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Fourier coefficients of noninterdependent collective motions in heavy-ion collisions
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We present a scenario in heavy-ion collisions where different modes of collective motions are noninterdepen-
dent, driven by factorized actions in the created nuclear medium. Such physics mechanisms could each dominate
at a distinct evolution stage, or coexist simultaneously. If the probability of particle emission is modulated by each
nondependent collective motion with a single-harmonic Fourier expansion, the particle azimuthal distribution
should be the product of all these expansions. Consequently, nonleading cross terms between collectivity modes
appear, and their contributions to experimental observables could be significant. In particular, we argue that
the chiral magnetic effect (CME) and elliptic flow can develop separately, with their convolution affecting the
observable that is sensitive to the shear-induced CME. We will use the event-by-event anomalous-viscous fluid
dynamics model to illustrate the effects of this scenario. Besides giving insights into searches for the CME, we
also propose feasible experimental tests based on conventional flow harmonics, and demonstrate the emergence
of nonleading cross terms with a multiphase transport model.
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In high-energy heavy-ion collisions, the emission pattern
of final-state particles reveals different collectivity modes of
the created nuclear medium. Figure 1 illustrates a few ex-
amples of collective motions at midrapidities in noncentral
collisions. A particular concept is the reaction plane, spanned
by impact parameter (x axis) and beam momenta (z axis). (a)
In the reaction plane, a slightly tilted participant region [1]
violates the boost invariance, and leads to a rapidity-odd emis-
sion of produced particles, known as directed flow (v1). (b)
When viewed along the beam line, the almond-shaped overlap
zone in coordinate space is transformed via a hydrodynamic
expansion [2] into a rapidity-even nondegeneracy between
in-plane and out-of-plane emissions, called elliptic flow (v2).
(c) The chiral magnetic effect (CME) [3] induces an out-of-
plane electric charge separation (a±

1 ), provided that a quark
chirality imbalance emerges from the chiral anomaly [4], and
an intense magnetic field ( �B) is generated by protons from the
colliding nuclei [5]. (d) Recently, a higher-order effect, the
shear-induced CME (siCME) [6] has been proposed, in which
the combination of magnetic field and hydrodynamic shear
creates a charge-dependent triangular flow (a±

3 ).
To quantify the collective motions in a given kinematic

region, it is convenient to decompose the azimuthal angular
(ϕ) distribution of produced particles in each collision with a
Fourier series [7]:

2π

N±
dN±

dϕ
= 1 +

∞∑

n=1

2a±
n sin n�ϕ +

∞∑

n=1

2v±
n cos n�ϕ, (1)
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where �ϕ is the azimuthal angle of a particle relative to
the reaction plane, and the superscripts +, − indicate the
charge signs. For simplicity, we will omit these superscripts in
the following discussions, and express them only where nec-
essary. The coefficients an ≡ 〈sin n�ϕ〉 and vn ≡ 〈cos n�ϕ〉
are experimentally obtainable by averaging over particles of
interest and over events. While Fourier-expanding a probabil-
ity distribution is always a useful approach, establishing the
relationship between the Fourier coefficients and underlying
physics mechanisms can be nontrivial. Storing coefficients in
an orthonormal basis implies that each collectivity mode is
treated as a nondependent action on the final-state particle dis-
tribution. However, this leads to a logical inconsistency. If the
collectivity modes are orthogonal or noninterdependent, each
action should modulate the probability of particle emission
with its own single-harmonic (ãn or ṽn) Fourier expansion.
According to the rule of multiplication for independent ac-
tions, it is the product, rather than the sum, of these short
expansions that describes the particle azimuthal distribution.
Then, the an (vn) measured from a long linear Fourier expan-
sion as in Eq. (1) may not be independent of each other, and
may not fully match the true ãn (ṽn) of the pertinent physics
process.

In general, factorized actions, such as distinct physics
mechanisms, could occur concurrently, but do not rely on each
other’s existence during evolution. As long as the collective
motions have separate evolution paths to affect particle emis-
sion, we consider them to be not coordinated with each other
and approximate the particle distribution with the factorized
form of Fourier expansions. For example, elliptic flow can
be developed regardless of the presence of the CME, and
vice versa. Then, ã1 and ṽ2 should appear in two separate
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FIG. 1. Illustration of collective motions in heavy-ion collisions:
(a) directed flow, (b) elliptic flow, (c) the CME-induced electric cur-
rent j along the �B field, and (d) the siCME-induced charge-dependent
triangular emission. The dashed arrows represent produced-particle
momenta. Bσ denotes the new component of the �B field caused by its
interplay with shear flow.

Fourier expansions, (1 + 2ã1 sin �ϕ) and (1 + 2ṽ2 cos 2�ϕ),
respectively, and their product specifies the final-state parti-
cle distribution. Compared with Eq. (1), the factorized form
provides a nonleading cross term

4ã1ṽ2 sin �ϕ cos 2�ϕ

= −2ã1ṽ2 sin �ϕ + 2ã1ṽ2 sin 3�ϕ. (2)

In this case, the a1 and a3 manifested in the linear Fourier
expansion deviate from the true ã1 and ã3, respectively.

Under the hypothesis that the actions responsible for col-
lective motions can be factorized, the particle azimuthal
distribution would be expressed naturally as

2π

N±
dN±

dϕ
=

∞∏

n=1

(1 + 2ã±
n sin n�ϕ)

∞∏

n=1

(1 + 2ṽ±
n cos n�ϕ).

(3)
Note that Eq. (3) is not a replacement of Eq. (1), but they
are two representations of the same distribution with different
emphases, and both are applicable to real-data analyses. The
coefficients in the former expansion represent the strengths of
the collective motions driven by factorized actions, whereas
those in the latter denote the final emergent collectivity modes.
Typically, flow and CME measurements are conducted using
multiparticle correlations based on the definition in Eq. (1),
and the results thus obtained manifest vn (an), which can be
readily demodulated into ṽn (ãn).

In reality, the difference between an and ãn or between
vn and ṽn is negligible for many harmonics. For example,
the magnitude of ãnãm could be much smaller than ṽn+m or
ṽ|n−m|. We will focus on three coefficients: ã1, ã3, and ṽ2, and
study how they are related to their counterparts, a1, a3, and
v2. Directed flow is not included, because v1 is a rapidity-odd
function in symmetric collisions, and its rapidity-integrated

contribution to other coefficients will be zero in most cases.
Now, Eq. (3) takes a specific form

2π

N±
dN±

dϕ
∝ (1 + 2ã±

1 sin �ϕ) × (1 + 2ã±
3 sin 3�ϕ)

× (1 + 2ṽ±
2 cos 2�ϕ). (4)

By comparing Eqs. (1) and (4), we find the following connec-
tions between phenomena and noumena:

a1 = ã1 − ã1ṽ2 + ã3ṽ2, (5)

a3 = ã3 + ã1ṽ2, (6)

v2 = ṽ2 + ã1ã3. (7)

Here, we ignore any higher-order term involving ã1ã3ṽ2.
Since the magnitude of ã1ã3 is typically lower than that

of v2 by a few orders of magnitude, v2 and ṽ2 are almost the
same. We will abandon ṽ2, and only use v2 in the following
discussions. Given that the siCME-induced ã3 is much smaller
than the CME-induced ã1, Eq. (5) indicates that the observed
a1 roughly equals ã1(1 − v2). Furthermore, Eq. (6) asserts that
the observed a3 contains a contribution of ã1v2 on top of the
primordial ã3, if any. For completeness, we also express ã1

and ã3 in terms of experimental observables

ã1 = a1 − a3v2

1 − v2 − v2
2

, (8)

ã3 = a3 − a1v2 − a3v2

1 − v2 − v2
2

. (9)

We use the event-by-event anomalous-viscous fluid dy-
namics (EBE-AVFD) model [8–10] to test our inferences from
factorized actions via relations derived in Eqs. (5) and (6). The
EBE-AVFD event generator simulates the dynamical CME
transport for u, d , and s quarks in addition to the hydrody-
namically expanding viscous medium in heavy-ion collisions,
and properly handles local charge conservation and resonance
decays. We have analyzed 5.8 × 107 events of Au+Au col-
lisions at

√
sNN = 200 GeV in the 30–40% centrality range,

using the same settings and input parameters as adopted in
Ref. [11]. For simplicity, we will use the true reaction plane
to perform the simulation analysis, and ignore the possible
fluctuation effects concerning the observables of elliptic flow
and the CME.

The initial conditions for entropy density (s) profiles and
for electromagnetic field vary in accordance with the event-
by-event nucleon configuration from the Monte Carlo Glauber
simulations [12]. The chirality charge density (n5) is imple-
mented in the form of n5/s, which controls the strength of
the CME transport. In this study, we take a modest value of
n5/s = 0.1, the same as used in Ref. [6].

The medium expansion is managed by the VISH2+1 simu-
lation package [13], which is a boost-invariant hydrodynamics
framework. Consequently, directed flow vanishes, and ellip-
tic flow is a major collectivity mode. In these EBE-AVFD
calculations, magnetic field is set to last long enough, so
that for a substantial time period the CME does coexist with
the hydrodynamic formation of elliptic flow. However, the
dynamical CME transport is governed by anomalous hydrody-
namic equations as a linear perturbation on top of the medium
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FIG. 2. Correlations between a1 and v2 calculated on an event-
by-event basis from EBE-AVFD simulations of 30–40% Au+Au
collisions at

√
sNN = 200 GeV for (a) π+, K+, and p, and for (b) π−,

K−, and p̄. The fit function, a1(v2) = a1(0) × (1 + Cv2), returns C
close to −1 for all the cases.

flow background, since the back-reaction of finite chiral quark
densities is negligible in collisions at

√
sNN = 200 GeV [8].

Therefore, the two modes of collective motions featuring ã±
1

and v2, respectively, develop independently of each other,
and satisfy the generalized criterion for noninterdependent
collective motions. We do not invoke the siCME in these
simulations, and thus ã±

3 is zero. Accordingly, Eqs. (5) and
(6) become as simple as

a1 = ã1(1 − v2), (10)

a3 = ã1v2. (11)

Figure 2 shows the observed a1 vs v2 from EBE-AVFD
simulations of Au+Au collisions at

√
sNN = 200 GeV in the

centrality interval of 30–40% for (a) π+, K+, and p, and
for (b) π−, K−, and p̄. Both a1 and v2 are calculated on
an event-by-event basis within the rapidity range of |y| < 1
and the transverse momentum range of 0.2 < pT < 2 GeV/c.
For all the particle species, a linear correlation is present
between a1 and v2. The fit function (dashed lines), a1(v2) =
a1(0) × (1 + Cv2), renders the parameter C close to −1 for
all the cases, seemingly supportive of Eq. (10). However,
we cannot claim unambiguous evidence for the scenario of
factorized actions based solely on this slope parameter, due to
the trigonometric identity

sin2 �ϕ ≡ (1 − cos 2�ϕ)/2. (12)

FIG. 3. EBE-AVFD simulations of a3 as a function of pT in 30–
40% Au+Au collisions at 200 GeV for (a) π+ and π−, for (b) K+ and
K−, and for (c) p and p̄. In comparison, the values of a1v2/(1 − v2)
are shown with shaded bands.

Even when both a1 and v2 are averaged over particles in each
event before being correlated, the correlation could still be
dominated by the mathematical relation. In addition, there
could be an anticorrelation between the ã1 magnitude itself
and v2, especially for pions. This higher-order effect may arise
from resonance decays, since secondary particles will smear
and dilute the ã1 value averaged over all pions [8], while
inheriting a larger v2 from resonances at higher pT [14,15].
The a1(0) or ã1 values retrieved from the fits also exhibit
a particle-species dependence, which could be partially ex-
plained by the mean pT effect. Similar to v2, the ã1 magnitude
increases with pT at the low-pT region [8], and pions, kaons,
and protons form an ascending order of mean pT . The quark
coalescence mechanism [16] could also play a role by making
the ã1 magnitude larger for baryons than for mesons at the
intermediate-pT region.

Figure 3 shows EBE-AVFD calculations of the observed
a3 as a function of pT in 30–40% Au+Au collisions at 200
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GeV for (a) π+ and π−, for (b) K+ and K−, and for (c) p
and p̄. Although the a3 magnitudes for pions and protons are
comparable to the corresponding predictions for the siCME-
induced a3 (as shown in the upper panel of Fig. 3 in Ref. [6]),
our simulations do not entail the siCME. On the contrary,
we depict a1v2/(1 − v2) or ã1v2 with shaded bands, which
describe the trend and the magnitude of a3 reasonably well for
all the particle species under study. Therefore, the simulations
support Eq. (11), and verify another imprint of factorized
actions. At pT > 1 GeV/c, a3 seems to have a smaller mag-
nitude than ã1v2, which could be partially explained by the
aforementioned anticorrelation between ã1 and v2. The grad-
ual breakdown of hydrodynamics towards higher pT could
also add to this discrepancy, since collective motions start to
collapse.

While the search for the CME and the siCME continues
as a subject of intensive investigation, we propose a feasible
approach to assess the factorized-form approximation involv-
ing only the vn coefficients. If directed flow and elliptic flow
are approximately noninterdependent in nature, the product
of (1 + 2ṽ1 cos �ϕ) and (1 + 2ṽ2 cos 2�ϕ) yields a non-
leading cross term, 4ṽ1ṽ2 cos �φ cos 2�φ = 2ṽ1ṽ2(cos �φ +
cos 3�φ), similar to Eq. (2). Therefore, the v1 observed with a
linear Fourier expansion will be the true ṽ1 scaled by a factor
of (1 + ṽ2), and the observed v3 will contain a rapidity-odd
component of ṽ1ṽ2 on top of the existing rapidity-even ṽ3,
if any. With respect to the reaction plane, ṽ3 is likely to be
zero because the triangular anisotropy in the initial collision
geometry is dominated by event-by-event fluctuations, and
essentially decouples from the reaction plane [17]. Thus, the
observation of a vodd

3 component establishes a signature of
the factorized Fourier expansions. Along the same line of
argument, the v2 observed with the linear Fourier expansion
will be the true ṽ2 scaled by (1 + ṽ4).

To test the aforementioned ideas, we exploit a multiphase
transport (AMPT) model [18,19], whose string melting ver-
sion [19,20] reproduces particle spectra and flow reasonably
well at both BNL Relativistic Heavy Ion Collider (RHIC)
and CERN Large Hadron Collider (LHC) energies [21]. We
simulate Au+Au collisions at

√
sNN = 14.6 GeV/c, where

directed flow is prominent. Since the correlations between
v1 and v2 and between v2 and v4 could be affected by pure
mathematical relations similar to Eq. (12), we focus on vodd

3 .
Figure 4 presents AMPT calculations of v3 vs y for (a) π−,
(b) K+, and (c) p in the centrality range of 20–50%. We refrain
from combining the results for particles and their antiparticles
due to sizable differences arising from transported-quark ef-
fects at this beam energy [22]. In each panel, we also include
a shaded band to depict v1v2/(1 + v2) for comparison. For all
studied particle species, the slope, dv3/dy, is statistically sig-
nificant and consistent with that of v1v2/(1 + v2), supporting
the scenario of noninterdependent collective motions.

In summary, we stipulate that collective motions in high-
energy heavy-ion collisions may be noninterdependent, and
that the particle azimuthal distribution can take a factorized
form that complements the widely used long linear Fourier
series. This scheme is more self-consistent, better captures
the genuine strength of each collectivity mode, and makes
new predictions based on nonleading cross terms. In the

FIG. 4. AMPT simulations of v3 vs y for (a) π−, (b) K+, and
(c) p in 20–50% Au+Au collisions at 14.6 GeV. For comparison, the
values of v1v2/(1 + v2) are shown with shaded bands. Linear fits are
used to extract the slopes.

experimental extraction of Fourier coefficients, concerns of
factorization or rather lack thereof have been raised from the
viewpoint of nonflow [23–25] or decorrelation [26,27], but
none of them involves noninterdependent collective motions
or their effects on the particle distribution. As a concrete
example, we focus on the extra cross terms between the
CME-induced ã1, the siCME-induced ã3, and elliptic flow
v2, and make two predictions. First, the presence of a fi-
nite elliptic flow will scale ã1 by a factor of (1 − v2), and
this effect is more important at higher pT , where v2 is
larger. Since most CME-sensitive observables contain a2

1, the
corresponding reduction factor should be about (1 − v2)2.
Second, as confirmed by the EBE-AVFD calculations, the
observed a3 receives a sizable contribution from ã1v2, which
complicates the interpretation of this siCME sensitive ob-
servable. Nevertheless, a finite a3, if confirmed, constitutes a
strong evidence of the CME, whether it originates from ã3

or ã1v2 or both. We have also proposed a test to examine
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noninterdependent collective motions using the vn coeffi-
cients, and the AMPT simulations corroborate the prediction
of the rapidity-odd component of v3. The universality of the
assumption regarding factorized actions can be investigated
through analyzing real data collected from RHIC and the
LHC, which will enhance our understanding of the collective
motions.
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