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For quantum many-body systems with short-range correlations (SRCs), the intimate relationship between
their magnitude, the behavior of the single-particle occupation probabilities at momenta larger than the Fermi
momentum, and the entanglement entropy is a new qualitative aspect not studied and exploited yet. A large
body of recent condensed matter studies indicates that the time evolution of the entanglement entropy describes
the nonequilibrium dynamics of isolated and strongly interacting many-body systems, in a manner similar to
the Boltzmann entropy, which is strictly defined for dilute and weakly interacting many-body systems. Both
theoretical and experimental studies in nuclei and cold atomic gases have shown that the fermion momentum
distribution has a generic behavior n(k) = C/k4 at momenta larger than the Fermi momentum, due to the
presence of SRCs, with approximately 20% of the particles having momenta larger than the Fermi momentum.
The presence of the long momentum tails in the presence of SRCs changes the textbook relation between the
single-particle kinetic energy and occupation probabilities, nmf(k) = 1/{1 + exp β[ε(k) − μ]} for momenta very
different form the Fermi momentum, particularly for dynamics processes. SRCs induced high-momentum tails
of the single-particle occupation probabilities increase the entanglement entropy of fermionic systems, which in
its turn affects the dynamics of many nuclear reactions, such as heavy-ion collisions and nuclear fission.
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Short-range correlations (SRCs) are defined as correlations
between the constituents of a quantum many-body system at
interparticle separations smaller than the average separation
between its constituents, which is of order 1/ 3

√
n(r), where

n(r) is the number density. Such interparticle separations
correspond to particle momenta larger than the local Fermi
momentum h̄kF (r) = h̄ 3

√
3π2n(r), when the particle motion is

essentially unperturbed by the mean field. A great example
was discussed by Landau [1], when he discussed the dis-
persion relation between the (quasi)particle kinetic energy
and its momentum ε(p) in superfluid helium II, where he
identified three branches of this spectrum: the phonon branch,
the roton branch, and at higher momenta essentially the atom
free motion. If the SRCs are strong, their role should appear
at relatively small momenta, close to the Fermi momentum
h̄kF and the fraction of the quasiparticles with such momenta
can be significant. In particular, the single particle occupation
probability for Landau quasiparticles is given by the textbook
formula [2], apart from the trivial energy shift due the pres-
ence of the mean field,

nmf(k) = 1

1 + exp β[ε(k) − μ]
, (1)

where β = 1/T is the inverse temperature, μ is the chemi-
cal potential, and ε(k) = h̄2k2/2m is the kinetic energy. This
formula is valid only in a relatively small energy interval
around the Fermi level, strictly speaking only for systems in
(quasi)equilibrium and it is in agreement with kinetic theory
in the long time limit and quasi-locally for dilute and weekly
interacting systems. Its range of validity and accuracy are
however not established. Decades long studies of fermion

momentum distribution in nuclei and cold atomic gases,
where SRCs are important, require a more sophisticated ap-
proach. The relation between the SRCs and the entanglement
entropy were discussed recently in Refs. [3–6].

While it appears that only recently it was realized that
quantum entanglement and superposition are equivalent con-
cepts [7], with a little bit of effort one can easily convince
oneself that the century old two-slit experiment due to Thomas
Young, where superposition and coherence (thus entangle-
ment) was crucial, the EPR paradox [8], the entanglement
introduced by Schrödinger discussed many times by other
authors [9–11], and SRCs in quantum systems where they are
present, are intimately related phenomena. Two particles in a
many-body system, interacting with forces with a range much
shorter than the average particle separation, become naturally
entangled as in the situation discussed by Einstein et al. [8],
when two particles are practically isolated from the rest of the
universe and retain the memory of the moment of “creation”
of their initial state, a long time after they are fully spatially
separated. Many-body systems with SRCs accordingly be-
come entangled at all energies, irrespectively of whether the
system is in equilibrium or not, and the measure of entangle-
ment needs to be quantified. The system entanglement entropy
directly affects the particle momentum distribution and its
nonequilibrium dynamics [3,4]. Isolated quantum systems in
a pure state for which either von Neumann or Shannon en-
tropy vanishes, but not necessarily in an equilibrium state,
will evolve and its entanglement entropy will naturally in the
long run describe their equilibration [12–32], similarly to the
Boltzmann entropy for weakly interacting and dilute systems
as discussed by Boltzmann [33], Nordheim [34], Uehling and
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Uhlenbeck [35]. Entanglement thus becomes a measure of
both mean field and short-range correlations as well [4].

The single-particle momentum distribution can be ex-
tracted from the one-body density matrix

n(ξ |ζ ) = 〈�|ψ†(ζ )ψ (ξ )|�〉, (2)

where |�〉 is in general a time-dependent many-body wave
function and ξ = (r, σ, τ ), ζ = (r′, σ ′, τ ′) stand for the spa-
tial, spin, and isospin coordinates. Since the emphasis will
be on the spatial properties, the spin and isospin degrees of
freedom will be suppressed in ensuing equations. In many-
body systems the density matrix typically is characterized by
different spatial scales in the coordinates R = (r + r′)/2 and
s = r − r. The momentum distribution, obviously related to
the Wigener distribution [36], is defined [37] using Eq. (2) for
any many-body wave function

n(k) =
∑
σ,τ

∫
d3rd3r′ n(r, σ, τ |r′, σ, τ )e−ik·(r−r′ ), (3)

where
∫

d3k
(2π )3 n(k) = A and A = N + Z is the atomic number.

The properties of the nucleon momentum distribution have
been investigated for decades [37–69]. Sartor and Mahaux
[40] have shown in 1980 that the momentum distribution of
a dilute Fermi system is characterized by the presence of
very long momentum tails n(k) ∝ 1/k4 at large momenta. Tan
[62–64] later proved that in the momentum interval 1/|a| �
k � 1/r0, where a and r0 are the s-wave scattering length and
effective range respectively, the momentum distribution has
the behavior n(k) ≈ C/k4. Bertsch pointed in 1999 that dilute
neutron matter [56,70] is exactly such a system. Subsequent
both theoretical and experimental studies for nuclear systems
[41,42,46–49,52–55] and for cold fermionic atom systems
[56–61,71] confirmed these predictions, even in cases where
the interaction has quite a complex character, as in the case of
a nuclear tensor interaction. The important conclusion of these
studies was that approximately 20% of the spectral strength
is found for momenta k > kF . As was mentioned by many
“A crucial feature of the Tan relations is the fact that they
apply to any state of the system, e.g., both to a (normal) Fermi-
liquid or to a superfluid state, at zero or at finite temperature
and also in a few-body situation.” [56,57,59,62–64]. While
nuclear studies were performed for understandable reasons
only for the ground states of the systems, the experimental
and theoretical results for cold fermionic atoms were obtained
both at zero and finite temperatures, confirming Tan’s [62–64]
prediction that the n(k) = C/k4 behavior is in fact generic for
strongly interacting many-fermion systems, and thus a feature
of such systems in both equilibrium and out of equilibrium.
In Refs. [3,4] this aspect is illustrated for the case of highly
excited fission fragments, with temperatures well above the
critical temperature, where superfluid correlations are absent.

Typically one discusses the angle averaged momentum
distribution n(k) = ∫

d�kn(k), which can be evaluated by
constructing the eigenvalues and eigenfunctions∑∫

ζ

n(ξ |ζ )φα (ζ )=nαφα (ξ ), n(ξ |ζ )=
∑

α

φα (ξ )nαφ∗
α (ζ )

(4)
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FIG. 1. Typical behavior of the s-wave canonical occupation
probabilities in the case of pairing in a finite nuclear system. Three
different amplitudes of the pairing field were considered here �0 =
1, 5, and 15 MeV [4], the last one comparable to the strength
of the pairing field in the unitary limit [56]. For ε(k) > 75 MeV
the momentum occupation probabilities have the behavior n(k) =
C/k4 ∝ 1/[ε(k)]2. The UV cutoff is determined by ε(k) of the high-
est canonical state with a wave function located inside the system.
The states with ε(k) beyond the UV cutoff are not expected to be
physically relevant [4], as their corresponding canonical occupation
probabilities vanish in the continuum limit. In the inset, the occu-
pation probabilities n(k), shown in a linear scale, have an expected
Bardeen-Cooper-Schrieffer [76].

known as the canonical basis in the case of the mean field
Hartree-Fock-Bogoliubov approximation [72] or natural or-
bitals [73,74] in general and evaluating

ε(k) =
〈
φα

∣∣∣∣∣− h̄2�

2m

∣∣∣∣∣φα

〉
= h̄2k2

2m
(5)

and thus relating the occupation probability nα = n(k) =
n(ε(k)) with ε(k). [Note that obviously, the spectrum of
Eq. (4) does not depend on the specific representation, either
coordinate, momentum, etc.] In saturating systems, such as
nuclei, the magnitude of the wave vector k is relatively well
defined, up to corrections arising from surface effects [75],
and the semiclassical quantization approach reproduces with
very good accuracy single-particle energies and shell struc-
ture, an approximation going back to Bohr’s model of the
hydrogen atom. For superfluid systems, if the pairing potential
is local, then there is always a range of the wave vectors k in
which n(k) = C/k4 [4], see Fig. 1. The presence of the high
momentum tails n(k) = C/k4 is clearly incompatible with
Eq. (1), which decays exponentially when k → ∞. Note that

n(k) =
∑
α,σ,τ

nα|φα (k, σ, τ )|2, (6)

φα (k, σ, τ ) =
∫

d3re−ik·rφα (r, σ, τ ). (7)
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The SRCs, which modify in a qualitative manner the be-
havior the dependence of the occupation probabilities as a
function of their kinetic energy, lead to significant changes of
the entropy. This aspect can be appreciated in a much more
“down-to-earth” language. In practice, when increasing the
spatial resolution, and thus opening new channels and allow-
ing higher momenta to actively participate in the dynamics,
the system will always take advantage of new “open roads”
and the wave functions will spread naturally over a larger
part of the Hilbert space. The entropy is simply a measure
of the available and allowed states into which the system can
dynamically evolve. As mentioned in introduction, for iso-
lated quantum many-body system the entanglement entropy
describes the nonequilibrium dynamics [12–32], similarly to
the Boltzmann entropy [33–35]. As recently discussed, the
entanglement entropy is also a natural measure of the com-
plexity of the wave function of a quantum many-body system
[4]. The complexity of a many-body wave function |�〉 [4]
can be quantified by evaluating the orbital entanglement or
quantum Boltzmann one-body entropy [3,34,35,77–83]

S = −g
∑

α

[nα ln nα + (1 − nα ) ln(1 − nα )}, (8)

where the Boltzmann constant is kB = 1 when the temperature
is measured in energy units, and g is spin-isospin degeneracy
factor. The set of occupation numbers {nα, 1 − nα} are known
as entanglement spectrum and obviously carry more informa-
tion than the entanglement entropy [20]. A very transparent
derivation of the orbital entanglement entropy for fermion sys-
tems was given in Ref. [84] using the decomposition, similar
to Schmidt decomposition or tensor of the many-body wave
function discussed a long time ago by Coleman [85]:

|�〉 = a†
αaα|�〉 + aαa†

α|�〉 = √
nα|�α〉 +

√
1 − nα|�α〉, (9)

where a†
α, aα are creation and annihilation fermionic oper-

ators. This entropy vanishes exactly for an isolated system
in a pure Hartree-Fock wave function, thus noninteracting
particles, and it is different from zero only in the presence of
residual interactions, both for ground and excited states. Cold
fermionic gases where the only interaction is a zero-range
is perhaps the most simple example of a strongly interacting
system where for any scattering length any exact many-body
state has SRCs [62–64] and the entanglement entropy S (8) is
nonvanishing for any state, irrespective of whether a pairing
condensate is present or not. In the limit of a dilute system
with weak particle interactions the entanglement entropy S is
a very good approximation of the thermodynamic entropy in
both classical [33] and quantum semiclassical limits [2,34,35].
This entanglement entropy S is a measure of the amount of the
many-body correlations beyond a pure Slater determinant [4],
for which S ≡ 0. The orbital entanglement entropy S defined
in Eq. (8) is related (though it is not identical) to the Shannon
entropy [86] familiar in quantum information science, see a
discussion in Ref. [4]. The entanglement entropy never van-
ishes [86,87] for an interacting system in a pure state, and in
particular in its ground state. The set of − ln nk is also known
as the entanglement spectrum [20].
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FIG. 2. The dependence of the dimensionless “contact”
C(k0)/k7

F on the choice of momentum scale k0 extracted by imposing
the normalization condition Eq. (12) on the occupation probability
n(k), for a thermal mean field distribution, see Eq. (10) and where
the temperature β = 1/T , increases from the lowest to the highest
curve.

When accounting for the SRCs the nucleon momentum
distribution can be parametrized with a simple model [53]

n(k) = η(k0)

{
nmf(k), if k � k0

nmf(k0)k4
0/k4, if k0 < k < �

, (10)

C(k0) = η(k0)nmf(k0)k4
0, (11)

n0 = g
∫

k<�

d3k

(2π )3
n(k) = gk3

F

6π2
, (12)

where C(k0) the “contact” introduced by Tan [62–64] and
n0 ≈ 0.16 fm−3 is the saturation density of symmetric nuclear
matter. The SRCs part of the momentum distribution n(k) is
clearly a beyond mean field feature in nature. Since so far no
argument has been suggested in literature that a discontinuity
of n(k) at k0 might occur, it is reasonable to assume that n(k)
is continuous and thus there is a simple interpretation of the
contact C(k0) = η(k0)nmf(k0)k4

0 in terms of a single parameter
k0, see Fig. 2. The presence of a cusp at k0 in the adopted
parametrization of n(k) introduces only relatively small nu-
merical corrections. The normalization constant η(k0), which
characterizes the depletion of the Fermi sea due to residual in-
teractions, is obtained from the condition Eq. (12), see Fig. 3,

η(k0) =
∫ �

0 dk k2nmf(k)

k3
0nmf(k0) + ∫ k0

0 dk k2nmf(k)
. (13)

Assuming that � = ∞ and

n0 = g
∫

d3k

(2π )3
nmf(k), (14)

a lower limit for η(k0) can be obtained in the case of a free
Fermi gas at zero temperature by choosing k0 = kF . One
can now evaluate the fraction of the particles with momenta
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FIG. 3. The dependence of η(k0 ) on the choice of momentum
scale k0 extracted from Eq. (13), for different temperatures when
nmf(k) is a thermal distribution for free fermion gas. For k0 > 1.05k f

the temperature decreases from the lowest to the highest curve.

greater than k0, see Fig. 4,

n(k > k0)

n0
= 3ηnmf(k0)k3

0

k3
F

= 3C(k0)

k0k3
F

, (15)

which can reach quite large values. It is not my goal here to se-
lect the best choice for the mean field momentum probability
distribution, as that should be decided in accurate microscopic
calculation, specific for various systems [47–49,51,52,55–
57,59–61,88,89].

The UV-momentum cutoff � of the momentum distribu-
tion n(k) is effective field theory in nature and is determined
by the internal structure of the nucleons. In the limit k0 → ∞
the “contact” C naturally vanishes. The specific value of the
“contact” C is defined by the temperature T , the specific sys-
tem under consideration, and the system specific momentum
scale k0 [40–42,46–49,51–53,55,58,60–64,88–92].
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FIG. 4. The fraction of the particles n(k > k0)/n0 with momenta
k � k0, where n(k) ∝ 1/k4. The curves rank by temperature.

FIG. 5. The final proton and neutron canonical occupation prob-
abilities nα = n(k) extracted from the TDDFT extended to superfluid
systems treatment of induced fission reaction 235U(n, f ) as a function
of εα = ε(k). The upper inset shows a small energy interval near
the Fermi level. Above εα ≈ 50 MeV one can see a clear power
law behavior compatible with theory prediction n(k) ∝ 1/[ε(k)]2.
The initial state was the compound nucleus close to the top of the
outer fission barrier at t = 0 fm/c and in the final state the fission
fragments are spatially separated by ≈30 fm at t = 1700 fm/c [4].
The nonequilibrium time-evolution of the orbital entanglement en-
tropy S(t ) is shown in the lower inset, with solid and dashed lines
corresponding to no nucleon number projections and with nucleon
number projections, respectively [4].

The momentum distribution n(k) has thus two components,
the mean field and the SRCs components, which can be clearly
identified experimentally [53,55,58] by identifying the regime
k0 < k < �, where n(k) ≈ C(k0)/k4 is valid. Below k < k0

the n(k) can be then identified with a mean field contribution,
up to the overall renormalization constant η(k0) � 1. The
constant η(k0) is uniquely determined by the normalization
condition Eq. (12) and the mean field component nmf(k),
which is determined in a typical mean field or density func-
tional theory (DFT) [93,94]. The momentum distribution n(k)
depends on a single parameter k0 > kF , that can be determined
either experimentally or from DFT with a sufficiently large
UV-momentum cutoff or from another accurate many-body
calculation, when pairing correlations are also taken into ac-
count [3,95].

In the classic monograph [2] there is a somewhat hard to
interpret sentence, stating that the dependence of the occu-
pation probabilities on the quasiparticle energies ε is a very
complicated implicit definition of n(ε) (see Eq. (2.6) in Ref. [2]
and the corresponding explanations), whereas n(ε) is clearly
a well-defined function of ε, see Eq. (1). In Fig. 5 I show
the dependence of the canonical occupation probabilities nα =
n(ε(k)) in case of induced fission 235U(n, f ), extracted from
the time-dependent DFT (TDDFT) approach extended to su-
perfluid systems and applied to this nonequilibrium process
[96–100]. These results show the momentum distribution of
two hot emerging fission fragments, with a separation in
space ≈30 fm, and at temperatures larger than the critical
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TABLE I. The values of the ratio of the entropy of the system, in the presence of SRCs, evaluated with Eq. (10), over the entropy evaluated
in pure mean field approximation evaluated evaluated with Eq. (1), for different values of the momentum scale k0, is shown in columns 2–6.

k0
kF

= 1.3 k0
kF

= 1.2 k0
kF

= 1.1 k0
kF

= 1.05 k0
kF

= 1

T = 0.25 MeV 1 1 1 1 124.6
T = 0.5 MeV 1 1 1 2.18 60
T = 1 MeV 1 1 1.28 8.92 29.8
T = 2 MeV 1 1.11 4.01 10.48 14.9
T = 4 MeV 1.27 2.41 5.57 6.81 7.60

temperature Tc ≈ 0.5 MeV for which the pairing gaps vanish,
and which demonstrate the clear presence of proton-proton
and neutron-neutron SRCs [3]. In the dynamics of isolated
systems the time evolution of the entanglement entropy plays
the role of thermodynamic entropy for local observables
[12–14], is shown in the lower inset of Fig. 5. Note that at
the initial time the nucleus is at zero temperature, but the
entanglement entropy does not vanish. For more details see
Ref. [4]. In these calculations nucleon momenta up to pcut =
h̄π/dx ≈ 600 MeV/c (where the spatial resolution is dx = 1
fm) are present. According to the prevalent interpretation of
time-dependent mean field treatment of many fermion sys-
tems, only long-range correlations should be present, which
obviously is not the case in TDDFT extended to superfluid
systems [3,4,96,97]. This dependence of n(k) on ε(k), where
the long-momentum tails are present, is indeed a complicated
implicit definition of the canonical occupation probabilities.
The canonical basis set is the unique (gauge invariant) and at
the same the minimal set of single-particle states to represent
a many-body wave function [4,73,74,85,101]. This clarifies
perhaps for the first time the meaning of the sentence quoted
above and an equivalent of which I could not find in literature.
The presence of the infrared knee at εα ≈ 40 MeV is unequiv-
ocally a qualitative new feature, absent from the textbook
definition [2] of a quasiequilibrium distribution n(ε).

After a cursory analysis of Eq. (8), one is lead to the
conclusion that due to the presence of the SRCs contribu-
tion this entanglement entropy likely exceeds in value the
corresponding entanglement mean field entropy, see Table I.
The SRCs contribution to n(k) has a very long power law
tail, which would lead to η(k0) < 1, see Fig. 3, and thus to
an expected depletion of the occupation probabilities of the
low-momentum states k < k0, even at very low temperatures.
This occupation probability depletion of the states with k < k0

alone would lead to an increase of the corresponding contri-
bution of these states to the entropy density of the system. At
the same time, the long tails of the momentum distribution for
k > k0 would lead to a further increase of the entropy den-
sity, when compared to the mean field value. Since �  k0,
the effect of considering the internal nucleon structure have
likely a relatively small effect on the entropy, which is well
converged when n(�) ≈ 10−7. Upon performing a projection
on exact proton and neutron numbers the many-body wave
function is an exponentially large sum of Slater determinants
(a typical shell-model or configuration interaction many-body
wave function), the canonical/natural orbital occupation prob-
abilities remain largely unchanged [4,5] and thus the particle

projected many-body wave function retains a very high degree
of entanglement. This many-body wave function is solution
of the quantum equivalent of the semiclassical Boltzmann
equation [4].

Pairing correlations alone lead to 1/k4 tails in the mo-
mentum distribution at all temperatures [3,95]. Moreover, the
dynamical pairing effects, namely the presence of a pairing
field, but the absence of a true pairing condensate at tem-
peratures higher than the critical temperature, lead to the
occupation of high-momentum states with k > k0 [3,99,100],
even in time-dependent processes and for intrinsic excitation
energies of nuclei corresponding to temperatures above the
critical temperature. Since these pairing correlations in cur-
rent nuclear simulations take into account only the nn and
pp correlations [3], the effects of np SRCs can be included
in dynamical calculations by an extension of time-dependent
DFT described in Ref. [3], are expected to be significantly
larger. Since entanglement entropy and many-body level den-
sity control the dynamics of an isolated quantum system
[12–14], the level density in the presence of SRCs exceeds
the level density of the system in a simpler mean field ap-
proximation. The possibility that the momentum distribution
may be time-dependent as well was not explicitly discussed
here, only indirectly illustrated in the lower inset in Fig. 5, it
was definitely observed in time-dependent microscopic quan-
tum studies [3–5]. The highly nonequilibrium nuclear fission
235U(n, f ) illustrated here and in Refs. [4,5] in arguably the
largest many-body system studied so far [15–32], with as-
pects related to the widely studied topics of Hilbert space
and many-body localization. The presence of SRCs lead to
qualitative changes of the entanglement properties, the com-
plexity of the many-body wave functions, the single-particle
occupation probabilities, and the dynamics of many-body
systems [3–5,99,100,102–106]. Nuclear and cold atom sys-
tems present a unique opportunity to study time-dependent
nonequilibrium and entanglement properties of strongly inter-
acting fermions.
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