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Local α-removal strength in the mean-field approximation
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Background: The α cluster is a prominent feature, not only in light nuclei but also in heavy nuclei. To study
the α-particle formation in the mean-field calculation, the localization function has been extensively utilized.
However, the localization function does not guarantee the proximity of four different nucleons which is required
by the α-particle formation. A simple indicator of the proximity is desired. Recently, experimental measurement
of the quasifree α-knockout reaction for Sn isotopes reveals the cross sections with a monotonic decrease with
increasing neutron number. [Science 371, 260 (2021)]. This is interpreted as evidence of the surface α formation.
Purpose: We propose a simple and comprehensible quantity to assess the proximity of four nucleons with
different spins and isospins. Using this, we examine the recent measurement of α-knockout cross sections in Sn
isotopes.
Methods: The local α-removal strength is proposed to quantify the possibility to form an α particle at a specific
location inside the nucleus. In addition, it provides the strength of ground and excited states in the residual nuclei
after the removal of the α particle. To make the calculation feasible, we introduce several approximations, such as
point-α, mean-field, and no rearrangement approximations. We use the Hartree-Fock-plus-BCS method for the
mean-field calculation for Sn isotopes. We also propose another measure, the local α probability, which should
provide a better correlation with the α-knockout cross sections.
Results: The calculation of the local α-removal strength is extremely easy in the mean-field model with no
rearrangement. For even-even Sn isotopes, the local α-removal strengths to the ground state of residual nuclei
are almost universal in the nuclear surface region. In contrast, the local α probability produces strong neutron
number dependence consistent with the experiment.
Conclusions: The local α-removal strength and the local α probability are easily calculable in the mean-field
models. Recent experimental data for Sn isotopes may be explained by a simple model without explicit
consideration of α correlation.
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I. INTRODUCTION

Clustering is an intriguing phenomenon in the nuclear
structure. Correlations between nucleons result in the for-
mation of subunits (clusters) inside the nucleus. The most
typical cluster is the α particle, which is present not only in
light nuclei, but also observed in heavy nuclei as the α-decay
phenomena. In light nuclei, prominent clustering often takes
place in excited states whose energy is close to the threshold
of the corresponding cluster decomposition [1].

The microscopic theories of the clustering phenomena
have a long history [1–5]. In fact, Gamow’s theory of the
α decay [6,7] was published even before the discovery of the
neutron [8]. Most theoretical studies of the cluster structure
in the past have been performed with an assumption that a
certain cluster structure exists in the nucleus. It is common to
construct the cluster wave functions in terms of the Gaussian
wave packets [9]. For instance, the antisymmetric molecular
dynamics (AMD) [10] and the fermionic molecular dynamics
(FMD) [11] were extensively utilized in studies of the nuclear

cluster phenomena and heavy-ion reactions. In the AMD and
FMD, the cluster structure is not assumed a priori, although
the Gaussian wave packet is assumed for a single-particle state
[12–14]. The configuration mixing, which is often treated with
the projection and the generator coordinate method [15,16],
plays an important role in the studies of clustering in relatively
light nuclei. In the AMD and FMD, since each Gaussian
has parameters corresponding to the position of its center
and the magnitude of its width, the clustering can be iden-
tified by close location of centers of many Gaussian wave
packets.

In contrast, the mean-field (energy density functional) the-
ory can provide the optimal single-particle wave functions to
minimize the total energy of a Slater determinant. One of
the advantageous features of the theory is the capability of
describing almost all the nuclei in the nuclear chart using
a single energy density functional which is a functional of
normal and pair densities. Another advantage can be the treat-
ment of the pairing correlations, which become indispensable
especially for heavy nuclei with open-shell configurations.
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The obtained (generalized) single-particle states are, in most
cases, spread over the entire nucleus, not confined in a local-
ized region inside the nucleus. Therefore, in the mean-field
theory, it is not straightforward to find nucleons gathering in
terms of the single-particle wave functions. In relatively light
nuclei, prominent cluster structure could be observed by the
nucleon density profile [17–21]. In particular, the clustering
phenomena have been extensively studied with relativistic
energy density functionals [22]. The cluster structure in the
relativistic energy density functionals, such as DD-ME2, is
more visible than in the nonrelativistic functionals, producing
spatially localized subunits inside the nucleus [23]. However,
the identification of the cluster structure has some ambiguity
and relies on one’s intuition.

There exist some methods aiming to identify and quantify
the clustering effect in the mean-field states. In case one can
intuitively build a model cluster wave function, its overlap
with the mean-field state gives a possible measure of the
clustering [19]. Recently, another method, which does not
require a model wave function, has been proposed to visu-
alize possible cluster correlations using the mean-field wave
functions [24]. However, the application of the method seem-
ingly become more and more difficult as the nucleon number
increases.

The localization function, introduced into nuclear physics
by Reinhard and collaborators [25], is a possible measure
of α-particle formation. Similar functions were introduced
in molecular physics to investigate the shell structure and
the chemical bonding [26]. Since it only needs one-body
densities, such as kinetic and current densities, the calcu-
lation requires negligible computational cost. In addition,
it is given as a function of the spatial coordinates. Thus,
one can identify the location of the α particles. Because of
these advantageous properties, the localization function has
been adopted in a number of studies for the cluster cor-
relations within the mean-field theory [27–32]. However, it
should be noted that the localization function does not ex-
amine whether the four nucleons exist next to each other.
It tells us information on the conditional pair density for
particles of the same kind, Pqσ (r, r′) where q = n, p and
σ = ±1/2. Reference [25] clearly states that the localization
function is just the first step to identifying the α cluster.
The α cluster requires the four nucleons to gather in a lo-
calized region inside the nucleus, which cannot be checked
by the localization function. Properties of the localization
function were studied in Ref. [33], concluding that it is
not sensitive to the compactness of the α particle. There-
fore, the purpose of the present paper is to propose the next
step, “local α-removal strength,” as a measure of four local-
ized nucleons that can be easily estimated in the mean-field
theory.

Experimentally, the α correlations in nuclei can be inves-
tigated by quasifree α-knockout reactions [34,35]. A recent
experiment on the α-knockout reactions in Sn isotopes by
Tanaka and collaborators [36] reveals that the cross sec-
tion monotonically decreases as the neutron number increases.
They interpret this trend as a tight interplay between the
α formation and the neutron skin [37]. The distorted-wave
impulse-approximation study shows that the reaction takes

place in a peripheral region and probes the α particles in
the nuclear surface [38]. Another purpose of the present pa-
per is to examine consistency between the calculated local
α-removal strength and the result of Ref. [36].

The paper is organized as follows: We propose a fea-
sible measure of four-particle localization, local α-removal
strength, in Sec. II. In Sec. III, the local α-removal strength is
applied to Sn and other isotopes. The calculation is compared
with the measurement of the α-knockout reaction. Concluding
remarks are given in Sec. IV.

II. LOCAL α-REMOVAL STRENGTH

A. Definition

Let us assume a single Slater-determinant description for
the α particle and that the orbital part of the single-particle
wave functions are all the same and given by φα (r), where the
center of mass of the α particle is located at the origin. Then,
the α-particle annihilation operator α̂(R) at the position R is
given by

α̂(R) ≡
∫

dr1dr2dr3dr4φ
∗
α (r1R )φ∗

α (r2R )φ∗
α (r3R )φ∗

α (r4R )

× ψ̂
(n)
↑ (r1)ψ̂ (n)

↓ (r2)ψ̂ (p)
↑ (r3)ψ̂ (p)

↓ (r4), (1)

where riR = ri − R (i = 1, . . . , 4) and ψ̂
(q)
σ (r) indicates the

field operator for the particle of the isospin q = n, p and the
spin σ =↑,↓. The wave function φα (r) is a well-localized
function, normally assumed to be a Gaussian in the cluster
model. To investigate the α particle in the nucleus, we propose
“local α-removal strength” defined as

Sα (r, E ) ≡ 〈
�A

0

∣∣α̂†(r)δ(E − Ĥ )α̂(r)
∣∣�A

0

〉
, (2)

where Ĥ is the Hamiltonian, and |�A
0 〉 is the ground state of

the nucleus (N, Z ).
The meaning of this quantity is clear if we insert the unity

expanded in terms of the complete set for the nucleus (N −
2, Z − 2), {|�A−4

k 〉}:

Sα (r, E ) =
∞∑

k=0

∣∣〈�A−4
k

∣∣α̂(r)
∣∣�A

0

〉∣∣2
δ
(
E − EA−4

k

)
, (3)

where Ĥ |�A−4
k 〉 = EA−4

k |�A−4
k 〉. Thus, the quantity

Sα (r)E ,�E =
∫ E+�E/2

E−�E/2
Sα (r, E ′)dE ′

=
�E∑

k

∣∣〈�A−4
k

∣∣α̂(r)
∣∣�A

0

〉∣∣2
(4)

provides the strength of the transition to states in the energy
range (E − �E/2, E + �E/2) of the residual nucleus, when
the α particle is removed at the position r in the nucleus
(N, Z ). See also Fig. 1.

It is convenient to define the variable E with respect to
the ground-state energy EA−4

0 , namely, the excitation energy
E ′ = E − EA−4

0 . Hereafter, we denote E ′ as E for simplicity.
Appropriate smearing of the δ function δ(E − EA−4

k ) may be
useful for visualizing the strength as a function of E . The local
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FIG. 1. Schematic illustration of the local α-removal strength
Sα (r, E ). Removing the α particle located at a position r from the
nucleus (N, Z ) results in many energy eigenstates of the residual
nucleus (N − 2, Z − 2), with Ck (r) = 〈�A−4

k |α̂(r)|�A
0 〉. See Eq. (3).

α-removal strength Sα (r, E ) may provide transition strength
to states at the excitation energy E , when the α particle is
removed at the position r.

B. Approximations

The calculation of Eq. (2) demands a large computational
cost in general. We introduce here some approximations to
make the computation feasible.

1. Point α approximation

First, in order to avoid the multiple integrations in Eq. (1),
we approximate the wave function φα (r) by the δ function
δ(r − R). Thus, in this paper, we use

α̂(r) = ψ̂
(n)
↑ (r)ψ̂ (n)

↓ (r)ψ̂ (p)
↑ (r)ψ̂ (p)

↓ (r). (5)

This approximation significantly reduces the computational
cost. Without the point α approximation, the numerical cost
of the multiple integrals with respect to the four coordinates
is extremely large. Since the Gaussian wave function for the
α particle is compact, the point α approximation is able to
provide a useful signal of the localized four nucleons. Further
approximations in the following sections lead to products of
pair densities 〈ψ̂ (q)

↑ (r1)ψ̂ (q)
↓ (r2)〉. Without the point α approx-

imation, we need nonlocal pair densities with r1 
= r2, whose
behavior is not well controlled in currently available pairing
energy density functionals.

2. Mean-field approximation

Next, we adopt the mean-field ground state for |�A
0 〉, and

the Hamiltonian Ĥ is approximated in the mean-field level. Ĥ
is truncated up to the second order in terms of the quasiparticle
(qp) operators defined with respect to the ground state of the
residual nucleus (N − 2, Z − 2):

Ĥ =
∑

q=n,p

∑
i>0

E (q)
i â(q)†

i â(q)
i + · · · , (6)

where the ground-state energy of the nucleus (N − 2, Z −
2), EA−4

0 = 〈�A−4
0 |Ĥ |�A−4

0 〉, is subtracted. â(q)
i and E (q)

i are
the qp annihilation operators and corresponding qp energies.

The subscript i > 0 means the summation with respect to
the qp states with positive qp energies E (q)

i > 0. In Eq. (3),
the excited states (k > 0) are given by an even number of qp
excitations. Thus, the index k stands for 2qp, 4qp, . . . and the
excitation energies EA−4

k (k > 0) in Eq. (3) are given as

EA−4
i j,0 = E (n)

i + E (n)
j , (7)

EA−4
0,i j = E (p)

i + E (p)
j , (8)

EA−4
i j,i′ j′ = E (n)

i + E (n)
j + E (p)

i′ + E (p)
j′ , (9)

and so on.
With the mean-field construction of the states, |�A

0 〉
and |�A−4

0 〉, one can calculate the transition matrix ele-
ments 〈�A−4

k |α̂(r)|�A
0 〉 in Eq. (3) as follows: Except for

the cases under the presence of proton-neutron (pn) pairing
[39–41] and/or pn mixing [42,43], the states are nor-
mally described by product wave functions of protons and
neutrons, |�A〉 = |�N 〉 ⊗ |�Z〉. Therefore, the transition ma-
trix elements can be also written in the product form,
〈�N−2

k |ψ̂ (n)
↑ (r)ψ̂ (n)

↓ (r)|�N
0 〉〈�Z−2

k′ |ψ̂ (p)
↑ (r)ψ̂ (p)

↓ (r)|�Z
0 〉, where

k (k′) stands for 0qp, 2qp, . . . indices for neutrons (protons).
Thus,

Sα (r, E ) =
∑
k�0

∑
k′�0

F (n)
k (r)F (p)

k′ (r)δ
(
E − EA−4

kk′
)
, (10)

where EA−4
kk′ are given by Eqs. (7)–(9), and

F (q)
k (r) = ∣∣〈�Nq−2

k

∣∣ψ̂ (q)
↑ (r)ψ̂ (q)

↓ (r)
∣∣�Nq

0

〉∣∣2
, (11)

with Nq = N and Z for q = n and p, respectively.

3. Neglect of rearrangement

We introduce further approximation to neglect the rear-
rangement of the mean fields due to the removal of the
α particle. Hence, we assume that the mean fields in nuclei
of mass number A and A − 4 (before and after the removal of
an α particle) are identical. When the neutrons (protons) are in
a superfluid phase, we also neglect the change of the chemical
potential, which leads to |�Nq−2

k 〉 ≈ |�Nq

k 〉 with q = n (p).
With this approximation, the calculation of the residual states
(|�A−4

k 〉) is no longer required. The mean-field Hamiltonian
(6) is now replaced by that for the nucleus (N, Z ), in which
all the quasiparticle states are defined with respect to the
mean-field ground state of |�A

0 〉.
Assuming the Bogoliubov transformation [44],

â†
i =

∑
σ

∫
dr{Ui(rσ )ψ̂†

σ (r) + Vi(rσ )ψ̂σ (r)}, (12)

ψ̂†
σ (r) =

∑
i>0

{U ∗
i (rσ )â†

i + Vi(rσ )âi}, (13)

the matrix elements F (q)
k (r) of Eq. (11) are given as

F0(r) =
∣∣∣∣∣
∑
i>0

Ui(r ↑)V ∗
i (r ↓)

∣∣∣∣∣
2

= |κ (r)|2, (14)

Fi j (r) = ∣∣V ∗
i (r ↑)V ∗

j (r ↓) − V ∗
j (r ↑)V ∗

i (r ↓)
∣∣2

, (15)
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where the superscript (q) is omitted for simplicity. F0(r)
is nothing but a square of the local pair density, |κ (r)|2 ≡
|〈�A

0 |ψ̂↑(r)ψ̂↓(r)|�A
0 〉|2. It should be also noted that, with this

approximation, only the 0qp and 2qp excitations of neutrons
and protons contribute to the summation with respect to k and
k′ in Eq. (10).

For the transition to the ground state, which may be of most
interest, the calculation is feasible with these approximations.
Its relative values among different isotopes may be a useful
indicator of the α-particle knockout probability. However, we
should keep in mind that this is based on the approximations
adopted, and should be careful especially when we compare
the values for nuclei in different mass regions.

4. HF-plus-BCS approximation

Using the HF-plus-BCS (HF + BCS) approximation, the
HFB wave functions are proportional to the HF single-particle
states {φi(rσ )} as

Ui(rσ ) = uiφi(rσ ), Vi(rσ ) = −viφ
∗̄
i (rσ ),

Uī(rσ ) = uiφī(rσ ), Vī(rσ ) = viφ
∗
i (rσ ),

(16)

where φī is the time-reversal partner of φi. The BCS
u-v factors (ui, vi ), are all real and determined by the HF
single-particle energies [44]. This recasts Eqs. (14) and (15)
into

F0(r) = |κ (r)|2 =
∣∣∣∣∣
∑

i

uiviφī(r ↑)φi(r ↓)

∣∣∣∣∣
2

, (17)

Fi j (r) = v2
i v

2
j

∣∣φi(r ↑)φ j (r ↓) − φ j (r ↑)φi(r ↓)
∣∣2

. (18)

The summation in Eq. (17) is taken over both i and ī with
φ¯̄i = −φi, uī = ui, and vī = vi.1 Since the indices i j and ji
correspond to the same 2qp excitation, the summation in
Eq. (10) is performed with respect to different combinations
of 2qp indices, namely, with the restriction of i > j.

The pairing gap �q (q = n, p) is related to the monopole
pairing strength G as �q = 1

2 G
∑

i uivi [44]. In this paper,
we adopt the value of �q as the experimental odd-even mass
difference.

5. No pairing case

In case there is no pairing (normal phase) in the state
|�Nq

0 〉, Eq. (14) does not give a transition to the ground state
because the pair density trivially vanishes. This is due to
the wrong approximation of |�Nq−2

k 〉 ≈ |�Nq

k 〉 for the normal

phase. In this case, |�Nq

0 〉 is the Hartree–Fock (HF) ground-
state wave function. Then, we explicitly remove two particles

1Explicitly denoting the time-reversal parts, Eq. (17) can be
written as

F0(r) =
∣∣∣∣∣
∑
i0

uivi{φī(r ↑)φi(r ↓) − φi(r ↑)φī(r ↓)}
∣∣∣∣∣
2

. (19)

Here, i  0 indicates the summation is not taken over ī. Note that it
is different from i > 0 in Eq. (6).

from the occupied orbitals in |�Nq

0 〉 and identify it as |�Nq−2
k 〉

in Eq. (11). This leads to

Fi j (r) = |φi(r ↑)φ j (r ↓) − φ j (r ↑)φi(r ↓)|2, (20)

where φi and φ j are the single-particle wave functions for the
occupied (hole) states. The expression is equal to Eq. (15) by
identifying V ∗

i = φi (V ∗
i = 0) for hole (particle) states. Note

that i j are the two-hole indices which include not only the
excited states (k > 0) but also the ground state (k = 0) in
|�Nq−2

k 〉. For the ground state |�Nq−2
0 〉, two particles i j are

removed from the highest occupied orbitals (HOO).
The ground state of the residual nucleus (N − 2, Z − 2)

is unique when the ground state of the nucleus (N, Z ) is
superfluid both in protons and neutrons. However, we should
remark here that, for the normal state (no pairing), there may
be multiple ground states with the present approximations.
This is an undesired consequence of no rearrangement, and it
occurs when the nucleus |�A

0 〉 is spherical, because the HOO
with the angular momentum j should have a degeneracy of
2 j + 1. To keep the feasibility in the computation, we simply
sum up all the possible two-hole indices to produce F0 for
nuclei in the normal phase.

F0(r) =
∑

i j∈HOO

|φi(r ↑)φ j (r ↓) − φ j (r ↑)φi(r ↓)|2. (21)

C. Localization function

We will compare the local α-removal strength with the
localization function C(q)

σ (r) in Sec. III. It may be useful to
recapitulate the definition and the meaning of C(q)

σ (r), accord-
ing to Ref. [25].

The conditional probability of finding a nucleon with spin
σ and isospin q at r′ when another nucleon with the same spin
and isospin exists at r is given by

P(q)
σ (r, r′) = ρ (q)

σ (r′) − ∣∣ρ (q)
σσ (r, r′)

∣∣2
/ρ (q)

σ (r), (22)

where, in the mean-field calculations,

ρσσ ′ (r, r′) ≡
∑
i>0

V ∗
i (rσ )Vi(r′σ ′), (23)

and ρσ (r) = ρσσ (r, r). Again, hereafter in this section, the
superscript (q) is omitted for simplicity. Let us rewrite
Pσ (r, r′) = Pσ (R, s) in terms of the average and the relative
positions, R = (r + r′)/2 and s = r − r′, then, perform a
spherical averaging over the angles of s. Finally, we expand
the Pσ (r, s) with respect to s as

Pσ (r, s) ≈ 1

3

(
τσ − 1

4

(∇ρσ )2

ρσ

− j2
σ

ρσ

)
s2

≡ 1

3
Dσ (r)s2. (24)

Then, the localization function Cσ (r) is defined as Cσ (r) =
[1 + {Dσ (r)/τTF(r)}2]−1, where the Thomas-Fermi kinetic
density τTF

σ (r) = 3(6π2)2/3ρ5/3
σ is introduced to make Cσ (r)

dimensionless. Pσ (r, s) → 0 at s → 0 is guaranteed by the
Pauli exclusion principle. The definition restricts the range of
Cσ (r) as 0 < Cσ (r) � 1. It is apparent that the smaller the
conditional probability Pσ (r, s) is, the larger the localization
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function Cσ (r). In other words, C(q)
σ (r) ≈ 1 indicates very

little probability of finding two nearby nucleons with the
same spin σ and isospin q around the position r. We should
emphasize that the localization function C(q)

σ (r) is, in fact, a
“delocalization” measure of the same kind of nucleons. The
presence of the α particle requires localization of nucleons
with different spins and isospins, which cannot be quantified
by C(q)

σ (r).

III. NUMERICAL RESULTS

A. Numerical details

In the present paper, instead of full Hartree–Fock–
Bogoliubov (HFB) theory, we adopt the HF + BCS theory. It
simplifies the numerical computation and allows us to exam-
ine the effect of the pairing in the local α-removal strength.
We truncate the model space for the pairing correlations.
This is introduced by the number of single-particle orbitals.
For instance, for Sn isotopes, 82 neutron orbitals obtained in
the HF + BCS are adopted for the neutron sector, while the
protons are in the normal phase (�p = 0) with 50 fully occu-
pied orbitals. The neutron pairing gaps are determined by the
third-order mass difference using the atomic mass evaluation
[45,46]: �n = 1.4, 1.2, 1.4, and 1.3 MeV for A = 112, 116,
120, and 124, respectively.

We use the Skyrme energy density functional with the
SkM∗ parameter set [47]. We adopt the three-dimensional
(3D) Cartesian grid representation of the square box, using the
computer code developed in Refs. [48–50]. The 3D grid size is
set to be (1.0 fm)3. We adopt all the grid points inside a sphere
of the radius of R = 12 fm. The differentiation is evaluated
with the nine-point finite difference. The center-of-mass cor-
rection is taken into account by modifying the nucleon’s mass
as m → m × A/(A − 1). The Coulomb potential is calculated
by solving the Poisson equation with the conjugate-gradient
method, in which the boundary values are constructed with
the multipole expansion [51]. The single-particle orbitals are
calculated with the imaginary-time method [52]. The iteration
is carried out until the self-consistent solution is obtained.

B. Even-even Sn isotopes

Since we neglect the rearrangement of the mean fields,
the method is suitable for heavy nuclei in which the mean-
field potentials are relatively stable against the removal of an
α particle (two protons and two neutrons). Since the ground
states of Sn isotopes (Z = 50) represent a typical example of
pair-rotational bands in spherical nuclei [53], the mean fields
should be stable with respect to the two-neutron removal. In
contrast, the two-proton removal is expected to have a certain
impact on the mean fields, because Z = 50 is a spherical
magic number for protons. Nonetheless, Cd isotopes (Z = 48)
exhibit typical excitation spectra of spherical vibrator [54].
Thus, it is meaningful to compare the magnitude of the local
α-removal strengths for different Sn isotopes (ASn →A−4 Cd).

1. Normal density and pair density

First, let us show the density distributions for
112,116,120,124Sn in Fig. 2. The neutron radius increases as

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 2 4 6 8 10

ρ
[f
m
-3
]

r [ fm ]

A=112
A=116
A=120
A=124

FIG. 2. Nucleon density distributions for neutrons (solid lines)
and protons (dashed) for Sn isotopes (A = 112, 116, 120, and 124).

a function of the neutron number, while the proton radius
stays almost constant. A dip in the central proton density can
be understood as a shell effect because of the full occupation
of the high- j (g9/2) orbital. As we can expect, the neutron skin
develops as increasing the neutron number. The neutron skin
should have an impact on the α-particle formation properties.
Reference [37], using the Thomas-Fermi approximation, gave
the α-particle density in the surface region which decreases
as the neutron skin increases. The α-cluster formation is also
predicted to have a negative impact on neutron skin thickness.

In Fig. 3, the neutron pair densities are shown. In the
present calculation, the central peak at r ≈ 0 exists, which
may be due to the monopole pairing interaction used in the
BCS treatment and may depend on the type of pairing inter-
action. The surface peak is located at r ≈ 5 fm, whose shape
is similar to each other. Since the proton number Z = 50 is
magic, the pair density vanishes for protons.

2. Local α-removal strengths

Since the numerical calculation is performed with the van-
ishing boundary condition, all the quasiparticle energies are
discrete. To visualize the local α-removal strength Sα (r, E )
as a function of excitation energy E , we replace the δ

0

0.002

0.004

0.006

0.008

0.01

0 2 4 6 8 10

κ n
(r)
[f
m
-3
]

r [ fm ]

A=112
A=116
A=120
A=124

FIG. 3. Neutron pair density distributions for Sn isotopes (A =
112, 116, 120, and 124). The proton pair density vanishes for these
isotopes.
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FIG. 4. Local α-removal strengths Sα (r, E ) for Sn isotopes (A =
112, 116, 120, and 124). The energy E corresponds to the excitation
energy of the residual nuclei after the removal of an α particle at the
radial position r. The discrete strengths are smeared by Gaussians
with a width of 100 keV.

function in Eq. (10) by the Gaussian function of the width
of γ = 100 keV. The calculated local α-removal strengths for
Sn isotopes are shown in Fig. 4. For each isotope, there is an
isolated peak corresponding to the ground-ground transition
(E = 0). This α-removal strength to the ground state is located
near the surface region. At excitation energies of E � 3 MeV,
there are peaks whose magnitude is comparable to or even

0

1x10-9

2x10-9

3x10-9

0 1 2 3 4 5 6 7 8

[
S α
(r)

fm
-1
2
]

r [ fm ]

A=112
A=116
A=120
A=124

0

FIG. 5. Local α-removal strength to the ground state S0
α (r) for

Sn isotopes (A = 112, 116, 120, and 124).

larger than the transitions to the ground state. In contrast to
the ground-ground transition, the strengths are not only in the
surface region, but also in the interior region with r < 3 fm.
This indicates that the α particle may exist deep inside the nu-
cleus. However, in the α-knockout reaction, these α particles
are difficult to come out of the nucleus because of the strong
absorption. No strength is shown at r = 0 in Fig. 4 that shows
Sα (r, E ) in the range of E < 10 MeV. This is because the
proton amplitude vanishes at r = 0, F (p)

k (0) = 0. The binding
energy of the proton s1/2 state is larger than the g9/2 state,
by more than 20 MeV. Thus, nonzero proton amplitude at the
center F (p)

k (0) 
= 0 appears only for E > 40 MeV.

3. Residual nuclei in the ground state

To examine the structure of the local α-removal strengths
to the ground state of the residual nuclei, in Fig. 5 we show
the strength of Eq. (4) with E = 0 and �E → 0+,

S0
α (r) ≡ Sα (r)E=0,�E=2ε

=
∫ ε

−ε

Sα (r, E )dE = F (n)
0 (r)F (p)

0 (r), (25)

where ε is a positive infinitesimal. When we remove an
α particle at the position r, S0

α (r) can be regarded as a
quantity proportional to the probability that the residual nu-
cleus becomes the ground state. The shape of the peak is
almost identical among these isotopes and located at r =
|r| ≈ 4.7–4.8 fm. This position approximately corresponds to
the position r that gives ρ(r) = (2/3) × ρ(0) (Fig. 2). It is
near the surface, however, the radial value r is significantly
smaller than the peak position of the α density nα (r) predicted
in Ref. [37]. In fact, the peak position of the α density nα (r)
in Ref. [37] is located at 6.5 < r < 7.5 fm, which roughly
corresponds to the value r with ρq(r) ≈ ρq(0)/10. The α

density nα (r) is predicted to vanish in the region of r < 6 fm
for Sn isotopes [37].

The peak height is similar to each other for 112,116,120Sn,
while it is apparently smaller for 124Sn. This is naturally
understood by the pair density in Fig. 3. The proton matrix
elements F (p)

0 (r), which is given by Eq. (21), are determined
by the HOO, namely g9/2 orbitals. They are surface peaked
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and approximately identical to each other among all the
isotopes. The neutron matrix element F (n)

0 (r) is given
by |κn(r)|2, according to Eq. (14). Therefore, variations
in S0

α (r) = F (n)
0 (r)F (p)

0 (r) come from those in F (n)
0 (r) =

|κn(r)|2. A reduction in κn(r) at r ≈ 5 fm is the reason of the
reduced peak height in S0

α (r) in 124Sn. This is easily confirmed
by artificially increasing the neutron pairing gap: We have
found that the peak height of S0

α (r) increases by about 50%
when we double the pairing gap �n.

The α-knockout experimental data in Ref. [36] clearly
indicate a monotonic decrease as a function of the neutron
number. The experiment measures the missing-mass spectra
to extract the cross section in which the residual nucleus is in
the ground state. Therefore, this isotopic dependence should
be related to S0

α (r) at the nuclear surface. The peak height of
S0

α (r) shown in Fig. 5 is similar to each other except for 124Sn.
Furthermore, they are almost identical at r � 5.5 fm where the
α knockout mainly takes place, namely,

S0
α (r)A=112 ≈ S0

α (r)A=116 ≈ S0
α (r)A=120 ≈ S0

α (r)A=124, (26)

at r � 5.5 fm. In other words, S0
α (r) is universal for these

isotopes in the surface region. This seems to be inconsistent
with the experimental observation, at first sight.

However, we need to further examine the relationship
between the cross section and the local α-removal strength
S0

α (r). Since there is a strong absorption of the α particle
inside the nucleus, the cross section may not be correlated
with the values at the same r, but we should compare those at
a fixed value of nucleon density for each isotope. The nuclear
radii apparently increase as the neutron number increases,
because of the neutron skin effect (Fig. 2), namely R112 <

R116 < R120 < R124. Thus, the S0
α (r) values at the surface

(fixed density) decrease as a function of the neutron number:

S0
α (R112) > S0

α (R116) > S0
α (R120) > S0

α (R124). (27)

Therefore, the universal behavior of S0
α (r) may be consistent

with the experimental observation.
To visualize this neutron number dependence, we define

a dimensionless quantity, “local α probability,” as the S0
α (r)

value relative to the density.

P0
α (r) ≡ S0

α (r)

ρn↑(r)ρn↓(r)ρp↑(r)ρp↓(r)
. (28)

P0
α (r) can be regarded as the probability to find an α par-

ticle at the position r under the condition that the residual
nucleus is in the ground state, normalized to the probability
of finding the four kinds of nucleons. The local α probability
is plotted in Fig. 6. P0

α (r) clearly indicates the monotonic
decrease as the neutron number, which is consistent with the
experiment [36].

4. Excited residual nuclei

The local α-removal strength, in principle, contains infor-
mation on α knockout to excited residual nuclei. Since the
excited states are simply given by neutron 2qp states and
proton particle-hole excitations, we should keep in mind that it
is a qualitative measure. In Fig. 7, Sα (r, E ) integrated over the
space r is shown for Sn isotopes. The small peak next to the

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8
r [ fm ]

A=112
A=116
A=120
A=124

P α
(r)0

FIG. 6. Local α probability P0
α (r) for Sn isotopes (A = 112, 116,

120, and 124).

ground state (E ≈ 2 MeV) corresponds to proton excitation in
which one of the protons is removed from the g9/2 orbit and
the other from p1/2. The α-removal strengths to some excited
states of residual nuclei are as strong as those to the ground
state.

It may be of interest to investigate the structure of the local
α probability when the residual nuclei are excited. Since there
are two prominent peaks in Fig. 7, one around E ≈ 4 MeV and
the other around 9 MeV, we set E = 4 (9) MeV and �E = 2
MeV, to calculate the local α probability as

Pex
α (r)E ,�E ≡ Sα (r)E ,�E

ρn↑(r)ρn↓(r)ρp↑(r)ρp↓(r)
, (29)

where Sα (r)E ,�E is given by Eq. (4). These are shown in
Fig. 8. The local α probabilities for excited residual nuclei are
enhanced in the low-density region. The monotonic increase
as a function of r is the same as those to the ground state P0

α (r),
and seems to be universal. However, their isotopic dependence
is not as prominent as P0

α (r). Pex
α (r)E ,�E with E = 9 MeV and

�E = 2 MeV for different isotopes are similar to each other.

FIG. 7. Integrated local α-removal strength
∫

Sα (r, E )dr, for Sn
isotopes (A = 112, 116, 120, and 124). Those for A = 116, 120,
and 124 are shifted upwards by 10−6, 2 × 10−6, and 3 × 10−6 fm−9,
respectively.
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0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8
3 < E < 5 MeV

8 < E < 10 MeV

r [ fm ]

A=112
A=116
A=120
A=124

Pe
x (r
)

α

FIG. 8. Local α probabilities for excited residual nuclei in Sn
isotopes (A = 112, 116, 120, and 124), which are defined as Eq. (29)
with E = 4 MeV and �E = 2 MeV. Those with E = 9 MeV are
shifted upwards by 0.1.

Since we neglect the effects of the rearrangement and the
collective states, these numbers should not be taken seriously.
Nevertheless, this may suggest that the α-knockout reaction
with excited residual nuclei may not show the prominent neu-
tron number dependence, in contrast with those for the ground
residual nuclei.

Integrating over the entire energy range, the total strength
of the local α removal can be easily estimated in the mean-
field approximation as

Stot
α (r) =

∫ ∞

−∞
Sα (r, E )dE = S(n)

↑↓ (r)S(p)
↑↓ (r), (30)

where

S(q)
↑↓ (r) = 〈

�
Nq

0

∣∣ψ†
q↓(r)ψ†

q↑(r)ψq↑(r)ψq↓(r)
∣∣�Nq

0

〉
= ρ

(q)
↑ (r)ρ (q)

↓ (r) − |ρ (q)
↑↓ (r)|2 + |κ (q)(r)|2. (31)

The quantity of Eq. (30) can be written as Stot
α (r) =

〈�A
0 |α†(r)α(r)|�A

0 〉, which may be regarded as the α-particle
density distribution. This is shown in Fig. 9. The major con-
tribution to Stot

α (r) is the first term of Eq. (31), which is a local
density product of nucleons with spin up and down. Thus,

FIG. 9. Energy-integrated local α-removal strength for Sn
isotopes (A = 112, 116, 120, and 124).

0
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FIG. 10. Localization functions for neutrons (solid lines) and
protons (dashed lines) for Sn isotopes (A = 112, 116, 120, and 124).
The values with spin up (σ = +1/2) C+1/2 are shown in the figure,
but those for spin down (σ = −1/2) are identical.

Stot
α (r) of Eq. (30) mainly comes from a trivial density product

of four kinds of nucleons. This is nothing but the denominator
of Eqs. (28) and (29). If we normalize Stot

α (r) with respect to
this trivial density product factor,

Ptot
α (r) ≡ Stot

α (r)

ρn↑(r)ρn↓(r)ρp↑(r)ρp↓(r)
, (32)

we obtain results shown in the inset of Fig. 9. Again, in the
surface region, we observe the clear neutron-number depen-
dence the same as P0

α (r) in Fig. 6.
If we neglect the second and the third terms in Eq. (31), we

trivially have Ptot
α (r) = 1. Since the second term of Eq. (31)

vanishes for the time-even ground state, the enhancement
effect is due to the third term, namely, the effect of neutron
pairing. Therefore, the surface α formation may be understood
as the fact that the pair density distribution is more extended
than the normal density.

5. Localization function

Before closing this section, we examine the validity of
the localization function. The calculated localization func-
tion Cσ (r) for Sn isotopes is presented in Fig. 10. Cσ (r) are
approximately identical for all the isotopes. We observe a
bump in Cσ (r) at r ≈ 5 fm for protons and at r ≈ 5.5 fm for
neutrons. These values r of the peak positions are larger than
those of S0

α (r) (Fig. 5). Besides, the profile of the function
is significantly different between Cσ (r) and S0

α (r). In com-
parison with the summed local α-removal strength Stot

α (r) in
Fig. 9, we again observe significantly different peak positions
and profiles. There is no surface peak, and the peak structure
almost disappears in Fig. 9. Therefore, it could be misleading
to identify the localization function Cσ (r) as the indicator of
the α-particle formation in the mean-field theory.

IV. CONCLUSION

To quantify the α-particle formation, the local α-removal
strength Sα (r, E ) is proposed. When we remove an α particle
at the position r from a nucleus, the final state in the residual
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nucleus can be expanded in the energy eigenstates. The local
α-removal strength Sα (r, E ) corresponds to the strength to
produce the state at an energy E in the residual nucleus.
This quantity is defined with respect to a many-body wave
function, thus, it can be calculated using various quantum
many-body techniques, in principle. The calculation becomes
manageable when we adopt some approximations, such as
the mean-field approximation (energy density-functional the-
ory). Furthermore, if we neglect the rearrangement of the
mean fields after the removal of an α particle, the compu-
tational cost necessary for the local α-removal strength is
less than that for the mean-field calculation to obtain the
ground state. We use these approximations in the present
paper.

We calculate the local α-removal strengths for Sn isotopes
with A = 112, 116, 120, and 124. These nuclei are stud-
ied by a recent α-knockout experiment, in which the cross
sections with the residual nuclei in the ground state clearly
indicate a monotonically decreasing trend as a function of
the neutron number. This prominent neutron-number depen-
dence is not found in the α-removal strength to the ground
state, S0

α (r), of Eq. (25). In fact, the function S0
α (r) is almost

universal in the surface for all these isotopes. Nevertheless,
the observed neutron-number dependence is well reproduced
by the local α probability, P0

α (r), of Eq. (28). The monotonic
decrease as a function of the neutron number is especially evi-
dent at the nuclear surface of r � 6 fm, where the α-knockout
reaction is supposed to take place.

It is also possible to explain the experimental trend using
the universal character of S0

α (r) in the surface region together
with the development of the neutron skin. Since the absorption
of the α particle is strong, the knockout reaction is allowed
only in the low-density region. This means that the radial
value r of the region probed by the α-knockout reaction is
an increasing function of the neutron number. Therefore, the
S0

α (r) values relevant to the knockout cross section decrease
with the neutron number. This naturally explains the experi-
mental data.

To identify the α cluster, Ref. [33] proposed criteria com-
bining the localization function with the compactness of the
density localization. It may be useful for light deformed nu-
clei which show a prominent density localization. Apparently,
the Sn isotopes in the present study satisfy none of these
criteria; the ground states are spherical and show no density

localization. On the other hand, the calculated local α-removal
strength to the ground state shows a surface peak structure
and indicates the importance of the pair density. Since the
pair density dominates over the normal density in the nuclear
surface region, the last term of Eq. (31) should play a crucial
role in the surface α formation.

The local α-removal strength in the present approxima-
tions can be calculated with a single state. In other words,
the states in the residual nucleus are not constructed ex-
plicitly. Therefore, with a proper choice of the mean-field
Hamiltonian, it can be evaluated in a time-dependent
manner with the time-dependent density-functional the-
ory (TDDFT). Recently, the nuclear TDDFT calcula-
tions have been renovated to include the pair den-
sity [49,50,55–59]. It is of significant interest to in-
vestigate the α-particle formation probability during nu-
clear reactions, such as heavy-ion reactions, fusion, and
fission.

In the present paper, we introduce several approximations
for feasibility of the numerical computation. The BCS approx-
imation can be lifted and replaced by the full HFB calculation.
It may be of interest to study how the type of the pairing
interaction, such as volume or surface or mixed types, affects
the α-formation properties. We also neglect the rearrange-
ment of the mean fields before and after the removal of an
α particle. The numerical calculation is extremely feasible
with this approximation. However, it is a drastic approxima-
tion even for heavy nuclei. Especially, near the doubly closed
nuclei, the nuclear shape may be changed, and the approxi-
mation may not be justified. To improve this, the calculation
with proper treatment of the rearrangement is currently un-
der progress. This may lead to a quantitative evaluation of
the α-knockout cross section. Furthermore, the inclusion of
the proton-neutron pairing is an interesting subject in the
future.
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