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Octupole deformation of nuclei near the spherical closed-shell configurations
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The origin of octupole deformation for even-even nuclei near the doubly closed shell configurations are
investigated by means of the semiclassical periodic orbit theory. In order to focus on the change of shell structure
due to deformation, a simple infinite-well potential model is employed with octupole shape parametrized by
merging a sphere and a paraboloid. Attention is paid to the contributions of the degenerate families of periodic
orbits (POs) confined in the spherical portion of the potential, that are expected to partially preserve the
spherical shell effect up to considerably large value of the octupole parameter. The contribution of those POs
to the semiclassical trace formula plays an important role in bringing about shell energy gain due to octupole
deformation in the system with a few particles added to spherical closed-shell configurations.
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I. INTRODUCTION

Atomic nuclei take various shapes with varying numbers of
constituent protons and neutrons, and the single-particle shell
structures play the essential role in their deformations and
shape stabilities. In general, systems with particle numbers
sufficiently far from the spherical magic numbers will deform.
The majority of the ground-state shapes are known to be
quadrupole type, but some exotic shapes are found depending
on the combinations of proton and neutron numbers, and
the possible breaking of the reflection symmetry is one of
the fundamental problems in nuclear structure physics. The
ground-state octupole deformations are observed only for a
few nuclei, such as those around the neutron-rich Ba region
and Ra-Th region. These regions are located in the “north-
eastern” neighbors of doubly magic nuclei on the (N, Z ) plane
of the nuclear chart; namely, they correspond to the systems
with a few particles added to spherical closed-shell configura-
tions [1]. Possible static octupole shapes for even-even nuclei
have been systematically investigated with various theoretical
approaches such as microscopic-macroscopic models [2], the
generator coordinate method [3], density functional theories
[4,5], and recently with the Hartree-Fock-BCS model with
three-dimensional Cartesian mesh representation [6], which
are consistent with the experimental data and suggest promis-
ing regions of nuclei where octupole deformation might be
found.

As the origin of the ground-state octupole deformations
for these nuclei, the octupole correlation within the approx-
imately degenerate Δl = 3 pair of single-particle levels is
considered to play a significant role. Such pairs of levels arise
systematically above the spherical shell gaps for systems
with sharp surface potential. For example, (2g7/2, 1 j15/2)
orbitals above the N (Z ) = 126 gap and (2 f5/2, 1i13/2) orbitals

*arita@nitech.ac.jp

above the N (Z ) = 82 gap are approximately degenerate in
the realistic nuclear mean field potential.

Figure 1 compares the single-particle spectra of the
spherical harmonic-oscillator (HO) potential model and the
spherical infinite-well potential (cavity) model, which have
been referred to as schematic models for light and heavy
nuclei, respectively. In the cavity model, one finds pairs of
Δl = 3 levels (enclosed by braces) above each shell gap, for
instance, 2g and 1 j levels above the N = 138 gap, 2 f and 1i
levels above the N = 92 gap. Thus, the cavity potential pre-
serves important features of the shell structure of the realistic
nuclear mean field, although the magic numbers are a little
shifted from those of the realistic ones due to the absence of
spin-orbit coupling.

Since one has large octupole matrix elements between
such Δl = 3 levels, one of the levels is expected to go down
rapidly with increasing octupole deformation, and the system
just above the closed-shell configuration which occupies this
downward level would prefer octupole shape [1]. The behav-
ior of those levels with respect to perturbations of the octupole
operators and their relation to the octupole deformation
energy have been examined in Refs. [7,8].

On the other hand, from the view point of the shell cor-
rection method, shell energy is governed by the gross shell
structure [9] and it is not obvious whether the origin of to-
tal shell energy can be attributed to the behavior of specific
orbitals. Moreover, there must be some simple mechanism
involved in the remarkable systematics in the distribution of
reflection asymmetry on the nuclear chart found in the above
numerical calculations.

In this paper, I analyze a simple cavity potential model
to reveal the essential mechanism of the nuclear octupole
deformation. As well as the behavior of Δl = 3 pairs of
single-particle levels, I shall consider the effect of gross
shell structure from a semiclassical point of view; namely, I
examine the role of the classical periodic orbits (POs) in the
semiclassical single-particle level density.
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FIG. 1. Comparison of the single-particle spectra for spheri-
cal harmonic oscillator (HO) potential model (left) and spherical
infinite-well (cavity) potential model (right). Nearly degenerate
Δl = 3 pairs of the single-particle levels in the cavity model are
indicated by braces. The italic numbers marked on each energy gap
represent the number of levels below the gap, taking spin degeneracy
into account.

The idea of this work was brought about by my recent
works with my colleagues, in which we discussed the de-
formed shell effect of nuclei through the fission path [10–12].
In the fission process, a nucleus is elongated and a neck
is formed which gradually separates the system into two
subsystems. Such subsystems are called prefragments. The
prefragment shell effect, associated with each of the subsys-
tems, is expected to come up after the neck formation [13,14],
and it must be playing a significant role in determining the fis-
sion path in the deformation space and the resulting fragment
mass distribution. However, it is usually difficult to extract
the prefragment effect alone out of the total shell effect since
most of the single-particle wave functions are not localized in
each of the prefragments. To deal with this problem, we have
proposed a simple idea using the semiclassical periodic orbit
theory (POT) [11]. In the semiclassical trace formula, shell
energy is expressed as the sum over contributions of classical
POs. When the neck is formed, one has families of POs
confined in each of the prefragments, and their contributions
to the level density can be regarded as the prefragment shell
effect. The POs in the spherical (but truncated) prefragment
make a strong shell effect similar to (but a little smaller than)
that for a full spherical potential. Since the POs with the
same property have the same kind of contribution to the shell
energy, the prefragment PO should bring about considerable
shell-energy gain to the system when the size of the prefrag-

ment is same as that of the spherical magic nucleus. Such
a condition for the sizes of prefragments is favored by the
nucleus in the fission process, and this provides a simple and
intuitive explanation for the mechanism of the asymmetric fis-
sion in actinide nuclei. Although the cavity model employed
in the above work is unrealistic, especially just before the
scission point for instance, the essential mechanism for the
prefragment shell effect will be applicable in more realistic
situations. In the realistic density functional theory calcula-
tion, it has been shown that the nucleon distributions in the
prefragments for the fissioning nucleus are very similar to
those of isolated nuclei [15,16]. Then, one expects the same
mean field in a prefragment as that for an isolated nucleus, and
the semiclassical mechanism of the prefragment shell effect
associated with the classical POs localized in the prefragment
seems to be justified. One can expect the same situation in
nuclei just above the spherical shell closures.

Thus, the main issue of this paper is to show that the
above idea of the prefragment shell effect can be also used in
explaining the systematics of the octupole deformation. For
this aim, I employ a simple cavity potential model whose
surface shape is made of a sphere and a paraboloid joined
together. In the study of octupole deformation, the surface
shape is usually expanded in terms of spherical harmonics
Ylm for convenience [2,17]. On the other hand, the way of
introducing reflection asymmetry in this work is based on
the physical insight that the nucleus would have shell energy
gain associated with the spherical subsystem, in the same way
as the strongly deformed nuclei in the fission processes. The
comparison of this parametrization with the conventional one
is made in the separate paper [18].

Apart from the above objective, I would also like to con-
sider two other problems using this model. The first is to
answer the question whether the octupole deformation of the
cavity boundary causes the parity mixing of approximately
degenerate Δl = 3 levels in the same way as the perturbation
of the potential by the octupole operator. It is a nontrivial
question which cannot be simply answered by the ordinary
method of perturbation. The second is to confirm the validity
of the semiclassical trace formula for the truncated spherical
cavity which I have developed [10].

This paper is organized as follows. In Sec. II, the octupole
cavity potential model employed in this work is defined, and
details of the shape parametrization are discussed. Then, I
investigate the parity mixing of the Δl = 3 pair of single-
particle levels. Next, in Sec. III, I consider the evolution of
gross shell structure with increasing octupole deformation,
and its role in explaining the systematics of the octupole
deformation is analyzed with the use of the semiclassical
POT. Section IV is devoted to the summary and concluding
remarks.

II. OCTUPOLE CORRELATION BETWEEN
THE Δl = 3 PAIR OF LEVELS

As illustrated in Fig. 2, octupole deformation can be in-
duced by pinching one spot on the surface of the sphere. Here,
I shall use the term “octupole deformation” symbolically as
the shape with finite octupole moment. In general, expansion
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FIG. 2. Shape of the octupole surface defined by Eq. (1). A
sphere and a paraboloid are smoothly joined at z = z1. The relative
size of the tip part κ is considered as the octupole parameter.

of the reflection-asymmetric nuclear surface shape into the
spherical harmonics can contain higher order multipole com-
ponents (Ylm with l > 3) but the main reflection-asymmetric
component must be Y3m. I shall parametrize the axially sym-
metric octupole shape by merging a sphere and a paraboloid.
Then, the surface ρ = ρs(z) in the cylindrical coordinate
(ρ, ϕ, z) is expressed as

ρ2
s (z) =

{
a2 − z2, −a � z � z1,

2z1[(1 + κ )a − z], z1 � z � (1 + κ )a,

z1 = (1 + κ −
√

(2 + κ )κ )a (1)

where the sphere and the paraboloid are smoothly merged at
z = z1. The thickness κ (� 0) of the paraboloid “tip” relative
to the radius a of the sphere part can be regarded as the
octupole parameter. The parameter a is determined so that
the volume conservation condition is satisfied. Such shape
parametrization is initiated to obtain a shell effect originated
from the contribution of classical PO families confined in the
spherical subsystem.

Let us first look at the single-particle shell structure in the
above octupole-deformed infinite-well potential

V (r) =
{

0, [ρ(z) � ρs(z)],
+∞, [ρ(z) > ρs(z)].

(2)

Figure 3 shows the single-particle level diagram plotted
against the octupole parameter κ . The eigenvalue problem for
the Laplace equation with Dirichlet boundary condition can be
solved, e.g., by the method described in Ref. [19], which has
been taken here. At above each of the spherical gaps such as
N = 92 and 138, one may find the levels rapidly go down with
increasing κ . Let us examine the reasons of such behavior.
The most rapidly decreasing level above the N = 92 (138)
gap is the 2 f (1 j) orbitals with the magnetic quantum number
K = 0, and there are Δl = 3 orbitals 1i (2g) just above it (see
also Fig. 1). These pairs are indicated by the thick broken
curves in Fig. 3. Thus, the above behavior of the levels seems
to be related to the parity mixing of those levels due to the
octupole correlation.

Here let us review some basics on the breaking of reflection
symmetry and parity mixing. Suppose that two levels |1〉 and
|2〉 with opposite parities are approximately degenerate in the

FIG. 3. Single-particle level diagram. Broken and solid curves
represent K = 0 and K � 1 levels, respectively. Thick broken curves
represent the pairs of Δl = 3 levels with K = 0 that are approxi-
mately degenerate in the spherical limit κ = 0.

symmetric limit:

H0|1〉 = (ε − δ)|1〉, H0|2〉 = (ε + δ)|2〉 (δ > 0),

P|1〉 = σ |1〉, P|2〉 = −σ |2〉 (σ = ±1), (3)

where P is the parity (space inversion) operator and H0 is the
reflection-symmetric Hamiltonian (H0P = PH0). Consider
the parity-violating perturbation λV (PV = −V P) which sat-
isfies 〈1|V |1〉 = 〈2|V |2〉 = 0 and 〈1|V |2〉 = 〈2|V |1〉=v>0.
Then, the parity mixing is described by the 2×2 Hamiltonian
matrix

H = H0 + λV =
(

ε − δ λv
λv ε + δ

)
. (4)

The solutions of the eigenvalue equation H |ψ±〉 = E±|ψ±〉
are given by

E±(λ) = ε ±
√

δ2 + (λv)2, (5)

|ψ−(λ)〉 = C

(
|1〉 − λv√

δ2 + (λv)2 + δ
|2〉

)
,

|ψ+(λ)〉 = C

(
|2〉 + λv√

δ2 + (λv)2 + δ
|1〉

)
, (6)

where C is the normalization constant. The parity doublet |1〉
and |2〉 gradually mix and the energy splitting grows with in-
creasing λ. Finally, for λv � δ, complete mixing is achieved
and one has the parity partner

|ψ±〉 � 1√
2

(|1〉 ± |2〉), P|ψ±〉 � σ |ψ∓〉, (7)

where the energy splitting is given approximately by

ΔE ∼ 2λv. (8)
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FIG. 4. Evolution of the wave functions of the Δl = 3 pair of
single-particle levels just above the N = 138 gap. The contour plots
of the wave functions are shown. The energy eigenvalue e of each
level is given at the upper left of the figure. The panels in the left and
right columns are for the lower and upper levels, originating from the
negative-parity 1 j and positive-parity 2g orbitals, respectively, with
increasing octupole parameter κ from top to bottom.

The question here is whether the changes in wave functions
and eigenvalue energies as described above also apply to the
cavity model against octupole deformation of the potential
surface. Figure 4 displays the evolutions of the wave functions
of a pair of single-particle levels with increasing κ for the
K = 0 states originated from the Δl = 3 orbital pair 1 j and
2g just above the spherical gap N = 138. Each panel shows
the contour plot of the wave function. At κ = 0.01, each wave
function is almost entirely occupied by the parity eigenstate.
With increasing octupole deformation, a complete mixing
seems to be achieved already at κ ≈ 0.1, where one of the
wave functions is quite similar to a space inversion of the
other as shown in the second equation of (7). The behavior
of the energy splitting with increasing κ is also consistent
with Eq. (8) by assuming λ ∝ κ . The same properties also
hold for the K > 0 pairs of levels. Thus, it is confirmed that
the parity mixing of nearly degenerate Δl = 3 levels explains
the behavior of the single-particle shell structure against the
octupole deformation. This behavior is expected to play a
certain role in enabling the system to achieve stable octupole
deformation.

III. GROSS SHELL STRUCTURE IN TERMS
OF CLASSICAL PERIODIC ORBITS

The liquid drop model explains an average property of nu-
clei, and the quantum fluctuation about it is essentially given
by the single-particle shell effect. In a liquid drop picture, a
nucleus is most stable in the spherical shape, which minimizes
the surface energy. The pronounced shell structure in the
spherical potential is advantageous for the closed-shell config-
urations, and conversely, disadvantageous for the open-shell
configurations. The spherical shape becomes more unstable as
the number of particles deviates from any magic number cor-
responding to the closed-shell configuration, and the system
will deform when the shell energy gain due to the deformation
surpasses the increase of liquid-drop surface energy.

The nuclear ground-state deformations are considered to
be of the quadrupole type in most cases. Another reason why
the quadrupole type deformation is most likely to occur is
the regularity of single-particle motion, which contributes to
the strong deformed shell effect. In a potential with small
quadrupole deformation, classical motion of a single parti-
cle is mostly regular (stable). However, the classical motion
rapidly becomes chaotic (unstable) with increasing octupole-
type deformation [20]. In general, quantum level repulsion
occurs in a classically chaotic system, which makes the shell
effect small compared to systems where the classical motion is
regular. For an exotic deformation to emerge, a considerably
strong shell effect is necessary, which is usually associated
with dynamical symmetries, or resonances in another word,
arising locally in the system for specific potential shapes
[21–23]. A typical example is the so-called superdeformed
state, where the axis ratio is approximately 2:1. It is under-
stood in analogy with the pronounced degeneracy of levels
found in a deformed oscillator potential with rational axis
ratio.

In analyzing the origin of such gross shell effect, semi-
classical POT provides us with a powerful tool [23–27].
In general, distribution of single-particle energy eigenvalues
shows a regular oscillating pattern, but its origin cannot be ex-
plained within the framework of pure quantum mechanics. To
describe the above oscillation, Balian and Bloch considered a
semiclassical approximation and derived an outstanding for-
mula which expresses the quantum level density

g(e) =
∑

i

δ(e − ei ) (9)

as the sum over contributions from the classical POs [25].
The formula they have obtained is specific to the infinite-
well (cavity) potential systems, although it is applicable to
any dimension and shape. Independently of them, Gutzwiller
derived the same type of the formula from a different semi-
classical approach [24]. His formula, known as the Gutzwiller
trace formula, can be applied to Hamiltonian systems with
more generic potentials, but is limited to the case where all
classical motions are unstable and the system has no continu-
ous symmetries such as rotational symmetries. In the opposite
extreme with respect to the stability of the classical motions,
the trace formulas for completely integrable (multiply peri-
odic) systems are derived by Berry and Tabor based on the
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torus quantization condition of Einstein, Brillouin, and Keller
(EBK) [28]. The extension of the Gutzwiller trace formula
to a system with continuous symmetries was made, e.g., in
Refs. [9,29]. The formulas applicable to the stable orbits that
encounter bifurcations, for which Gutzwiller’s formula breaks
down, have been derived by uniform approximations [30] and
the improved stationary-phase approximation [31,32]. The
general version of the trace formula, incorporating all the
above, might be expressed as

g(e) = g0(e) + δg(e), (10)

δg(e) �
∑
PO

APO(e) cos

(
1

h̄
SPO(e) − π

2
μPO

)
, (11)

where g0 represents the average level density, equivalent to
the (extended) Thomas-Fermi approximation [26,33,34], and
the oscillating component δg is expressed as the sum over
the contribution of classical POs. SPO = ∮

PO p · dr represents
the action integral along the PO, µPO is the Maslov index
related to the geometrical character of PO, and the amplitude
APO is fully determined by the classical properties (such as
degeneracy, period, and stability) of the orbit. Since the action
integral is generally a monotonically increasing function of
energy e, each contribution of PO in the right-hand side of
Eq. (11) gives a regularly oscillating function of e. The orbit
with shorter period TPO = dSPO/de gives the gross structure
of the level density and the longer orbits contribute to the finer
structures. In order to investigate the gross shell structure, it is
sufficient to consider the contributions of only a few short-
est POs. If the single-particle Hamiltonian has continuous
symmetries, each PO generally forms a continuous family of
several parameters. Such a family is called a degenerate orbit
and the number of continuous parameters KPO for the family
is called the degeneracy. Note that the orbits with higher
degeneracies make a more significant contribution to the level
density. Speaking in the context of semiclassical h̄ expansion,
the amplitude factor APO is of the order h̄−KPO/2.

Looking at the level diagram in Fig. 3, one will find an
approximately degenerate cluster of levels below each spheri-
cal shell gap, preserving strong shell effects up to fairly large
values of the octupole parameter κ . As I show in the following,
this strong shell effect under octupole deformation is related
to the local symmetry of the system, namely, the presence of
the partially spherically symmetric subsystem. In the smooth
potential models, dynamical symmetries play the same role.
If the system has such special local symmetry or dynamical
symmetry under the exotic shape, a strong deformed shell
effect is expected and the importance of such shape degree
of freedom might come into competition with that of the
quadrupole type.

Among the classical POs in the cavity model under con-
sideration, there are degenerate family of orbits localized in
the sphere part of the potential. Figure 5 displays some short
simple POs. The upper panels show the diameter (K = 2) and
regular polygon (K = 3) families of orbits localized in the
spherical part, and the lower panels show the isolated (K = 0)
linear symmetry-axis orbit and the meridian-plane orbit fam-
ilies (K = 1). There are also three-dimensional (nonplanar)

FIG. 5. Some short classical POs in the octupole cavity whose
surface is given by Eq. (1) with the octupole parameter κ = 0.2.
The lower panels represent the meridian-plane orbits M(v,w), and
the upper panels represent the regular polygon orbit families S(v,w)
confined in the sphere part of the potential. The indices v and w rep-
resent the number of vertices and the winding number, respectively.

orbits that form K = 1 families, but they are longer than the
above ones and contribute only to the finer shell structures.

One can see the contribution of these orbits to the semiclas-
sical level density using the Fourier transformation technique.
Through the classical motion of the particle in the cavity
potential, the magnitude of the momentum p is kept constant,
and the action integral along the orbit is simply given by the
product of p and the geometric length LPO of the orbit. Thus,
the level density in the wave-number variable k (p = h̄k) is
expressed as

g(k) = g(e)
de

dk

= g0(k) +
∑
PO

aPO(k) cos

(
kLPO − π

2
μPO

)
. (12)

The simple k dependence of the above phase factor enables
us to estimate the contribution of each orbit by the Fourier
transformation of level density. Let us consider the Fourier
transform defined by

F (L) =
√

π

2

1

kc

∫
g(k)eikLe−(k/kc )2/2dk. (13)

In this definition, a Gaussian cutoff factor is incorporated into
the integrand in order to exclude the high energy part (k � kc)
of the level density which is numerically inaccessible. The
calculation of the Fourier transform of the exact quantum level
density is straightforward if one has the quantum energy spec-
trum {e j = (h̄k j )2/2m}. Inserting g(k) = ∑

j δ(k − k j ) into
Eq. (13), one has

F (qm)(L) =
√

π

2

1

kc

∑
j

eik j Le−(k j/kc )2/2. (14)

On the other hand, by inserting the semiclassical expression
(12) into (13), one has

F (cl)(L) = F0(L) +
∑
PO

aPOe−iπμPO/2e−{kc (L−LPO )}2/2, (15)

which is a function exhibiting peaks at the lengths of the
POs, L = LPO, with heights proportional to the amplitude
aPO. In deriving Eq. (15), k dependence of the amplitude aPO
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FIG. 6. In the upper panel (a), modulus of the Fourier transform
of the quantum level density |F (qm)(L; κ )| [see Eq. (14)] is shown as
a function of L and κ . In the lower panel (b), lengths of the classical
POs are plotted as functions of κ . Solid lines represent the lengths of
the regular polygon orbits confined in the sphere part, and the broken
lines are for the meridian-plane orbits.

is ignored for simplicity. Taking into account the correct k
dependence, one has another expression where the Gaussian
is replaced by a different but similar single-peaked function
(see Fig. 11 of Ref. [10]).

In this way, one can extract information on the contribution
of classical POs by the Fourier transform of the quantum
level density. The summation in Eq. (14) can be truncated at
certain kmax if one takes kc sufficiently smaller than kmax. kc

determines the resolution ΔL of the orbit length by the un-
certainty relation ΔL = 1/kc. Sufficiently large kc is required
for a good resolution of the orbit length, and I took kcR0 = 20
(R0 being the radius of the potential in the spherical limit) and
kmax = 3

2 kc in the present calculation.
The upper panel of Fig. 6 displays the modulus of

quantum-mechanical Fourier transform |F (qm)(L; κ )| as a
function of the length variable L and the octupole parameter κ .
In the lower panel, the length of the classical POs are plotted
as functions of octupole parameter. Solid curves represent the
lengths of the regular polygon POs confined in the sphere
part of the potential, and broken lines represent those of the
meridian-plane orbits. By comparing these two panels, it can
be seen that the Fourier amplitude has strong peaks mainly
along the orbit families confined in the sphere part. Particu-
larly, the peak corresponding to the triangular orbit S(3, 1) is
outstanding. Thus, one can expect that the gross shell effect is
given mostly by the contribution of this triangular family.

FIG. 7. Shell energy δE (N ) multiplied by N−2/3 plotted against
N1/3, for the octupole parameter values κ = 0, 0.2, and 0.5. Dotted
curve represent the quantum result, and the solid curve represent the
semiclassical trace formula taking into account the contribution of
some short regular polygon families confined in the sphere part of
the cavity.

The effect of the shell structure on deformation should be
estimated by the shell energy, rather than the level density.
Using Eq. (11), one obtains the trace formula for shell energy
as [9,26]

δE (N ) =
∫ eF

(e − eF )δg(e)de

�
∑
PO

h̄2

T 2
PO

APO(eF ) cos

(
kF LPO − π

2
μPO

)
, (16)

where eF = (h̄kF )2/2M is the Fermi energy satisfying

N =
∫ eF

g(e)de. (17)

The additional factor T −2
PO in Eq. (16) suppresses the con-

tributions of longer orbits, and accordingly one has only to
consider a few shortest POs with higher degeneracies.

For the cavity model under consideration, the contribution
of the PO family confined in the sphere part can be directly
evaluated by the trace formula for a truncated spherical cavity,
which has been derived for the study of the nascent-fragment
(prefragment) shell effect in nuclear fission processes [10].
Figure 7 shows the results of shell energies (16) for the
octupole parameter values κ = 0, 0.2, and 0.5. For these rela-
tively small octupole deformations, quantum results are nicely
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reproduced by the contribution of POs confined in the sphere
part of the potential. One finds that the oscillating pattern
in case of the spherical shape survives well in the octupole
deformed system.

Keeping in mind that the shell effect is essentially deter-
mined by the POs confined in the sphere part of the potential,
let us consider the condition for the system to take the oc-
tupole shape by focusing attention on the PO contribution.
Because of the saturation property, volume V surrounded by
the potential surface is proportional to the particle number N .
According to the Weyl’s asymptotic formula [35], the leading
term of the average level density is given by1

g0(e) � 2M

h̄2

V k

4π2
, (18)

with the volume

V = 4π

3
R3

0 = 4π

3
Nr3

0 , (19)

where R0 = N1/3r0 is the nuclear radius in the spherical limit.
From the relation between Fermi wave number kF and particle
number N , one obtains

N �
∫ h̄2k2

F /2M

0
g0(e)de = V k3

F

6π2
� 2N (kF r0)3

9π
,

kF �
(

9π

2

)1/3

r−1
0 .

Thus, the value of the Fermi wave number kF is approximately
independent of the particle number N .

In the trace formula (16), let us introduce the reduction
factor wPO of the PO family amplitude due to the truncation,
and assume that the Maslov indices are unchanged by the
truncation2

APO(eF ) = wPOA(0)
PO(eF ), μPO � μ

(0)
PO, (20)

where A(0)
PO and µ(0)

PO represent the amplitude and Maslov
indices for the PO family in the spherical cavity without
truncation. Inserting them into Eq. (16) and replacing wPO

with w31 of the dominant triangular orbit S(3, 1), one has

δE (N ) � w31

∑
PO

h̄2

T 2
PO

A(0)
PO cos

(
kF LPO − π

2
μPO

)

= w31δE (0)(N (0)(eF )), (21)

where δE (0) is the shell energy of the spherical cavity without
truncation. Since the number of the constituent particles is
proportional to the volume surrounded by the potential surface
under the fixed Fermi energy, one has

N (0)(eF )

N
= Vsph

V
≡ f (κ ), (22)

1The unit h̄2/2M = 1 is used in Ref. [35].
2To be precise, one has the small shifts of the Maslov indices due

to the contribution of the marginal orbits which correspond to the
higher-order quantum corrections [10].

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1

N

κ

 40

60

80

 100

 120

 140

 160

0 0.2 0.4 0.6 0.8  1

N

κ

-15

-10

-5

 0

 5

 10

 15

 20

Nsph=58

Nsph=9
2

N sph=
138

FIG. 8. Contour plot of the shell energies as functions of oc-
tupole parameter κ and particle number N . Solid and broken contour
curves represent negative and positive shell energies, respectively.
Thick dotted lines indicate where the radius of the sphere part of
the potential is equal to the radius of spherical magic nuclei with
Nsph = 58, 92, and 138.

where V and Vsph are volumes of the total system and that
of the sphere composing the octupole surface (1), Vsph =
4πa3/3. f (κ ) is a monotonically decreasing function of κ

as easily presumed from Fig. 2. As displayed in Fig. 7, the
expression of Eq. (21) with N (0)(eF ) = f (κ )N explains the
main feature of the shell structure quite well.

According to the rough but meaningful estimation dis-
cussed above, the shell energy described by the contribution
of PO in Eq. (16) is essentially governed by the lengths LPO of
the orbits in the sphere part of the potential. The contribution
of the PO family confined in the sphere part of the potential
will then give shell energy minima if the radius of the sphere
part is identical to the radius of spherical magic nucleus.
Figure 8 shows the contour plot of the shell energy in the
(κ, N ) plane. The curves N = Nsph/ f (κ ), obtained by sub-
stituting some spherical magic numbers Nsph for N (0)(eF ) in
Eq. (22), are also drawn in the figure. One will find that those
curves successfully explain the shell energy valleys.

IV. SUMMARY

Octupole deformation of nuclei above the spherical magic
configurations are investigated by the simple cavity potential
model, where the potential surface is parametrized by merging
a sphere and a paraboloid. The semiclassical trace formula for
the truncated spherical cavity is successfully applied to our
model and gives us a clear understanding of the properties of
shell structure. The contribution of a degenerate orbit family
confined in the spherical subsystem brings about a strong shell
effect similar to those in the spherical shape, and it plays a sig-
nificant role in stabilizing the octupole shape. This mechanism
nicely explains the systematics of the octupole deformations
on the nuclear chart.
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This result is also related to the recent works on the
role of the octupole shape degree of freedom in fission
fragments [36,37]. In the fission process, prefragments take
octupole shapes near the scission point, and the octupole shell
effect controls the size of the fragment. Since the systems
with the number of particles a little above the spherical magic
number prefer octupole deformation, it explains why the mass
number of heavier fragments is concentrated around 140, a
little larger than that of doubly magic 132Sn.

The current shape parametrization can be generalized
to spheroid+paraboloid, which enables us to investigate
the ground state shapes of nuclei, taking account of the
quadrupole and octupole shape degrees of freedom. Results
of the systematic analysis with such an extension will be
discussed in a separate paper [18].

There have been various approaches to examine the
ground-state octupole deformation over the nuclear chart, and
in most of those analyses, axially symmetric type of octupole
deformation was the main consideration. In this work, I have
also limited myself to the axially symmetric case. However,
it should be mentioned that nonaxial octupole shape degrees
of freedom and the role of Δl = 3 pair of levels in it were
analyzed, and a pronounced bunching of levels was found in

the case of Y32 deformation, which has tetrahedral symmetry
[7,8]. The theoretical search of tetrahedral nuclei has been
extensively carried out with the realistic mean field model
[38,39]. Recently, all four types of octupole shapes and the
role of the point-group symmetries were examined in Pb and
superheavy regions [40,41].

In the present work, the axially symmetric octupole defor-
mation for the nuclei just above the spherical shell closures is
shown to be related to the dynamical symmetry, which can be
taken as a partial survival of the spherical symmetry for spe-
cial combination of quadrupole and octupole deformations.
On the other hand, a strong tetrahedral shell effect is expected
by the bifurcation of PO on the way from spherical to larger
tetrahedral deformation [42]. It is an interesting subject to
investigate the systematics of nonaxial octupole deformations
over the nuclear chart and its semiclassical origin, which is
left for future work.
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