
PHYSICAL REVIEW C 108, 014307 (2023)

Coupled-cluster theory for strong entanglement in nuclei
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Atomic nuclei can exhibit shape coexistence and multireference physics that enters in their ground states,
and accurately capturing the ensuing correlations and entanglement is challenging. We address this problem
by applying single-reference coupled-cluster theory based on spherical and deformed reference states and the
tailored coupled-cluster method. The latter combines configuration interactions to capture static correlations
with coupled-cluster theory for dynamic correlations. We compute the atomic nuclei 12C, 28Si, and 56Ni and find
that the tailored coupled-cluster method and the single-reference approach based on a deformed Hartree-Fock
state yield the most accurate results.
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I. INTRODUCTION

In the last two decades, ab initio computations of atomic
nuclei have become increasingly accurate and capable at pre-
dicting hard-to-measure properties [1–11]. This progress is
based on ideas from effective-field theory [12–14] and the
renormalization group [15,16], and the development and ap-
plication of computationally affordable methods [17–21] that
solve the many-body Schrödinger equation.

While these advances are based on classical computing,
the advent of quantum computing provides us with the op-
portunity to explore such computations [22–24], to better
understand entanglement [25–27] and correlations [28] in nu-
clei, and to think about quantum algorithms [29–31].

Due to its conceptual and computational simplicity,
coupled-cluster theory plays an attractive role in both clas-
sical [20,32–34] and quantum computing [23,24,35,36]. Ap-
proaches that combine configuration interaction and coupled-
cluster theory, such as active space methods [37–39], recently
received attention for potential use in hybrid quantum-
classical algorithms [40,41]. This makes it interesting to also
study them in nuclear theory. Independent of advances of
quantum hardware and computing [42] such methods can also
help us here and now in classical computing.

Computational approaches to nuclear ground-states often
start from a reference state—a product state obtained for
instance from a self-consistent mean-field calculation—to
understand the essential physics of the nucleus under consid-
eration and to organize how to include quantum correlations
for an accurate computation. Dynamic correlations are in-
cluded via particle-hole excitations of the reference state.
They scale polynomially in number and their inclusion yields
an extensive, i.e., proportional to mass number A, contribu-
tion to the binding energy [43–46]. They mix the reference
state and the high-energy particle-hole excitation which re-
flects short-wavelength relative motion of particles [47] and
short-range behavior of nuclear force. Single-reference meth-
ods such as the coupled-cluster (CC) method [9,48–50] and

the in-medium similarity renormalization group (IMSRG)
[19,21,51,52] are designed to capture dynamic correlations
with a computational effort that scales polynomially in mass
number and the number of single-particle states contained in
Hilbert space. In doubly magic nuclei, coupled cluster with
singles and doubles (CCSD) captures about 90% of the corre-
lation energy, while triples contribute about 10% of the CCSD
correlation energy [34,53]. Coupled-cluster theory with sin-
gles, doubles, and triples (CCSDT) yields about 98% to 99%
of the total correlation energy. The remaining correlation en-
ergy could be gained by including excitation beyond CCSDT;
however, the 1%–2% uncertainty in the binding energy that
remain at the CCSDT truncation are often smaller than the
uncertainty in the employed nuclear Hamiltonians. Apart from
benchmarking there is probably little need to solve approxi-
mated Hamiltonians exactly.

Single-reference methods fail in systems that lack an
energy gap at the Fermi surface [54,55]. In such a case,
many-body perturbation theory fails because of small en-
ergy denominators, and many-particle–many-hole excitations
yield considerable contributions to the correlation energy.
An alternative view is that the reference state is not the
only dominant configuration and one is dealing with a mul-
tireference problem [55,56]. Then, one has to include static
correlations that are due to a family of (quasi-)degenerate
configurations. In nuclei, the existence of degenerate states
is usually related to symmetries broken in the mean field
while quasidegenerate configurations correspond to situations
of shape coexistence. Projection techniques allow one to cap-
ture the energy gain from static correlations in the case of
symmetry breaking [57–63]. In such cases, static correlations
do not yield extensive contributions to the energy and usually
include long-wavelength physics. [61,63–65].

In this work, we focus on static correlations that do not
result from broken symmetries. Methods such as the shell-
model coupled cluster [66,67] and valence space in-medium
similarity renormalization group (VS-IM-SRG) [21,68] treat
dynamic correlations separately. Here, dynamic correlations
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are strongly renormalized and all correlations are captured in a
single shell of single-particle states. These methods work well
in open-shell nuclei adjacent to the core with a double magic
number and have been developed to calculate a large portion
of the nuclear chart. However, suffering from the intruder state
problem, constructing effective interaction in a valence space
spanned by more than two major shells is still challenging.

Here, we follow an alternative approach and deal with the
static correlation using the tailored coupled cluster (TCC)
method [37–39,69–71]. This approach aims to combine the
simplicity of single reference coupled-cluster theory with a
multireference wave function. The underlying idea is as fol-
lows: In a system with two-body interactions, the correlation
energy depends only on the two-particle–two-hole (2p-2h)
amplitudes. While the numerical values of the amplitudes
are informed by 3p-3h and higher-rank amplitudes, the lat-
ter do not enter directly the expression for the correlation
energy. This makes it attractive to replace 2p-2h coupled-
cluster amplitudes in the vicinity of the Fermi surface by
those from methods such configuration interaction or density
renormalization group and thereby include the effects of static
correlations.

The tailored coupled-cluster method partitions the single-
particle basis into an active space (consisting of a smaller
number of selected hole and particle states) and an external
space. The active space is selected to be large enough to reflect
the static correlation of the system, in which the many-body
correlations are treated exactly with full configuration inter-
action. The remaining correlations from the external space
are captured dynamically through the standard coupled clus-
ter method. As we will see, it is interesting to compare the
results of the tailored coupled-cluster method to those from a
symmetry-breaking single-reference computation.

This paper is organized as follows: In Sec. II, we introduce
the single-reference and tailored coupled-cluster theory. In
Sec. III, we will study the static correlations in a shell-model
description of 56Ni and compare tailored and symmetry-
breaking coupled-cluster methods. We also study the tailored
coupled-cluster computations of 12C and 28Si using two dif-
ferent chiral potentials. Finally, we summarize our results in
Sec. IV.

II. METHOD

The intrinsic Hamiltonian consists of one-, two-, and three-
body terms:

H = A − 1

A

A∑
i=1

p2
i

2m
+

∑
i< j

(
vi j − pi p j

mA

)
+

A∑
i< j<k

vi jk . (1)

Here A is the mass number of nucleus, m is the nucleon mass,
pi is the momentum of nucleon i, and vi j and vi jk are the two-
and three-body interaction, respectively. This intrinsic Hamil-
tonian does not reference the center-of-mass coordinate. One
normal-orders the Hamiltonian with respect to the reference
state, e.g., the Hartree Fock state

|�0〉 ≡
A∏

i=1

â†
i |0〉. (2)

The correlation energy is defined as the difference between
total energy and the energy E0 = 〈�0|H |�0〉 of the reference:

Ecorr = E − E0. (3)

The normal-ordered Hamiltonian with respect to the reference
reads

H = E0 +
∑

pq

fpq{â†
pâq} + 1

4

∑
pqrs

�pqrs{â†
pâ†

qâsâr}

+ 1

36

∑
pqrstu

Wpqrstu{â†
pâ†

qâ†
r âuât âs}. (4)

Here the curly brackets imply normal ordering. The operators
â†

p and âp create and annihilate a nucleon in state |p〉 = â†
p|0〉,

respectively, and they fulfill the canonical anticommutation
relations for fermions. The matrix elements of the one-, two-,
and three-body operators are denoted fpq, �pqrs, Wpqrstu, re-
spectively. To avoid dealing with the three-body terms, one
usually truncates Eq. (4) at the normal-ordered two-body level
and neglects the residual three-body terms [6,72]. Thus, three-
body forces enter in E0, fpq, and �pqrs.

Coupled-cluster theory employs a similarity transforma-
tion to decouple the ground state from its particle-hole
excitations,

〈
�

a1···an
i1···in

∣∣e−T HeT |�0〉 = 0 (5)

for n = 1, . . . , A. Here
∣∣�a1···an

i1···in
〉 ≡ â†

a1
· · · â†

an
âin · · · âi1 |�0〉 (6)

is a np-nh excitation of the reference state, and T is the cluster
operator consisting of 1p-1h, 2p-2h up to Ap-Ah excitations,

T = T1 + T2 + T3 + · · · + TA, (7)

and

Tn = 1

(n!)2

∑
a1,a2,...,an
i1,i2,...,in

t a1,a2,...,an
i1,i2,...,in

â†
a1

· · · â†
an

âin · · · âi1 . (8)

In these expressions (and in what follows) we labeled
hole states with indices i, j, k, . . . and particle states with
a, b, c, . . .. Once decoupled, the ground-state energy is cal-
culated as

ECC = 〈�0|e−T HeT |�0〉. (9)

It is important to note that—for normal-ordered two-body
Hamiltonians—only T1 and T2 contribute to the energy (9),
while the remaining cluster amplitudes Tn with n > 2 impact
the values of T1 and T2 via the decoupling Eqs. (5). Thus,
any inaccuracy in coupled-cluster theory could in principle be
remedied by using more accurate T1 and T2 amplitudes.

In the Hartree-Fock basis, the doubles yield the dominant
contribution to the total binding. The estimate from many-
body perturbation theory

T ab
i j ≈ �abi j

εa + εb − εi − ε j
. (10)

indicates that the cluster amplitudes T ab
i j can be large when

single-particle states that are nearly degenerate with the refer-
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FIG. 1. Partition of the single-particle orbitals into active hole,
active particle, inactive hole, and inactive particle states. The orbitals
in the dashed rectangle around the Fermi surface (indicated by a thick
dashed line and its energy ε f ) are part of the active space.

ence. In such situations, induced three-body terms such as

H3b = [H, T2]3b (11)

become considerable in size. This drives higher-rank clus-
ter amplitudes and reflects the strong entanglement in the
nucleus. Single-reference coupled-cluster theory are not ex-
pected to capture such static correlations.

The tailored coupled cluster is designed to address this
shortcoming. One splits the single-particle Hilbert space into
an “active” space and “inactive” space. The active space is
selected large enough to describe the static correlations near
the Fermi surface. Figure 1 shows the partition of the single-
particle basis. The hole space is determined by a filling of
shell-model orbitals, with the particle space being the com-
plement. Near the Fermi surface a set of active particle and
hole states is identified, while all other orbitals are labeled as
inactive.

In tailored coupled-cluster theory, one writes the ground-
state wave function as

|�TCC〉 = eText+Tact |�0〉. (12)

Here Tact is the cluster operator in the active space, and all its
indices refer to active particle and active hole states. Text is
the cluster operator in the “external” space, in which at least
one index belongs to an inactive particle or inactive hole state.
Equation (13) can be approximated as

|�TCC〉 ≈ eText |�act〉, (13)

where |�act〉 is the wave function from full configuration
interaction in the active space.

The amplitudes Tact are obtained from the full configura-
tion interaction wave function in the active space, which we
expand as

|�act〉 = C0|�0〉 + Ca
i

∣∣�a
i

〉 + Cab
i j

∣∣�ab
i j

〉 + · · · . (14)

Here C0, Ca
i , etc. are the coefficients of the reference state,

its 1p-1h, 2p-2h, and up to Ap-Ah excitations, respectively,
and summation over repeated indices is implied. The indices
a, b, i, j denote active particle and active hole states. We can
also expand

|�act〉 = eTact |�0〉 = [
1+ T1+

(
T2+ 1

2 T 2
1

)+ · · · ]|�0〉. (15)

Here, we have dropped the subscript “act” from the cluster
amplitudes on the right-hand-side of Eq. (15), and it is implied
that all indices refer to active single-particle states. Working
in the CCSD approximation we get the active coupled-cluster
amplitudes Tact by comparing Eqs. (14) and (15), giving

T a
i = Ca

i

C0
, (16)

and

T ab
i j = Cab

i j

C0
− Ca

i Cb
j − Ca

j C
b
i

C2
0

. (17)

This can easily be extended to also include triples in the active
space in CCSDT. In these equations it is again implied that all
indices of the cluster amplitudes refer to active-space orbitals.
We note that the CCSD energy 〈�0|(HeTact )c|�0〉 equals the
full configuration-interaction energy in the active space.

The external cluster operator Text is calculated by solving
the usual coupled-cluster equations while keep Tact fixed. On
the CCSD level the decoupling equation for the external space
reads

〈
�a

i

∣∣(HeTact+Text )c|�0〉 = 0, (18)

and
〈
�ab

i j

∣∣(HeTact+Text )c|�0〉 = 0. (19)

Here, it is understood that at least one of the displayed indices
refers to an inactive orbital. Once the Text is determined, the
energy is calculated as in Eq. (9) but with T = Tact + Text, i.e.,

ETCCSD = 〈�0|(HeTact+Text )c|�0〉. (20)

Here, the subscript c implies that only connected diagrams are
included on the right-hand side. Equations (18) and (19) show
that the active space feeds back into the amplitudes of the
external space, but that the latter does not impact the former.
This is a shortcoming of tailored coupled-cluster method,
and to remedy this would require a large active space such
that both static and dynamic correlations of the exact wave
function is accurately described [73].

In single-reference coupled-cluster theory the triples (3p-
3h) amplitudes yield about 10% of the CCSD energy [34,53].
Triples corrections to the tailored CCSD approximation are
only considered in the external space [74]. As a result,
the triples correction is smaller than in the standard single-
reference approach. The triples amplitudes solve

〈
�abc

i jk

∣∣(HeTact+Text+T3 )c|�0〉 = 0. (21)

Here, Text contains up to 2p-2h operators.
The tailored coupled-cluster method takes a cluster oper-

ator that describes the static correlation externally from the
full configuration-interaction method. In treating the dynamic
correlations in the external space only, there is no feedback
to the active space. To get an accurate result, one needs to
select the active space large enough not only to guarantee
the static correlations are captured, but the wave function
of the active space should also reflect the “true” wave func-
tion. The shortcoming of neglecting the coupling between the
active and external space has been studied by the extended
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active space coupled cluster method [73]. Here one first cal-
culates the full configuration-interaction wave function in a
large active space, and subsequently a smaller set of active
orbitals is used in the decoupling of external space in the
tailored coupled-cluster method. In this way there is indirect
feedback from the external to the active space.

III. RESULTS

A. Shell-model calculations

The shell-model provides us with a framework to in-
vestigate static correlations and to what extent the tailored
coupled-cluster method is able to capture them. We consider
the 0 f 1p shell and the GXPF1A effective Hamiltonian [75].
The model space is spanned by the f7/2, p3/2, f5/2, and p1/2

orbitals. For 56Ni, the valence protons and neutrons fill the
f7/2 shells. To control the amount of static correlations, we
follow Horoi et al. [54], and shift the single-particle energies
of the p3/2, f5/2, and p1/2 orbitals relative to the f7/2 shell by
a constant amount �G from the GXPF1A parameters. (The
original GXPF1A interaction has �G = 0.) A positive value
of �G increases the shell gap and reduces static correlations,
while a negative �G reduces the shell gap and leads to a sys-
tem with stronger static correlations. Horoi et al. [54] showed
that single-reference coupled-cluster theory fails to reproduce
the ground-state energy for sufficiently large negative values
of �G. This is expected because a decrease of the shell gap
introduces multireference physics and destabilizes the Fermi
surface.

We performed Hartree-Fock calculations for the
Hamiltonian

H ′(λ) = H + λQ20, (22)

where Q20 is the quadrupole operator. This yields axially sym-
metric reference states. Once the reference was determined,
we computed the energy Eref ≡ 〈�0(λ)|H |�0(λ)〉 and also
the quadrupole moment q20 ≡ 〈�0(λ)|Q20|�0(λ)〉, and plot-
ted Eref as a function of q20. The resulting energy surfaces are
shown in Fig. 2 for �G = 0, −1, and −2 MeV (from bottom
to top). We see that there is a quantum phase transition in
56Ni from a spherical to a deformed ground state as �G is
decreased from 0 to −2 MeV.

We performed three types of coupled-cluster computations,
using (i) a spherical, (ii) an axially symmetric reference, and
(iii) tailored active spaces. First, we take the filled f7/2 shell as
the spherical reference state and perform CCSD and coupled-
cluster singles-and-doubles and leading-order iterative triples
(CCSDT-1) [76] computations. The resulting ground-state en-
ergies are shown as squares and circles, respectively in Fig. 3
and can be compared with the exact result from full configura-
tion interaction. As already documented by Horoi et al. [54],
spherical single-reference coupled-cluster theory fails for suf-
ficiently large negative values of �G. Second, we perform
CCSD and CCSDT-1 computations using the axially sym-
metric reference state of the Hamiltonian (22) using λ = 0.
For �G � −1 MeV, the reference is spherical, while smaller
values yield an axially symmetric (and deformed) reference.
The results are shown as triangles in Fig. 3. We see that the

FIG. 2. Energy of axially symmetric Hartree-Fock reference
states as a function of the quadrupole moment q20 for 56Ni computed
with the GXPF1A interaction (bottom) and for a modified interaction
where the single-particle orbitals above the f7/2 shell are shifted by
�G.

transition region �G ≈ −1 MeV is not well described by
single-reference methods, while coupled-cluster theory (based
on an axially symmetric reference state) becomes more ac-
curate in the well-deformed regime. For �G = −2 a clear
minimum develops on the energy surface (see Fig. 2) and
the deformed Hartree-Fock state captures 5 MeV more in
binding than the spherical one; the deformed CCSD captures

FIG. 3. Ground-state energy of 56Ni based on the GXPF1A in-
teraction as a function of the shift �G between the f7/2 orbital
and the unoccupied orbitals in this nucleus. The original interaction
has �G = 0. Results from a spherical (sph.) and deformed (def.)
reference state based on the CCSD and CCSDT-1 approximations
are compared with full configuration interaction (labeled FCI).
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FIG. 4. Tailored coupled cluster (labeled TCC) computations
(identified by the set of quantum numbers 2 j, in square brackets,
contained in the active space) of the ground-state energy of 56Ni,
calculated with GXPF1A interaction, as a function of the shift �G
between the f7/2 orbital and the unoccupied orbitals in this nucleus.
The original interaction has �G = 0. Also shown are computations
using the extended (ext) tailored coupled-cluster method. Results are
compared with full configuration interaction (labeled FCI).

about another 3 MeV. The total binding from the deformed
CCSDT-1 is about 1 MeV away from the full configuration
interaction. We estimate that the discrepancy to full con-
figuration interaction is mainly due to the broken rotational
symmetry. The correlation energy from deformed and spheri-
cal coupled cluster is 3.4 and 4.5 MeV, respectively. Thus, the
symmetry-breaking mean-field captures significantly more
dynamic correlations.

Third and finally, we perform tailored coupled-cluster com-
putations. We select the f7/2 and p3/2 as the active space
for both protons and neutrons and find that the results are
very close to the CCSD computations based on the spherical
reference, see Fig. 4. Next, we extend the active space to also
include the p1/2 orbital. As shown in Fig. 4, this leads only to
a modest improvement. Clearly, the shell-model wave func-
tions are highly correlated, and full configuration-interaction
calculations based on the f7/2 and p3/2 (or the f7/2, p1/2, and
p3/2) orbitals do not yield accurate wave-function amplitudes.
As a final check, we employ the extended tailored coupled-
cluster method [73]. Here, we use the exact amplitudes from
a full configuration-interaction calculation and then choose
active spaces consisting of the f7/2 and p3/2 (and the f7/2,
p1/2, and p3/2) orbitals. In these cases tailored coupled-cluster
yields significantly more accurate results, see Fig. 4.

Overall we see that the single-reference coupled-cluster
computations that are based on a deformed (axially symmet-
ric) Hartree-Fock state are quite accurate when compared with
those from tailored coupled-cluster theory when the shape of
the nucleus is spherical or deformed. Of course, the former
lack rotational invariance for small values of �G, and this
might be the price to pay for computational and conceptual
simplicity.

FIG. 5. Ground-state energy of 12C calculated with single-
reference coupled cluster methods based on reference states in
the spherical harmonic-oscillator (sph. HO) basis, the spherical
Hartree-Fock (sph. HF) basis, and the axially symmetric, deformed,
Hartree-Fock basis (def. HF), using CCSDT-3 and CCSDT-1 approx-
imations. Also shown are the tailored coupled-cluster calculations
(labeled TCC) and the experimental data. The two-body interaction
is NNLOopt.

B. Calculations of 12C from chiral interactions

Single-reference coupled-cluster theory is efficient for nu-
clei with a significant shell gap such as closed-shell nuclei
or well-deformed nuclei (which exhibit large shell gaps in a
Nilsson diagram). The most challenging nuclei are those with
filled subshells that lack a clearly developed shell gap. Exam-
ples are 12C and 28Si. These spherical nuclei are somewhat
soft to deformation and therefore difficult to compute accu-
rately with single-reference methods. This makes it interesting
to use tailored coupled-cluster theory.

We start with 12C, where the last four protons and four neu-
trons occupy the p3/2 orbital. However, the shell gap between
p3/2 and p1/2 is small, and 12C is not a closed-shell nuclei. Its
structure is interesting and complicated [77–79].

We compute 12C using the NNLOopt nucleon-nucleon in-
teraction [80] and an oscillator basis with frequency h̄ω and
highest single-particle energy Nmax h̄ω (omitting the zero-
point energy). We use Nmax = 12 unless stated otherwise.
In a first approach, we employ a reference state that fills
the harmonic-oscillator orbitals up to and including the p3/2

orbitals and perform coupled-cluster computations using the
CCSDT-3 approximation [81]. The results are shown (as a
function of the oscillator spacing h̄ω) in Fig. 5 and compared
with the experiment. The interaction NNLOopt is presumably
accurate for light nuclei and this suggests that about 7 MeV
of binding energy are still lacking at the triples result. We
also performed calculations where the spherical Hartree-Fock
state serves as the reference. As can be seen in Fig. 5 the
results are close to those of the harmonic-oscillator basis.
Finally, we performed CCSDT-1 computations based on an
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axially symmetric (and deformed) Hartree-Fock reference.
These results yield a ground state that is close to the one in the
spherical harmonic-oscillator basis and about 2 MeV lower
than the CCSDT-3 results using the spherical Hartree-Fock
basis.

For the tailored coupled-cluster calculations the active
space is spanned by the 0p, 1s0d , and 1p0 f shell orbitals
in the harmonic-oscillator basis. The large active space is
motivated by the need to potentially include some effects of
deformation. Thus, we need to include the 1p0 f shell as it
has the same parity as the occupied 0p3/2. The dimension of
Hamiltonian matrix in the active space is about 28, which is
almost the limit of our current implementation of the code.
The results at the singles and doubles, and at the triples
approximation—also shown in Fig. 5—exhibit a significant
gain in the ground-state energy. This is re-assuring and points
to the value of the tailored coupled-cluster method for this nu-
cleus. We also performed tailored coupled-cluster calculations
in the Hartree-Fock basis. This, however, was not as success-
ful as for the harmonic-oscillator basis because the tailored
coupled-cluster results did not improve over the CCSDT-3
results. The reason for this could be as follows: Hoppe et al.
[82] showed (in their Fig. 3) that Hartree-Fock orbitals are
more delocalized in position space than harmonic-oscillator
wave functions. Thus, they might be less useful for active
space methods.

We turn to calculations with three-nucleon forces and em-
ployed the chiral interaction 1.8/2.0 (EM) from Ref. [83].
For the coupled-cluster calculations we want to employ the
normal-ordered two-body approximation [4,6]. While this is
straightforward in the Hartree-Fock basis, the calculations
in the harmonic-oscillator basis require more thought and
care; a naive application of the normal-ordered two-body ap-
proximation would introduce a strong h̄ω dependence of the
results. To avoid this we perform a spherical Hartree-Fock
calculation, and normal-order the Hamiltonian with respect to
the Hartree-Fock reference. We employ the normal-ordered
two-body approximation, discard the normal-ordered resid-
ual three-nucleon terms, and store the normal-ordered one-
and two-body matrix elements of the Hamiltonian. Coupled-
cluster calculations in the Hartree-Fock basis then use these
matrix elements. For the coupled-cluster calculations in the
harmonic-oscillator basis we re-normal-order the stored ma-
trix elements of the one- and two-body Hamiltonian with
respect to the true vacuum and transform to the harmonic-
oscillator basis [84,85]. This then yields one- and two-body
matrix elements that contain the relevant contributions of the
three-nucleon force. Applications of this approach in the no-
core shell-model verified that the impact on the center-of-mass
separation is controlled [84]. Figure 6 shows the ground-state
energy of 12C calculated with spherical coupled-cluster theory
in the Hartree-Fock and the harmonic-oscillator basis, using
the CCSDT-3 approximation.

We also performed similar calculations in a deformed (yet
axially symmetric) Hartree-Fock basis, using a quadrupole
constraint to map out the energy surface. We found an oblate
deformed minimum which we used as the Hartree-Fock refer-
ence. This agrees with the dominant “triangle” configuration
of α clusters found in Ref. [78]. In these calculations we

FIG. 6. Ground-state energy of 12C calculated with single-
reference coupled cluster methods based on reference states in
the spherical harmonic-oscillator (sph. HO) basis, the spherical
Hartree-Fock (sph. HF) basis, and the axially symmetric, deformed,
Hartree-Fock basis (def. HF), using CCSDT-3 and CCSDT-1 approx-
imations. Also shown are the tailored coupled-cluster calculations
(labeled TCC) and the experimental data. The employed chiral inter-
action is 1.8/2.0 (EM) from Ref. [83].

performed the normal-ordered two-body approximation in the
deformed reference state. The CCSDT-1 results in this ba-
sis are very close to the CCSDT-3 results in the spherical
harmonic-oscillator basis.

The tailored coupled-cluster calculations are performed in
the harmonic-oscillator basis. The active space is spanned
by 0p shell and the 1s0d and 1p0 f shells. We verified that
our calculations are converged at Nmax = 12. The tailored
coupled-cluster results depend on the harmonic-oscillator
spacing and they overbind the nucleus somewhat. This latter
observation is consistent with similar results from quan-
tum chemistry, where small active spaces in multireference
methods tend to overestimate the role of static correla-
tions [55]. We note that the tailored coupled-cluster results
deviate about as much from experiment as the coupled-
cluster results obtained in the spherical harmonic-oscillator
basis.

Our results can be compared with those from Stroberg
et al. [86], which used the valence-space in-medium similar-
ity renormalization group [21,87] and found the ground-state
energy of −93.84 MeV. This is very close to the tailored
coupled-cluster results based on CCSDT-3.

C. Calculations of 28Si from chiral interactions

The nucleus 28Si, with filled d5/2 shells in the shell model,
is another challenging nucleus. We employ the 1.8/2.0 (EM)
chiral potential in a model space of Nmax = 12, and show our
results in Fig. 7. The single-reference coupled-cluster calcula-
tions are again based on a spherical harmonic-oscillator state,
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FIG. 7. Ground-state energy of 28Si calculated with single-
reference coupled cluster methods based on reference states in
the spherical harmonic-oscillator (sph. HO) basis, the spherical
Hartree-Fock (sph. HF) basis, and the axially symmetric, deformed,
Hartree-Fock basis (def. HF), using CCSDT-3 and CCSDT-1 approx-
imations. Also shown are the tailored coupled-cluster calculations
(labeled TCC) and the experimental data. The employed chiral inter-
action is 1.8/2.0 (EM) from Ref. [83].

and on spherical and deformed Hartree-Fock states; from
these, the deformed reference yields most accurate results
(and a gain of about 3 MeV in the binding energy). We see
that 28Si differs in this regard from 12C. It is somewhat more
deformed in its ground state.

In our tailored coupled-cluster calculation, the active space
is spanned by the sd and f7/2 shells, filled with six protons
and six neutrons. This requires us to perform large-scale
shell-model calculations. The results are clearly not con-
verged and strongly depend on the oscillator frequency. We
understand the lack of convergence as follows: To cap-
ture quadrupole deformation from the d5/2 shell, we would
need to also include the 0g1d2s shell in the active space
(because the quadrupole operator couples the 0d1s and
0g1d2s shells), but this is not possible with current com-
puting resources (the shell-model dimension is beyond 109).
We also performed similar calculation by using an active
space spanned by the p and sd shells, with 12 protons and
12 neutrons in the active space. This did not significantly
change the results. The active space we employ—though
large from its computational demands—is too small to cap-
ture the deformation. We can again compare our results to
those from Ref. [86], which found the ground-state energy
of −238.45 MeV.

For a simpler calculation we studied 28Si with the NNLOopt

interaction, using the active space consisting of the sd and
f7/2 shells. Results are shown in Fig. 8. The single-reference
coupled-cluster calculations indicate that the nucleus exhibits
stronger deformation than for the 1.8/2.0 (EM) interaction,
because calculations based on a deformed reference gain
about 10 MeV in binding. The NNLOopt potential is prob-
ably not as accurate in this region of the nuclear chart

FIG. 8. Ground-state energy of 28Si calculated with single-
reference coupled cluster methods based on reference states in
the spherical harmonic-oscillator (sph. HO) basis, the spherical
Hartree-Fock (sph. HF) basis, and the axially symmetric, deformed,
Hartree-Fock basis (def. HF), using the CCSDT-3 and CCSDT-1
approximations. Also shown are the tailored coupled-cluster cal-
culations (labeled TCC) and the experimental data. The two-body
interaction is NNLOopt.

as the 1.8/2.0 (EM) interaction, and—based on our expe-
rience with single-reference coupled-cluster calculations—it
overbinds the 28Si nucleus. The tailored coupled-cluster
results are better converged than for the 1.8/2.0 (EM) in-
teraction, although the h̄ω dependence is still strong. We
attribute the difference between the tailored coupled-cluster
results and the calculations with the deformed Hartree-Fock
reference on the too-small active space that does not capture
deformation.

IV. SUMMARY

Single-reference coupled-cluster calculations become
challenging in nuclei that are neither strongly deformed
(i.e., exhibiting rigid-rotor-like ground-state rotational
bands) nor spherical, e.g., for 12C, 28Si, and 56Ni. In such
situations a combination of full configuration-interaction and
coupled-cluster methods seems promising, and the prospect
of hybrid quantum-classical computing makes this interesting
to study.

We find that tailored coupled cluster methods can be
alternatives to single-reference methods in certain nu-
clei. They typically gain energy compared with spherical
single-reference methods and keep the symmetry of the wave
function intact. For computations of ground-state energies,
symmetry-broken single-reference approaches are quite com-
petitive. While they require symmetry projection (in contrast
to tailored coupled-cluster), they exhibit better convergence
with respect to model-space parameters than tailored coupled
cluster methods.
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