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Investigation of the neutron distribution deformation by parity-violating electron scattering
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Parity-violating electron scattering (PVES) serves as an effective and model-independent method to investi-
gate the spatial distributions of neutrons in nuclei. The existing PVES model assumes spherical neutron density
distributions, while many nuclei show deformation. In this paper, we develop a deformed PVES model, which
combines the deformed relativistic mean-field model and the distorted wave Born approximation, to evaluate how
the deformation of the neutron density affects the parity-violating asymmetry APV. Our calculations demonstrate
that the deformed PVES model is capable of recovering the APV results for spherical nuclei. Moreover, for
deformed odd-A nuclei, the deformed PVES model provides larger APV calculations around the diffraction
minima. These findings suggest that PVES can be used to extract the neutron deformation and construct a
comprehensive understanding of the neutron structure in nuclei.
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I. INTRODUCTION

Parity-violating electron scattering (PVES) provides a
crucial window for many significant topics, including inves-
tigations into the standard model, electroweak form factors
of the nucleon, as well as the neutron distribution in nu-
clei [1]. The precise weak charge of the proton extracted
by using PVES can determine the axial electron and vector
quark weak coupling constants in the standard model and
place important restrictions on new beyond-standard-model
physics [2,3]. Combining the proton and neutron electromag-
netic form factors, the neutral weak form factors measured
by PVES allow the determination of the strange quark form
factors [4–6]. Since Z0 bosons, which mediate the weak inter-
action, couple primarily with neutrons at low four-momentum
transfer squared Q2, PVES off nuclei provides a precise and
model-independent way to shed light on the neutron density
distribution in nuclei [7–13]. A thorough understanding of
the neutron density distribution is essential for investigat-
ing neutron-excess systems spanning from exotic isotopes to
macroscopically large objects, e.g., neutron stars [14–20].

Great progress has been made on PVES experiments off
nuclei. The PREX-II experiment, carried out at Thomas Jef-
ferson Lab (JLab), measured the parity-violating asymmetry
APV = 550 ± 16(stat) ± 8(syst) parts per billion for 208Pb.
This measurement accurately determined the neutron skin
Rn − Rp = 0.283 ± 0.071 fm for 208Pb and provided a strin-
gent laboratory constraint on the symmetry energy of nuclear
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matter [9,10]. The CREX experiment measured APV =
2668 ± 106(stat) ± 40(syst) parts per billion and provided the
neutron skin Rn − Rp = 0.121 ± 0.026 fm for 48Ca, which
can be compared with microscopic calculations from the basic
nucleon-nucleon and three-nucleon forces [11,21]. Recently,
to account for the background in the Qweak experiment, APV

of 27Al was measured: APV = 2.16 ± 0.11(stat) ± 0.16(syst)
parts per million [22]. It is also of particular interest on its
own to extract the neutron skin of a light complex nucleus. As
expected for 27Al with one excess neutron, the corresponding
neutron skin Rn − Rp = −0.04 ± 0.12 fm is small, which can
serve as a benchmark for determinations of the neutron skin
by utilizing PVES on larger neutron-excess nuclei, e.g., 208Pb.

The PVES experiment provides a highly anticipated ob-
servable and much theoretical effort has been made to clarify
the relationship between the parity-violating asymmetry APV

and nuclear properties. In the mean-field framework, it is
revealed that the neutron skin can be extracted from the APV

results by utilizing the high linear correlation between them
[23]. Adopting chosen spherical neutron density profiles, such
as the symmetrized two-parameter Fermi function, the overall
neutron density profiles may be constrained with only two
experimental measurements of APV [24]. In Ref. [25], the
theoretical uncertainty was introduced for the first time to fur-
ther investigate the current PVES model, and the correlations
between APV and isovector nuclear properties were quantified
in terms of the coefficient of determination (COD).

The nucleus is treated as spherically symmetric in the
majority of PVES investigations, while most nuclei show
deformations. The knowledge of nuclear deformation is es-
sential for the emergence of drip lines, nuclear collective
motions, heavy-ion collisions, and nucleosynthesis in stellar
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environments [26–29]. It is also of particular interest that the
isospin dependence of the nucleon-nucleon force may lead to
different deformations of proton and neutron densities in some
nuclei [30–32]. Therefore, a PVES model in the deformed
framework is needed to take the deformations of proton and
neutron densities into account. In Ref. [33], the Coulomb
and weak multipole form factors of 27Al were first evaluated
with nonspherical nuclear density, in which the spherical part
was obtained from the spherical relativistic mean field (RMF)
model, and the deformed part was attributed to the 1d5/2

proton hole. The deformation of the neutron density was also
taken into account because the proton hole is anticipated to
polarize it.

In this paper, the deformed density distributions are gen-
erated by the axially deformed RMF model and expanded
into various multipole density distributions. In the plane wave
Born approximation (PWBA), multipole form factors are fur-
ther calculated by the Fourier transformations of multipole
density distributions. Coulomb distortions are taken into con-
sideration by the distorted wave Born approximation (DWBA)
to obtain accurate predictions of APV of heavy nuclei [34,35].
The combination of the axially deformed RMF model and the
DWBA method is used to compute APV and is referred to as
the deformed PVES model. With the deformed PVES model,
we investigate APV of spherical nuclei 208Pb and 48Ca as well
as deformed nuclei 27Al and 133Cs. The APV results from the
spherical PVES model are also presented for comparison, in
which the density distributions are from the spherical RMF
model. By analyzing the APV results with and without neutron
deformation, the impact of neutron deformation on APV is
evaluated. The multipole form factors are also shown to inves-
tigate how neutron deformation influences APV, with a specific
focus on the regions of diffraction minima where the neutron
deformation effect is most pronounced. The deformed PVES
model proposed in this paper may be helpful to investigate the
deformed neutron density distribution in nuclei.

The rest parts are organized as follows. In Sec. II, the theo-
retical framework of the deformed PVES model is presented.
In Sec. III, the parity-violating asymmetries are systematically
investigated and the sensitivity of APV to the neutron deforma-
tion is discussed. Finally, a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, the general deformed formalism for study-
ing the parity-violating electron scattering is presented, in
which the target nuclei are regarded as axially symmetric
deformed rather than spherical. In this paper, we apply the
deformed RMF model to calculate both the deformed proton
and neutron density distributions. In the RMF model, the
starting point is the effective Lagrangian [36]

L = ψ̄
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where Ueff is the nonlinear ω − ρ term,

Ueff(ωμ, �ρμ) = �v

(
g2

ρ �ρμ · �ρμ

)(
g2

ωωμωμ

)
. (2)

With the Euler-Lagrange equation, one can derive the Dirac
equations for nucleons and the Klein-Gordon equations for
mesons. For axially deformed nuclei, the single-particle wave
functions are expanded into eigenfunctions of an axially de-
formed harmonic oscillator. The motion equations, on the
basis of the no-sea approximation and mean-field approxima-
tion, are iteratively solved, and the single-particle Dirac spinor
can be written as

ψi(r, t ) =
(

fi(r, s)
igi(r, s)

)
χti (t ), (3)

where fi(r, s) and gi(r, s) are the two-dimensional Dirac
spinors for the single-particle state i, and χti (t ) represents the
isospin function. The deformed neutron density ρn(r) and pro-
ton density ρp(r) are expressed as the sum of the contributions
from the corresponding single-particle states. With ρn(r) and
ρp(r), the deformed weak charge density distribution ρW (r)
can be written as [34]

ρW (r) =
∫

d3r′GE (|r − r′|)[(1 − 4 sin2 θW )ρp(r′) − ρn(r′)]

= (1 − 4 sin2 θW )ρC (r) −
∫

d3r′GE (|r − r′|)ρn(r′),

(4)

where GE (r) = Q3

8π
e−Qr is the electric form factor of the

single proton with Q = 842.61 MeV, and the weak mix-
ing angle sin2 θW = 0.23. ρC (r) = ∫

d3r′GE (|r − r′|)ρp(r′)
is the charge density distribution, where the neutron elec-
tric form factor is neglected. These densities are normalized,∫

d3r ρC (r) = Z and
∫

d3r ρW (r) = QW , with Z and QW =
Z (1 − 4 sin2 θW ) − N being the charge and weak charge num-
bers, respectively.

We expand the axially deformed charge and weak charge
densities ρ(r⊥, z) in cylindrical coordinates with the Legendre
function

ρ(r⊥, z) =
∑

λ

ρλ(r)Pλ(cos θ )

= ρ0(r) + ρ2(r)P2(cos θ ) + · · · , (5)

where the multipole component ρλ(r) in spherical coordinates
is written as

ρλ(r) = 2λ + 1

2

∫ 1

−1
Pλ(cos θ )ρ(r⊥, z)d (cos θ ). (6)

In the following, we present the formulas to calculate the
parity-violating asymmetry APV in a deformed framework uti-
lizing the above charge and weak charge density multipoles.
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APV is defined as

APV = σ+ − σ−

σ+ + σ− , (7)

where σ+(−) represents the differential cross section of lon-
gitudinally polarized electrons off unpolarized targets, with
+(−) corresponding to the spin of electrons parallel (an-
tiparallel) to their momenta. In the frame of PWBA and
considering the same proton and neutron densities, the parity-
violating asymmetry APV can be written in the form [7]

APV = A0
PV = −GF q2 QW

4πα
√

2Z
. (8)

Here GF = 1.16639 × 10−5 GeV−2 is the Fermi constant,
q = |q| is the three-momentum transfer, and α is the fine
structure constant. A0

PV is simply proportional to q2 and
contains no information on nuclear structures. Incorporating
different proton and neutron densities, APV in PWBA becomes

APV = A0
PV

W PV(q)

F 2(q)
. (9)

The nuclear structure information is embedded in the ratio of
the parity-violating response W PV(q) to the parity-conserving
form factor F 2(q). By decomposing them in a Rosenbluth
expansion and only considering the longitudinal form factor
for the forward scattering angles, F 2(q) and W PV(q) can
be expressed as the familiar Coulomb multipole form factor
FCλ(q) and weak multipole form factor FW λ(q) [37]:

F 2(q) =
2J∑

λ=0,2,...

FCλ(q)2, (10)

W PV(q) =
2J∑

λ=0,2,...

FCλ(q)FW λ(q), (11)

where J is the angular momentum of the nuclear ground state.
Only even-λ terms remain because of the parity and time
reversal invariance. The weak multipole form factor FW λ(q)
can be expressed in terms of intrinsic form factor FW λ(q)
weighted by the Clebsch-Gordan coefficient

FW λ = 〈Jkλ0 | JλJk〉FW λ, (12)

where k is the J projection along the nuclear symmetry axis.
For λ = 0, the intrinsic multipole is contributed by the spher-
ical part ρW 0(r) of the intrinsic weak charge density

FW 0(q) = 4π

QW

∫
r2ρW 0(r) j0(qr)dr, (13)

where j0(qr) is the zeroth-order spherical Bessel function.
Higher intrinsic multipoles (λ � 2) reflect the contributions
of the deformed parts of the intrinsic weak charge density

FW λ(q) = 4π

QW
√

2λ + 1

∫
r2ρW λ(r) jλ(qr)dr, (14)

where ρW λ(r) is the λth multipole of the deformed intrinsic
weak charge density, and jλ(qr) is the λth-order spherical
Bessel function. Similarly, the Coulomb multipole form fac-
tors FCλ(q) can also be written in terms of the intrinsic form

factors FCλ(q), which are related to the multipole intrinsic
charge densities [38].

Combining Eqs. (9)–(14), one can obtain the form under
the plane-wave description of the parity-violating asymmetry
APV,

APV ≈ A0
PV

FC0FW 0 + FC2FW 2

FC0
2 + FC2

2

=
A0

PV
FC0FW 0

FC0
2 FC0

2+A0
PVFC2FW 2

FC0
2 + FC2

2 . (15)

FC0(FW 0) dominates the APV results, except for the regions
near the diffraction minima, where FC2(FW 2) is significant.
The contributions from higher multipoles (λ > 2) are small.
Detail discussions can be found in Refs. [33,39,40]. There-
fore, in this paper, we only consider the multipole form factors
up to λ = 2. The PWBA method provides a powerful tool for
the multipole analysis of form factors. However, the nuclear
Coulomb distortion effects, being important near diffraction
minima, are not considered in PWBA. In the above equation,
we separate A0

PV
FC0FW 0

F 2
C0

out in the numerator, which is the
parity-violating asymmetry with spherical density distribu-
tions. To obtain accurate quantitative results, we incorporate
the Coulomb distortions for A0

PV
FC0FW 0

F 2
C0

by utilizing the DWBA
method, and Eq. (15) can be rewritten as [33]

APV = ADW
PV FC0

2|DW + A0
PVFC2FW 2

FC0
2|DW + FC2

2 . (16)

A0
PV

FC0FW 0

FC0
2 in Eq. (15) is replaced by ADW

PV = σ+|DW−σ−|DW

σ+|DW+σ−|DW
, in

which the cross section σ+(−)|DW is calculated with the spher-
ical charge and weak charge densities by the DWBA method.
FC0|DW is referred to as the zeroth-order Coulomb form factor
including Coulomb distortion effects.

III. NUMERICAL RESULTS

In this section, the deformed PVES model given in Sec. II,
which merges the deformed RMF model and the DWBA
method, is applied to investigate the parity-violating asym-
metry APV for both the spherical and deformed nuclei. The
APV results from the spherical PVES model are also presented
for comparison, which only contains FC0(q) and FW 0(q) with
density distributions from the spherical RMF model. By con-
trasting the spherical and deformed calculations, one can
validate the deformed PVES model and investigate the effects
of neutron deformation on PVES. In this paper, we place our
focus on the results of weak charge densities ρW (r), since
the charge densities ρC (r) have been investigated extensively
[41–44].

A. Spherical nuclei

First, we investigate the parity-violating asymmetry APV of
spherical nuclei 208Pb and 48Ca. Through the years, strong
correlations have been found between the neutron skin of
208Pb and the slope of the symmetry energy. The proton
density can be extracted from the elastic electron scattering.
Therefore, it is of particular interest to study the neutron
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FIG. 1. (a) Weak charge density distributions of 208Pb. The multipole weak charge density distributions ρW 0(r) and ρW 2(r) (solid line and
dotted line) as well as the spherical density distribution ρW (r) (dashed line) are respectively calculated by the deformed and spherical RMF
models with the FSU parameter set. (b) Same as (a), but for 48Ca.

density of 208Pb utilizing parity-violating electron scattering.
As a lighter double magic nucleus, it is more feasible to obtain
the nuclear structure of 48Ca in a microscopic calculation
[21]. There has been an increasing interest in studying the
parity-violating asymmetry of 48Ca. The experimental APV

results of 208Pb and 48Ca have been measured in the PREX-II
and CREX experiments, respectively.

In Fig. 1(a), we present the multipole weak charge density
distributions ρW 0(r) and ρW 2(r) of 208Pb from the deformed
RMF model. For comparison, the spherical density distribu-
tion ρW (r) from the spherical RMF model is also shown.
The precisely calibrated FSUGold (or “FSU”, for short)
parametrization, which provides a modest neutron skin, is
used to present predictions [23,36]. Inspecting the figure, the
quadrupole density distribution ρW 2(r) is very close to zero.
The results of the spherical part ρW 0(r) from the deformed
RMF model are almost identical to ρW (r) from the spherical
RMF model; that is, for the spherical nucleus 208Pb, the de-
formed RMF model can replicate the results of the spherical
counterpart. The weak charge density distributions of 48Ca
are shown in Fig. 1(b), obtained from both the spherical and
deformed RMF models. For 48Ca, the results of ρW 0(r) from
the deformed RMF model are also similar to ρW (r) from the
spherical RMF model.

According to Eqs. (9)–(11), for an even-even nucleus, only
FC0(q) and FW0(q), which arise from the spherical portions
of the deformed densities, contribute to the parity-violating
asymmetry APV. With ρW 0(r) from the deformed RMF model,
the APV results of 208Pb are calculated and shown in Fig. 2(a)
at the beam energy of 953 MeV, which is the energy of
the PREX-II experiment. The APV results from the spheri-
cal PVES model and A0

PV in Eq. (8) are also displayed in
the same figure for comparison. It is evident that the APV

calculations from the spherical and deformed PVES models
conform with the experimental data and coincide with each
other in a large range of scattering angles (θ < 10◦). When
the same proton and neutron densities are fixed, the PWBA
outcomes simply exhibit a q2 behavior, i.e., the results of A0

PV,
as shown in Eq. (8). The diffraction minima originate from
the Coulomb distortion effects and the distinction between the
proton and neutron densities [45]. The deformed PVES model
incorporates the Coulomb distortion effects by the DWBA

and employs the different proton and neutron densities from
the deformed RMF model. The spherical PVES model shares
the same situation. Consequently, both the spherical and de-
formed PVES models demonstrate diffraction minima in the
APV results.

With the density distributions in Fig. 1(b), the APV results
of 48Ca at the beam energy of 2180 MeV, corresponding
to the energy of the CREX experiment, are also presented
in Fig. 2(b). It can be seen that the APV results from both
the deformed and spherical PVES models coincide with the
experimental data, and the two theoretical results are prac-
tically the same. Combining the results of 208Pb and 48Ca,
it can be concluded that, in the case of the spherical nuclei,
the spherical and deformed RMF models provide essentially
identical charge and weak charge density distributions. The
APV results from the spherical PVES model can be reproduced
using the deformed one. These findings provide nontrivial
evidence of the validity of the deformed PVES model, which
inspires us to further investigate the charge and weak charge
density distributions for deformed nuclei.

B. Deformed nuclei

In addition to 208Pb and 48Ca, we also investigate the
parity-violating electron scattering of 27Al with the deformed
PVES model. The PVES experiment of 27Al was performed
at JLab. The angular momentum of 27Al is Jπ = 5/2+, and,
according to Eqs. (9)–(11), APV contains higher multipole
form factors, which correspond to the deformed parts of ρW (r)
and ρC (r).

In deformed RMF calculations with the FSU parameter
set, 27Al has an oblate shape with the deformations βn

2 =
−0.324 for the neutron density ρn(r) and β

p
2 = −0.322 for

the proton density ρp(r). Figure 3(a) displays the deformed
neutron density of 27Al from the deformed RMF model.
Figure 3(b) presents the multipole weak charge density dis-
tributions ρW 0(r) and ρW 2(r), along with the spherical density
distribution ρW (r) from the spherical RMF model. The inset
in Fig. 3(b) depicts the profile of the quadrupole density
ρW 2(r)P2(cos θ ) in Eq. (5). It can be seen that ρW 2(r)P2(cos θ )
exhibits positive values in the x direction and negative values
in the z direction, which lead to the oblate shape of 27Al.
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FIG. 2. (a) Parity-violating asymmetry APV of 208Pb at the beam energy of 953 MeV versus the scattering angle. The dotted line shows the
A0

PV results from PWBA. The solid line and dashed line represent the APV results from the deformed and spherical PVES models, respectively.
The experimental value of APV is extracted from the PREX-II experiment [9]. (b) Same as (a), but for 48Ca at the beam energy of 2180 MeV
with the experimental value of APV extracted from the CREX experiment [11].

Moreover, it is well known that the nuclear deformation can
alter the occupation numbers of the single-particle states, par-
tially emptying states below the Fermi level and filling states
above the Fermi level [46]. Concerning 27Al, the 2s1/2 orbit
is located above the neutron Fermi level 1d5/2. As shown in
Fig. 3(b), since the nuclear deformation induces occupation
of the 2s1/2 orbit, one can observe the enhancement of the
central density for ρW 0(r) from the deformed RMF model.

With the multipole densities in Fig. 3(b), the APV results
calculated by the deformed PVES model are presented in
Fig. 4. To investigate the effects of neutron deformation on
APV, the theoretical results with and without the quadrupole
neutron density ρn2 are offered for comparison. Recall that, in
this paper, the quadrupole proton density ρp2 is incorporated
for all the APV results from the deformed PVES model. We
also present the APV results from the spherical PVES model
in the same figure. At small angles (θ < 9◦), the effects of
neutron deformation are not significant. Theoretical results
are indistinguishable and coincide with the experimental data.
As the scattering angle increases, theoretical results sepa-
rate from each other. Especially at the diffraction minimum
(θ ≈ 13.5◦), compared with the spherical calculations, the

APV results from the deformed PVES model with ρn2 are
located in the upper part and those excluding ρn2 are located
in the lower part. In deformed RMF calculations with the
FSU parameter set, there is shape coexistence and there is
a prolate solution for 27Al, whose binding energy is slightly
higher than that of the oblate solution. The corresponding
APV results indicate a pattern similar to Fig. 4. Specifically,
when compared to the spherical PVES model, the deformed
PVES model with ρn2 yields larger APV at the diffraction min-
imum, while the deformed PVES model without ρn2 provides
smaller APV.

The information regarding the difference between the pro-
ton and neutron densities can also be obtained from Fig. 4.
In the deformed RMF calculations, when excluding ρn2, the
neutron density is spherical and differs significantly from the
deformed proton density. It leads to an obvious minimum of
the APV results. When both ρp2 and ρn2 are considered, 27Al
exhibits similar proton and neutron densities in the deformed
RMF model. Therefore, APV with ρn2 exhibits a flatter pattern
that is closer to A0

PV. These discussions suggest that the neu-
tron deformation plays a significant role in the parity-violating
asymmetries.

FIG. 3. (a) Deformed neutron density of 27Al calculated from the deformed RMF model with the FSU parameter set. (b) Multipole
weak charge density distributions ρW 0(r) and ρW 2(r) (solid line and dotted line) as well as the spherical density distribution ρW (r) (dashed
line), calculated by the deformed and spherical RMF models with the FSU parameter set. The inset is the profile of the quadrupole density
ρW 2(r)P2(cos θ ) in Eq. (5).
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FIG. 4. Parity-violating asymmetry APV of 27Al at the beam en-
ergy of 1157 MeV versus the scattering angle θ , where the densities
are calculated from the spherical and deformed RMF models with
the FSU parameter set. The solid line represents the APV results from
the deformed PVES model, which includes the quadrupole neutron
density ρn2 from the deformed RMF model, while the dash-dotted
line excludes ρn2. The quadrupole proton density ρp2 is considered
in the above two APV results from the deformed PVES model. The
dashed line is the APV results from the spherical PVES model. The
dotted line shows the A0

PV results from PWBA. The experimental
value of APV is taken from Ref. [22].

The form factors are directly related to APV in Eq. (9)
and are the Fourier transforms of the multipole densities. We
discuss the form factors in the following to clarify how the
neutron deformation influences APV. In Fig. 5, we present
the quadrupole Coulomb form factor FC2(q) as well as the
quadrupole weak form factors FW 2(q) with and without the
quadrupole neutron density ρn2. In the case without ρn2,
FW 2(q), which is fully contributed by the quadrupole proton
density ρp2, is tiny due to the small weak charge of the
proton. Therefore the impact arising from the deformed den-
sity parts is primarily reflected in the contribution of FC2(q),

FIG. 5. Quadrupole Coulomb form factor FC2(q) (solid line) as
well as quadrupole weak form factors FW 2(q) with (dashed line) and
without (dotted line) the quadrupole neutron density ρn2. The vertical
dash-dotted line delineates the location of the diffraction minimum
in Fig. 4.

FIG. 6. Ratios of form factors. Both the quadrupole proton den-
sity ρp2 and the quadrupole neutron density ρn2 are contained in
FC2(q) and FW 2(q). The vertical dash-dotted line delineates the lo-
cation of the diffraction minimum in Fig. 4.

which increases the denominator of Eq. (15) and reduces APV

throughout the whole region.
When ρn2 is considered, the deformed proton and neutron

densities are comparable. Therefore, FC2(q) and FW 2(q) are
very close to each other, as shown in Fig. 5. This leads to
the complexity in evaluating the variation of APV results. We
rewrite Eq. (15) as

APV = A0
PV

FC0FW 0

FC0
2 + A0

PV

(ξb − ξa)FC2
2

FC0
2 + FC2

2 , (17)

where ξa = FC0FW 0

FC0
2 and ξb = FC2FW 2

FC2
2 are the ratios of form fac-

tors. In Eq. (17), the contribution arising from the spherical
density distribution is incorporated in the first term A0

PV
FC0FW 0

FC0
2

and the deformed effect is included in the second term. The
variation of APV depends on the magnitude relationship be-
tween ξa and ξb. The results of ξa and ξb are presented in
Fig. 6, in which ρn2 is included. It should be mentioned that
FW 2(q) and FC2(q) are calculated by the PWBA method, while
FW 0(q) and FC0(q) are evaluated by the DWBA method. At
small momentum transfers q < 0.8 fm−1, ξa and ξb are almost

FIG. 7. Same as Fig. 4, but with the density distributions calcu-
lated from the spherical and deformed RMF models with the TM2
parameter set.
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FIG. 8. Same as Fig. 3, but for 133Cs.

equal to 1. As the momentum transfer increases, ξa decreases
faster than ξb. At the diffraction minimum q ≈ 1.38 fm−1,
ξa = 0.57 and ξb = 0.97. Substituting them into Eq. (17), the
second term, which reflects the deformed effect, is positive
and consequently increases APV, while in the region where
ξa is larger than ξb, e.g., q ≈ 1.75 fm−1, the second term
decreases APV. It can also be seen from Eq. (17) that APV

is a monotonically increasing function of FW 2(q). With this
relationship, one can link ρn2 and APV.

In the above discussions with the density distributions cal-
culated by the RMF model with the FSU parameter set, it is
found that ρn2 has an important influence on APV. This general
conclusion is applicable to the results of other RMF parameter
sets as well. For brevity, we take the TM2 parameter set [47]
as an example, and the corresponding APV results are shown
in Fig. 7. The deformed RMF model with the TM2 parameter
set provides a prolate shape for 27Al with the deformations
βn

2 = 0.158 for ρn(r) and β
p
2 = 0.178 for ρp(r). It can be seen

in Fig. 7 that the deformed PVES model with ρn2 offers larger
APV at the diffraction minimum in comparison to the spherical
PVES model, while the deformed PVES model without ρn2

provides smaller APV. The APV results in Figs. 4 and 7 for
different RMF parameter sets are in agreement.

Nuclear deformation is very important for investigating the
properties of the nuclear ground states [48,49]. The proton
deformation has been extensively investigated by the data on
electric properties. However, probing the neutron deformation
is still enormously challenging, and the distinction between
the deformations of proton and neutron densities has been sug-
gested theoretically and experimentally [30–32]. Combining
Figs. 4–7, we find that the deformed neutron structure of 27Al
can be investigated by the PVES experiment. One can extract
the quadrupole weak form factor FW 2(q) and constrain the
neutron deformation with the experimental APV data at large
scattering angles (θ = 12◦–14◦). In Ref. [24], the authors
demonstrated that the overall spherical weak charge density of
208Pb can be constrained with the measurements of the weak
form factor at two different momentum transfers. Inspired by
this, a comprehensive understanding of the deformed neutron
structure of 27Al may be accessible with the help of the exper-
imental values of APV at several chosen momentum transfers.
The method can be generalized to investigate the deformed
neutron structure of other odd-A nuclei.

In this part, we further investigate the neutron density dis-
tribution of 133Cs by the deformed PVES model. The neutron

structure of 133Cs has been investigated by using the coherent
elastic neutrino-nucleus scattering data of the COHERENT
experiment [50,51]. The authors determined the neutron ra-
dius by assuming a spherical neutron density distribution. In
Fig. 8, we plot the deformed neutron density and weak charge
density multipoles of 133Cs calculated by the deformed RMF
model. The weak charge density distributions ρW (r) from the
spherical RMF model are also shown in the same figure. The
FSU parameter set is used. Additionally, the inset depicts the
profile of the quadrupole density ρW 2(r)P2(cos θ ) in Eq. (5).
In the deformed RMF calculations, 133Cs has a prolate shape
with the deformations βn

2 = 0.106 for ρn(r) and β
p
2 = 0.114

for ρp(r), respectively. It corresponds to the positive values
in the z direction and negative values in the x direction of the
quadrupole density profile. The angular momentum of 133Cs
is Jπ = 7/2+, and higher Coulomb (weak) multipole form
factors, which arise from the deformed density parts, should
be included in the deformed PVES model.

With the spherical and deformed density distributions
shown in Fig. 8(b), the APV results of 133Cs are calculated
and shown in Fig. 9. Similarly to the studies of 27Al, we
present the calculations from the deformed PVES model with
and without the quadrupole neutron density ρn2. Comparing
with 27Al, 133Cs has more obvious Coulomb distortion effects,
larger isospin asymmetry, and smaller nuclear deformation.
At the first diffraction minimum (θ ≈ 4◦), theoretical calcula-

FIG. 9. Same as Fig. 4, but for 133Cs at the beam energy of
2180 MeV.
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tions are indistinguishable. However, there are discrepancies
at the second diffraction minimum (θ ≈ 7◦). Compared with
the spherical one, the deformed PVES model without ρn2

provides a lower diffraction minimum, while it yields a larger
diffraction minimum with ρn2. It is consistent with the results
of 27Al and is attributed to the differences between proton and
neutron densities.

IV. SUMMARY AND CONCLUSIONS

In summary, we investigate the parity-violating asymmetry
APV in a deformed scheme that combines the axially deformed
RMF model and the DWBA method. By comparing the re-
sults with those obtained from the spherical PVES model, we
examined how nuclear deformations, especially the neutron
one, can impact APV results. To this end, we discussed the
contributions of different multipole form factors and compare
the APV calculations with and without neutron deformations.

We first calculated the parity-violating asymmetries for
spherical nuclei 208Pb and 48Ca. The deformed PVES model
can recover the results from the spherical PVES model and the
calculations coincide with the measurements of PREX-II and
CREX. Then we proceeded to investigate PVES of deformed
nuclei 27Al and 133Cs. The deformed PVES model with
and without neutron deformations yields larger and smaller
diffraction minima, respectively, compared to the spherical

PVES model. This is because the quadrupole weak form fac-
tors, which are mainly provided by the quadrupole neutron
density, have a significant influence on APV values near the
diffraction minima. We propose that PVES can serve as a clear
and model-independent method to fill the gap in knowledge of
the neutron deformation, which has been less studied than the
proton deformation. A more comprehensive understanding of
the neutron deformation for odd-A nuclei is expected if APV

can be measured near the diffraction minima. Our studies are
helpful to gain a more complete picture of nuclear density dis-
tributions, which may play a potential role in the investigation
of nuclear matter properties.
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