak

mixing between the different single-particle components of
each of the configurations. A similar trend is observed for the
3/2−

1 and 5/2−
1 states, indicating these three states are single-

quasiparticle excitations of the π (2p1/2), π (2p3/2), π (1 f5/2)
orbits, coupled to the normal A configuration. The reason

the latter P(NA,J )
j probabilities are smaller in 95Nb is due to

the slightly larger mixing between the configurations in the
even-even 94Zr core, compared to 92Zr (the core of 93Nb) and
96Zr (the core of 97Nb) [12].

2. The 99–103Nb region: Strong coupling

As shown in Figs. 14–16, one can identify rotational
bands with Kπ = 3/2− and 5/2− in 99−103Nb. For 99Nb, the
1/2−

1 is identified as the configuration A normal state that
originates from the coupling of the π (2p1/2) orbit with the
0+

1;A state of the adjacent 98Zr isotope. Alongside it, there
is a rotational band with Kπ = 3/2− that the calculation
reproduces to a reasonable degree; however, a calculated
1/2−

2 appears in the spectrum, making this a Kπ = 1/2−
band. Alongside this band, the calculation suggests another
Kπ = 1/2− band beginning at 0.745 MeV. The E2 transitions
within these bands are relatively stronger than those built
upon the 1/2−

1 state, as expected from a rotational band.
The large E2 transitions between the two Kπ = 1/2−

2 , 1/2−
3

bands indicate a strong mixing between them. For M1
transitions, the calculation in Fig. 14 depicts strong ones
between some of the 3/2− and 1/2− states. The 3/2−

3 →
1/2−

1 is large since it is a transition between states of the
same configuration A with dominant π (2p3/2) and π (2p1/2)
components, respectively. The 3/2−

2 state, which is mixed
with the 3/2−

3 , has therefore also a stronger transition to
the 1/2−

1 . The 3/2−
1 has an almost zero configuration A

π (2p3/2) component, which does not connect strongly to
the 1/2−

1 (see discussion on the wave functions below for
more details).

For 101,103Nb, all the states belong to the intruder B
configuration and are arranged in two rotational bands
with Kπ = 3/2−, 5/2−, with a Nilsson model assignment
3/2−[301], 5/2−[303]. The calculation also suggests an addi-
tional Kπ = 1/2− band alongside them with large staggering.
For 101Nb, the calculated Kπ = 3/2−, 5/2− bands are a lit-
tle higher in energy than experiment and the Kπ = 3/2−
band is somewhat staggered. For 103Nb, the agreement with
experiment is excellent, with a clear particle-rotor splitting
of the energy, and with moments of inertia, Eq. (24), B =
0.022, 0.024 MeV for the Kπ = 5/2−, 3/2− bands, respec-
tively. The E2 and M1 transitions within the bands of both
101,103Nb are reproduced well. The trend of the E2 transitions,
alongside the trend of the quadrupole moment, as a function of
angular momentum J , is seen in Fig. 17 to be very similar with
that of the geometric collective model, Eqs. (26a) and (25a).
As in the positive-parity case, Sec. IV A 2, the trend of the M1
transitions and magnetic moments is less similar. The change
in the experimental Kπ = 3/2−

1 to a calculated Kπ = 1/2−
2

band in 99Nb and the additional calculated Kπ = 1/2−
1 that

do not appear in the spectrum might suggest the need to
modify the proton single-particle energies used in the BCS
calculation.

Wave functions. As shown in Fig. 18, for 99Nb, the low-
est state 1/2−

1 has a dominant π (2p1/2) component of the

normal A configuration, P
(NA,1/2−

1 )
π (2p1/2 ) ≈ 75%, with weak mixing

between the different single-particle components of each of
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FIG. 14. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates
in W.u., for 99Nb. Other calculated M1 transitions, not shown in the figure, are smaller than 0.1 W.u. Normal (intruder) states are depicted in
black (blue). Data taken from [73].

the configurations. This 1/2−
1 is the lowest configuration A

state that resides alongside the intruder B configuration.
The 5/2−

1 state has a dominant π (1 f5/2) B configuration
component, while the 3/2−

1 is mixed between the intruder
B configuration π (2p3/2) and π (2 f5/2) components. The
3/2−

3 state (not shown in Fig. 18) is the one with large

P
(NA,3/2−

3 )
π (2p3/2 ) ≈ 68% and P

(NB,3/2−
3 )

π (2p3/2 ) ≈ 21%, while the 3/2−
2 has

almost exactly the opposite values for these components.
For 101,103Nb, both the 1/2−

1 and 3/2−
1 states are mixed be-

tween the intruder B configuration π (2p3/2) and π (1 f5/2)
components, while the 5/2−

1 has a dominant π (1 f5/2)
component.

FIG. 15. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 101Nb. Data taken from [79].
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FIG. 16. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 103Nb. Data taken from [77].

V. RESULTS: EVOLUTION OF WAVE FUNCTIONS AND
OBSERVABLES ALONG THE NIOBIUM CHAIN

A. Evolution of configuration and single-particle content

A possible change in the angular momentum of the ground
state (Jgs) is a characteristic signature of QPTs in odd-mass
nuclei, unlike even-even nuclei where the ground state re-
mains 0+ after the crossing. It is an important measure for
the quality of the calculations. A mean-field approach, for

FIG. 17. Comparison between the present calculation and the
Bohr and Mottelson model (BM). (a) E2 transition rates in W.u.
between members of the Kπ = 5/2− band of 103Nb calculated in
this work and using the collective model (BM), Eq. (26a), with
�J = Jf − Ji. (b) Quadrupole moments in eb for members of the
Kπ = 5/2− band in 103Nb calculated in this work and using the
collective model, Eq. (25a).

example, without configuration mixing, fails to reproduce
the change between the 9/2+

1 and 5/2+
1 states in J+

gs for
the Nb isotopes [32]. Information on configuration changes
for each isotope can be inferred from the evolution of the
probabilities P(NA,J ) or P(NB,J ), Eq. (20), of the states consid-
ered. Figure 19 shows the percentage of the wave function
within the B configuration, in panel (a) for the ground state
(J+

gs) and first-excited state (7/2+
1 ) and in panel (b) for the

FIG. 18. Percentage of the single-particle components of the nor-
mal A and intruder B configurations, Eq. (21), for the calculated
1/2−

1 , 3/2−
1 , 5/2−

1 states in 93–97Nb isotopes.
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FIG. 19. Percentage of the intruder (B) component [the P(NB,J )

probability in Eq. (20)] for 93–103Nb. (a) The ground state (J+
gs) and the

first-excited positive-parity state (7/2+
1 ). (b) The 1/2−

1 , 3/2−
1 , 5/2−

1

states for the negative-parity states. The values of J+
gs are indicated at

the top panel.

J = 1/2−
1 , 3/2−

1 , 5/2−
1 states, as a function of neutron number

across the Nb chain. The rapid change in structure of the
J+

gs and 1/2−
1 states from the normal A configuration (small

P(NB,J ) probability) for neutron number 52–58 (93–99Nb) to
the intruder B configuration (large P(NB,J ) probability) for
neutron number 60–62 (101–103Nb) is clearly evident, signaling
a Type II QPT, as mentioned in Sections IV A 2 and IV B 2.
The configuration change appears sooner in the 7/2+

1 and
3/2−

1 , 5/2−
1 states, which switch to configuration B already

at neutron number 58 (99Nb). The behavior of the Jgs, 1/2−
1

and 7/2+
1 , 3/2−

1 , 5/2−
1 states is in line with the behavior of

the 0+
1 and 2+

1 states of the 40Zr cores with the same neutron
numbers [10,12], which also change from configuration A to
B at neutron number 60 and 58, respectively (see Fig. 10 of
Ref. [12]). Outside a narrow region near neutron number 60,
where the crossing occurs, the two configurations are weakly
mixed and the states retain a high level of purity, except for the
negative parity states for neutron number 54 (95Nb), where the
mixing is somewhat stronger.

B. Energy levels

Figures 20–21 show the experimental and calculated levels
of selected positive- and negative-parity states, respectively,
along with assignments to configurations based on Eq. (20).
Open (solid) symbols indicate a dominantly normal (intruder)
state with small (large) P(NB,J ) probability. For the positive-
parity states of Fig. 20, in the region between neutron number
50 and 56, there appear to be two sets of levels with a weakly
deformed structure, associated with configurations A and B.
All levels decrease in energy for 52–54, away from the closed
shell, and rise again at 56 due to the ν(2d5/2) subshell closure.
At neutron number 58, there is a pronounced drop in energy
for the states of the B configuration, due to the onset of
deformation. At 60, the two configurations cross, indicating
a Type II QPT, and the ground state changes from 9/2+

1 to
5/2+

1 , becoming the bandhead of a Kπ = 5/2+ rotational band

FIG. 20. Comparison between (a) experimental [70–73,80] and
(b) calculated lowest-energy positive-parity levels in Nb isotopes.
Empty (filled) symbols indicate a state dominated by the normal A
configuration (intruder B configuration), with assignments based on
Eq. (20). In particular, the 9/2+

1 state is in the A (B) configuration
for neutron number 52–58 (60–64) and the 5/2+

1 state is in the A (B)
configuration for 52–54 (56–64). Note that the calculated values start
at 52, while the experimental values include the closed shell at 50.

composed of 5/2+
1 , 7/2+

1 , 9/2+
1 , 11/2+

1 , 13/2+
1 , . . . states. Be-

yond neutron number 60, the intruder B configuration remains
strongly deformed and the band structure persists. The above
trend is similar to that encountered in the even-even 40Zr cores
(see Fig. 14 of Ref. [12]).

For the negative-parity states in Fig. 21, in the region
between neutron number 50 and 56, there appear to be the
1/2−

1 state and two sets of levels for each of the 3/2− and
5/2− states with a weakly deformed structure, associated with
configurations A and B. All levels decrease in energy for 52–
54, away from the closed shell, and rise again at 56 due to the
ν(2d5/2) subshell closure. From 58, there is a pronounced drop
in energy for the states of the B configuration, due to the onset
of deformation. At 60, the two configurations cross, indicating
a Type II QPT. The calculated normal 1/2− rises in energy

FIG. 21. Comparison between (a) experimental [70–73,80] and
(b) calculated lowest-energy negative-parity levels in Nb isotopes.
Empty (filled) symbols indicate a state dominated by the normal
A configuration (intruder B configuration), with assignments based
on Eq. (20). Note that the calculated values start at 52, while the
experimental values include the closed shell at 50.
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FIG. 22. Comparison of the deformed part of the two-neutron separation energies, (Sdef
2n ), between (a) experiment [81] and (b) calculation.

and the 1/2−
1 remains the lowest negative-parity state in 101Nb

and at 103Nb it is the 5/2−
1 that is lowest. Although not in

the experimental data, the trend of the 1/2−
1 state seems to

suggest the existence of a low-lying 1/2− also in 101,103Nb, as
suggested by the calculation. The 1/2−

1 , 3/2−
1 , and 5/2−

1 states
become the bandheads of Kπ = 1/2−, 3/2−, 5/2− rotational
bands, respectively.

C. Two-neutron separation energy

An observable that portrays both types of QPTs is two-
neutron separation energy, defined as

S2n = 2Mn + M(N − 2, Z ) − M(N, Z ), (27)

where M(N, Z ) is the mass of a nuclei with N, Z neutrons
and protons, respectively, and Mn is the neutron mass. It is
convenient to transcribe the S2n as

S2n = −Ã − B̃Nv ± Sdef
2n − �n, (28)

where Nv is half the number of valence particles in the boson
core and Sdef

2n is the contribution of the deformation, obtained
by the expectation value of the Hamiltonian in the ground
state. The + sign applies to particles and the − sign to
holes. The �n parameter takes into account the neutron sub-
shell closure at 56, �n = 0 for 50–56, and �n = 2 MeV for
58–62. For the Nb isotopes, the chosen values in Eq. (28) are
Ã = −17.25, B̃ = 0.758 MeV. The value of Ã is taken to fit
91Nb, and the values of B̃ and �n are taken from the previous
even-even Zr calculation [12]. In Fig. 22, the experimental
(left) and calculated (right) deformed part, Sdef

2n [24,25], are
shown in red circles and lines, respectively. Sdef

2n is obtained by
subtracting the linear part and �n from the experimental and
calculated S2n. One can clearly see the onset of deformation
going from neutron number 52–56, where Sdef

2n is small, to
58–62, where it jumps and rises.

In order to denote the occurrence of both Type I and
II QPTs, in addition to Eq. (28), it is also possible using
Eq. (27) to estimate two-neutron separation energies for ex-
cited states by using the mass of an excited state M(N, Z ) ≡
Mexc(N, Z ) = Mgs(N, Z ) + Eexc(N, Z ), where Mgs(N, Z ) is
the mass for the ground state and Eexc(N, Z ) is the energy of
the excited state. Therefore, adding the difference Eexc(N −
2, Z ) − Eexc(N, Z ) to Eqs. (27) and (28) gives the two-neutron
separation energy for an excited state, and for this the lowest
configuration B state is chosen. The experimental and calcu-
lated results, Sdef

2n;B, are given in blue triangles (left) and lines
(right), respectively, in Fig. 22. It is seen that for neutron num-
ber 54–56 Sdef

2n;B is small, then at 58 it jumps due to the onset

of deformation at 60, then it flattens. This behavior denotes
the Type I QPT of shape evolution from spherical to axially
deformed, within configuration B. It is similar to the behavior
of the 61Pm, 63Eu, and 65Tb isotopes, which also undergo a
QPT from spherical to axially deformed shape [24,25]. For
neutron number 54–56, Sdef

2n;B (triangles) is close to the value
of Sdef

2n (circles), as configuration B is more spherical. At 58,
there is a larger jump than Sdef

2n since configuration B is more
deformed than A, which continues at 60. For 62, both Sdef

2n;B

and Sdef
2n coincide since the ground state is configuration B,

which denotes the Type II QPT. Therefore, the deformed part
of the two-neutron separation energies in its ground and ex-
cited states serves as an important indicator for the occurrence
of IQPTs.

D. E2 transition rates and quadrupole moments

Electromagnetic transitions and moments provide fur-
ther insight into the nature of QPTs. Figure 23 shows
B(E2; 7/2+

1 → J+
gs ) in panel (a) and quadrupole moment of

J+
gs in panel (b). These observables are related to the deforma-

tion, the order parameter of the QPT. Although the data are
incomplete, one can still observe small (large) values of these
observables below (above) neutron number 60, indicating an
increase in deformation. The calculation reproduces well this
trend and attributes it to a Type II QPT involving a jump
between neutron number 58 and 60, from a weakly deformed

FIG. 23. Evolution of (a) B(E2; 7/2+
1 → J+

gs ) in W.u. and
(b) Quadrupole moments of J+

gs in eb. Symbols (solid lines) denote
experimental data (calculated results). Data in panels (a) and (b) are
taken from [70,77,80] and [70,80,82], respectively.
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FIG. 24. Evolution of (a) B(M1; 7/2+ → J+
gs ) in W.u. and

(b) Magnetic moments of J+
gs in eb. Symbols (solid lines) denote

experimental data (calculated results). Data in panels (a) and (b) are
taken from [70,73,77,80] and [82], respectively.

A configuration, to a strongly deformed B configuration. The
trend in the E2 transition rates is very similar to that of the
2+

1 → 0+
1 transition of the adjacent even-even Zr isotopes.

In the Zr case, the sudden increase at neutron number 60 is
ascribed to the IQPT, where the ground state configuration
changes from normal to intruder, while the intruder config-
uration evolves at the same time from being quasispherical to
deformed [10,12].

E. M1 transitions and magnetic moments

The trend in the experimental B(M1; 7/2+
1 → J+

gs ), shown
in Fig. 24(a), suggests a jump at neutron number 52 and
another one at 62, which is reproduced by the calculation to a
good degree. This suggests that M1 transition rates might be
an observable that indicates less the Type II QPT, possibly due
to their sensitivity to the single-particle degrees of freedom
rather than the collective ones. However, the Type II scenario
is strongly supported by the trend of the magnetic moments
(µJ ) of the ground state, shown in Fig. 24(b), where both the
data and the calculation show a constant value of µJ for neu-
tron number 52–58, and a drop to a lower value at 60, which
persists for 60–62. This trend of approximately constant value
for each range of neutron numbers, suggests a corresponding
constant mixing in the ground state wave function, in line with
the calculated weak mixing before and after the crossing.

VI. CONCLUSIONS AND OUTLOOK

The general framework of the interacting boson-fermion
model with configuration mixing (IBFM-CM) has been
presented, allowing a quantitative description of shape coex-
istence, configuration mixing, and related QPTs in odd-mass
nuclei. A quantal analysis for the chain of the odd-even
41Nb isotopes involving positive- and negative-parity states
was performed for neutron number 52–62. It examined the
spectra and properties of individual isotopes as well as the
evolution of energy levels and other observables (two-neutron
separation energies, E2 and M1 transition rates, and magnetic

and quadrupole moments) along the chain. Special attention
has been devoted to changes in the configuration-content and
single-particle-content of wave functions. In general, the cal-
culated results, obtained by a fitting procedure described in
the Appendix, are found to be in a good agreement with the
empirical data.

The results of the comprehensive analysis suggest a
complex phase structure in these isotopes, involving two con-
figurations. The normal A configuration remains spherical in
all isotopes considered. The intruder B configuration under-
goes a spherical to axially deformed U(5)-SU(3) QPT within
the boson core, with a critical point near A ≈ 100. In parallel
to the gradual shape evolution within configuration B, the two
configurations cross near neutron number 60, and the ground
state changes from configuration A to configuration B. The
two configurations are weakly mixed and retain their purity
before and after the crossing, thus demonstrating IQPTs in
odd-mass nuclei.

The new IBFM-CM framework can motivate further work
in any medium-heavy odd-mass region with mixed con-
figurations, such as Z ≈ 40, 50, 82 and N ≈ 60, 66, 104,
respectively, with many nuclei to be explored. The current
results obtained for the Nb isotopes motivate further exper-
iments of non-yrast spectroscopy in such nuclei, as well as
set the path for new investigations on multiple QPTs and
coexistence in other Bose-Fermi systems.
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APPENDIX: SINGLE-PARTICLE ENERGIES
AND BCS PROCEDURE

A BCS calculation is done by iterating over the equations
for the single-quasiparticle energies (ε j) and occupation prob-
abilities (v2

j ), as one varies the Fermi energy λF, until an
equality between the particle number (Np) and the number of
valence particles is obtained:

ε j =
√

(Ej − λF)2 + �F, (A1)

v2
j = 1

2

(
1 − Ej − λF

ε j

)
, (A2)

Np =
∑

j

(2 j + 1)v2
j . (A3)

In Eq. (A1), j are the different shell orbits, Ej are the
experimental single-particle energies, and �F is the pairing
gap. In this work, for 41Nb the BCS procedure is em-
ployed with 13 valence particle in the Z = 28–50 shell with
the π (1 f5/2), π (2p1/2), π (2p3/2), π (1g9/2) orbits. The same
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single-particle energies and pairing gap for both configura-
tions A and B are chosen. It might be possible to choose
a different set of single-particle energies for the intruder
configuration—however, this is not done so for simplicity. The
experimental single-particle energies are taken from Table XI
of [83] and �F is taken to be 1.5 MeV, consistent with the
values of the empirical proton pairing gaps (see Eq. (2.93) of
[84]) for 91–97Nb. The resulting single-quasiparticle energies
(ε j) and occupation probabilities (v2

j ) are shown in Table I for
the different orbits and single-particle energies (Ej). Taking
the derived ε j and v2

j , the parameters of the boson-fermion
interaction (12a) can be determined from the microscopic
theory of the IBFM to be

A(i)
j = −

√
5(2 j + 1)A(i)

0 , (A4)


(i)
j j′ =

√
5γ j j′

(i)
0 , (A5)

�
(i) j′′
j j′ = −2

√
5

2 j′′ + 1
β j j′′β j′ j′′�

(i)
0 , (A6)

where i = A,B for the different configurations and

γ j j′ = (u ju j′ − v jv j′ )Qj j′ , (A7)

β j j′ = (u jv j′ + v ju j′ )Qj j′ , (A8)

Qj j′ = 〈 j||Y (2)|| j′〉, (A9)

where the occupation probability uj satisfies u2
j = 1 − v2

j .

The strengths (A(i)
0 , 

(i)
0 ,�

(i)
0 ) are obtained by a fit, and

can be separated to positive- and negative-parity states and

to the different configurations. In this work, for simplicity,
the same values for the different configurations are assumed.
They are listed in Table II, where the monopole term (A0)
vanishes for neutron number 52–56 and corrects the quasi-
particle energies at neutron number 58–62. The quadrupole
term (0) is constant for the entire chain. The exchange term
(�0) increases towards the neutron midshell [18]. Altogether,
the values of the parameters are either constant for the entire
chain or segments of it and vary smoothly. Interestingly, these
values are very similar to those of the 63Eu isotopes [85] in
a single-shell configuration and a single- j calculation with
v2 = 0.3, which have an approximately constant value of
0 ≈ 1 and A0 = −0.4 and an increasing value of �0 from
≈ 1.6 in the spherical region to ≈ 3.8 in the deformed one.
For the boson-fermion mixing term, Ŵbf of Eq. (10), the value
of ω j = 0 is chosen, since for equal ω j it coincides with the
Ŵb term of Eq. (5).

For T̂b(M1) of Eq. (17), the values g(A) =
−0.21 µN , −0.42 µN are used for neutron number 52–54
and zero otherwise, g(B) = (Z/A)µN and g̃(A) = g̃(B) =
0 (−0.017 µN ) for 52–56 (58–62), where Z and A correspond
to the even-even Zr boson core. For T̂f (M1) the value
g� = 1µN is used and a quenching of 20.835%, which results
in a value of gs = 4.4219 µN .

For T̂b(E2) of Eq. (14), the same parameters (e(A), e(B), χ )
are adopted for the core Zr isotopes [12], with a slight mod-
ification of e(A) = 2.45, 1.3375

√
W.u. for neutron numbers

52–54 and e(B) = 2.0325
√

W.u. for 62. The fermion effective
charge in T̂f (E2) is e f = −2.361

√
W.u., determined from a fit

to the ground state quadrupole moment of 93Nb.
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