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Effect of the N3LO three-nucleon contact interaction on p-d scattering observables
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A unitary transformation allows to remove redundant terms in the two-nucleon (2N) contact interaction at the
fourth order (N3LO) in the low-energy expansion of chiral effective field theory. In so doing a three-nucleon
(3N) interaction is generated. We express its short-range component in terms of five combinations of low-energy
constants (LECs) parametrizing the N3LO 2N contact Lagrangian. Within a hybrid approach, in which this
interaction is considered in conjunction with the phenomenological AV18 2N potential, we show that the
involved LECs can be used to fit very accurate data on polarization observables of low-energy p-d scattering, in
particular the Ay asymmetry. The resulting interaction is of the right order of magnitude for a N3LO contribution.
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Introduction. The effective field theory (EFT) framework
is nowadays the standard setting to address the nuclear inter-
action problem. Starting from the choice of low-energy active
degrees of freedom, it allows to express physical observables
in terms of low-energy constants (LECs) in a systematic
expansion in powers of a small parameter representing the
separation of scales [1–4]. All the short-distance effects from
the frozen degrees of freedom are effectively encoded in
the values of the LECs parametrizing contact interactions.
Being unconstrained by the imposed symmetries, the LECs
have to be fitted from experimental data, at the cost of the
predictive power of the EFT. From another perspective, they
may provide the needed flexibility to accurately model the
nuclear interaction. For example, chiral EFT (ChEFT) makes
use of the approximate chiral symmetry of strong interaction
to severely constrain the interaction of pions and nucleons.
According to common wisdom, in the isospin limit there
are two LECs contributing at the leading order (LO) in
the two-nucleon (2N) sector, traditionally called CS and CT ,
seven (Ci=1,...,7) at the next-to-leading order (NLO), and 15
more (Di=1,...,15) at the next-to-next-to-next-to leading order
(N3LO). The three-nucleon (3N) sector is much more con-
strained. The first contributions arise at the next-to-next-to
leading order (N2LO) [5,6], parametrized by two LECs, CD

and CE , the former of which is actually a weak 2N LEC,
contributing, e.g., to the muon capture from deuterium [7–10].
At the fifth order (N4LO) we find the contribution of 13 more
LECs, Ei=1,...,13 [11]. However, the distinction between 2N
and 3N LECs is, to some extent, a matter of convention, de-
pending on the arbitrary choice for the nucleon interpolating
field: nonlinear field redefinitions may change a seemingly 2N
interaction into a 3N one, without changing the predictions
for on-shell quantities. Thus, it was observed in Ref. [12]
that three out of the 15 2N independent contact interactions
arising at N3LO can be made to vanish by a suitable unitary

transformation, inducing specific modifications of the 3N in-
teraction. In Ref. [13] we exhibited the precise form of the
induced 3N interaction. Moreover, we identified two addi-
tional 2N contact LECs at N3LO parametrizing momentum
dependent interactions allowed by Poincaré symmetry, which
we named D16 and D17. They can also be transformed,
through a unitary transformation, into a 3N interaction. Thus,
contrary to widespread belief [14,15], five adjustable LECs
parametrize the 3N interaction at N3LO of the chiral expan-
sion. This could be the explanation of all failed attempts to
improve the accuracy in 3N systems (particularly for scatter-
ing observables) when going from N2LO to N3LO [16]. On
the other hand, the inclusion of the N4LO 3N contact interac-
tion has already proved to be of great importance in reducing
existing discrepancies between theory and experimental data
[17,18]. In the present paper we provide quantitative evidence
that the five extra LECs at N3LO ensure sufficient flexibility to
drastically improve the description of low-energy p-d scatter-
ing polarization observables, most notably the Ay asymmetry,
which constitutes a longstanding problem for most nuclear
interaction models. We do this in a hybrid approach in which
the induced 3N force (restricted to its shortest range part) is
considered in conjunction with the phenomenological AV18
2N potential [19]. This allows us to speed up the minimization
procedures using the pair-correlated hyperspherical harmonic
(PHH) basis [20], which is formulated for local potentials in
coordinate space. Moreover, a fully consistent ChEFT calcu-
lation would also require to consider the unitarily transformed
one-pion exchange potential [13]. We defer such a study to fu-
ture work. Here, using the hyperspherical harmonics method
[21,22], we fit the five N3LO LECs to polarized p-d scattering
data at 2 MeV center-of-mass energy [23].

N3LO 2N contact Hamiltonian. The N3LO 2N contact po-
tential was originally considered in Refs. [24,25] as consisting
of 15 LECs. After careful scrutiny of the constraints imposed

2469-9985/2023/107(6)/L061001(6) L061001-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5560-005X
https://orcid.org/0000-0001-7263-1491
https://orcid.org/0000-0003-4855-6326
https://orcid.org/0000-0003-3387-0590
https://orcid.org/0000-0002-4682-4924
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.L061001&domain=pdf&date_stamp=2023-06-16
https://doi.org/10.1103/PhysRevC.107.L061001


L. GIRLANDA et al. PHYSICAL REVIEW C 107, L061001 (2023)

by Poincaré symmetry, two further LECs emerge [13], leading
to the following expression in the general reference frame:

V (4)
NN = D1k4 + D2Q4 + D3k2Q2 + D4(k × Q)2

+ [D5k4 + D6Q4 + D7k2Q2 + D8(k × Q)2](σ1 · σ2)

+ i

2
(D9k2 + D10Q2)(σ1 + σ2) · (Q × k)

+ (D11k2 + D12Q2)(σ1 · k)(σ2 · k)

+ (D13k2 + D14Q2)(σ1 · Q)(σ2 · Q)

+ D15 σ1 · (k × Q) σ2 · (k × Q)

+ iD16 k · Q Q × P · (σ1 − σ2)

+ D17 k · Q (k × P) · (σ1 × σ2) (1)

with k = p′ − p and Q = p′+p
2 , p and p′ being the initial

and final relative momenta, and P = p1 + p2 the total pair
momentum. However, as it was pointed out in Ref. [12], only
12 independent LECs survive on shell and can thus be deter-
mined from 2N scattering data. This redundancy amounts to a
unitary ambiguity, i.e., to the possibility of generating shifts of
the LECs by unitary transforming the one-body kinetic energy
operator H0 → U †H0U , where U is the most general unitary
two-body contact transformation depending on five arbitrary
parameters αi,

U = exp

[
5∑

i=1

αiTi

]
, (2)

and the independent generators Ti were given explicitly in
Ref. [13] [Eqs. (1)–(5) of that reference]. The transformation
(2) entails a shift of the N3LO contact LECs, Di → Di +
δDi, with δD3 = −δD4 = −4α1/m, δD7 = −4α2/m, δD8 =
(4α2 + 2α3)/m, δD12 = δD13 = δD15 = −4α3/m, δD16 =
−2α4/m, δD17 = −(4α3 + 2α5)/m, and the remaining ones
being zero. Here, m is the nucleon mass. By choosing

α1 = m

16
(16D1 + D2 + 4D3), (3)

α2 = m

16
(16D5 + D6 + 4D7), (4)

α3 = m

32
(D14 + 16D11 + 4D12 + 4D13), (5)

α4 = m

2
D16, (6)

α5 = m

16
(8D17 − D14 − 16D11 − 4D12 − 4D13), (7)

the N3LO contact potential is brought in the form of Eq. (4)
of Ref. [12], with the following replacements:

D3 → D3 + D4, D4 → D5, D5 → D6,

D6 → D7 + D8 + 1

16
D14 + D11 + 1

4
D12 + 1

4
D13,

D7 → D9, D8 → D10, D9 → −4D11,

D10 → −1

8
D14 − 2D11 + 1

2
D12 − 1

2
D13, (8)

D11 → −1

8
D14 − 2D11 − 1

2
D12 + 1

2
D13,

D12 → D15 − 2D11 − 1

2
D12 − 1

2
D13 − 1

8
D14.

Induced 3N contact interactions. When applied to the LO
2N contact Hamiltonian,

V (0)
NN = CS + CT σ1 · σ2, (9)

the unitary transformation (2) induces additional 3N inter-
actions [13] which can be viewed as a modification of the
subleading 3N contact interaction entering at N4LO of the
low-energy expansion

V (2)
3N =

13∑
i=1

Ei Oi, (10)

as in Eq. (15) of Ref. [11]. Specifically, we have

U †V (0)
NNU =

13∑
i=1

δEiOi (11)

with1

δE1 = CS (α1 + α2) + CT (α1 − 2α2), (12)

δE2 = CT (3α2 + 2α3 − 8α4 + 2α5), (13)

δE3 = 2CS

(
α2 + 2

3
α3

)

+CT

(
2α1 − α2 − 2

3
α3 + 8α4 − 2α5

)
, (14)

δE4 = 2

3
CSα2 + CT

3
(2α1 − 7α2 − 2α3 + 8α4 − 2α5),

(15)

δE5 = 2CS

(
α2 + 2

3
α3

)

+ 2CT

(
α1 − 2α2 − 1

3
α3 + 4α4 − α5

)
, (16)

δE6 = 2

3
CSα2 + 2

3
CT (α1 − 2α2 − α3 + 4α4 − α5), (17)

δE7 = 24CT α4, (18)

δE8 = 1

3
δE7, (19)

δE9 = CS (3α2 + 2α3 − α4 + 2α5)

+CT (3α1 − 6α2 − 4α3 + 11α4 − 4α5), (20)

δE10 = CS (α2 − α4) + CT (α1 − 2α2 + 5α4), (21)

δE11 = CS (3α2 + 2α3 + α4 − 2α5)

+CT (3α1 − 6α2 − 4α3 − 11α4 + 4α5), (22)

δE12 = CS (α2 + α4) + CT (α1 − 2α2 − 5α4), (23)

δE13 = −4CT (4α4 − α5). (24)

1We correct here some wrong factors in Ref. [13].
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With the specific choice for the unitary transformation en-
coded in Eqs. (3)–(7), the 3N contact LECs Ei in Eq. (10)
are shifted to

Ei → Ẽi = Ei + δEi, (25)

where the induced contributions δEi are enhanced as com-
pared to the genuine ones Ei, due to the presence of the
nucleon mass factor, scaling as m ∼ O(�2

χ/p) in the Wein-
berg counting [26], which effectively promotes them to
N3LO. From now on, the LECs Ei will be thought of as
constituted only of the induced contributions, Ei = δEi. Thus,
at N3LO the 3N contact interaction depends on five combi-
nations of the 2N LECs Di, appearing in Eqs. (3)–(7), which
cannot be determined from 2N scattering data, but have to be
fitted to experimental observables in A > 2 systems. In the
following we explore the sensitivity of polarization observ-
ables in low-energy N-d scattering to these five combinations
of LECs. Since we take the phenomenological AV18 as rep-
resentative of a realistic 2N interaction, we should clarify
the meaning of the LECs CS and CT in this framework. As
a reasonable estimate, based on studies of universal behav-
ior [27], we take them from a fit of the LO 2N contact
interaction (9)

V (0)
NN,� = [CS + CT σ1 · σ2]Z�(r) (26)

to the singlets and triplets n-p scattering lengths as predicted
by the AV18 potential. In other words, we treat the contact
potential (26) as a very low-energy representation of the AV18
potential. In the above expression a local cutoff has been
introduced,

Z�(r) =
∫

dp
(2π )3

eip·rF (p2; �) (27)

with

F (p2,�) = exp

[
−

(
p2

�2

)2
]
, (28)

and � = 500 MeV. From this procedure we get

CS = −66.53 GeV−2, CT = −3.47 GeV−2. (29)

The same cutoff is also used in the coordinate space ex-
pression of the induced 3N contact interaction V (2)

3N,� which
can be read in Eq. (18) of Ref. [11]. Notice that the above
representation for the “LO” AV18 potential is valid only at
very low-energy: the resulting effective ranges are about 1 fm
in both S-wave channels, too small compared to the actual
values. Indeed, the effective ranges would only be described
at NLO in a pionless EFT. So they exhibit a strong cutoff
dependence at LO. It would be possible to choose a cutoff
� such that also the effective range is reproduced, in addition
to the scattering length. Thus, for � = 192 MeV, the LECs

CS = −233.1 GeV−2, CT = −32.34 GeV−2 (30)

reproduce the 1S0 effective range, while for � = 275 MeV,
the LECs

CS = −139.5 GeV−2, CT = −13.46 GeV−2 (31)

reproduce the 3S1 effective range, in addition to both channel
scattering lengths. We will adopt these three “LO” models of
the AV18, while maintaining the 3N cutoff at � = 500 MeV,
to study the cutoff dependence of our results, namely the
possibility to accurately describe p-d scattering observables
with the induced 3N interaction at N3LO. Notice that, in
principle this cutoff dependence could be sizable, due to the
hybrid nature of the calculation.

Low-energy p-d scattering observables within the HH
method. The scattering observables at a given energy E are ob-
tained from the N-d transition matrix M, which is composed
of the Coulomb amplitude fc(θc.m.) and a nuclear term

MSS′
νν ′ (θc.m.) = fc(θc.m.)δSS′δνν ′ +

√
4π

q

∑
LL′J

√
2L + 1

× 〈L0, Sν|Jν〉〈L′M ′, S′ν ′|Jν〉
× ei(σL+σL′−2σ0 )T J

LS,L′S′YL′M ′ (θc.m., 0), (32)

where θc.m. is the center-of-mass scattering angle and
MSS′

νν ′ (θc.m.) a 6 × 6 matrix corresponding to the couplings of
the spin 1 of the deuteron and the spin 1/2 of the proton,
to S, S′ = 1/2 or 3/2 with projections ν, ν ′. The quantum
numbers L, L′ are the relative proton-deuteron orbital angular
momenta and J is the total angular momentum, while σL

are the Coulomb phase shifts. The matrix elements T J
LS,L′S′

form the T matrix of a Hamiltonian containing the nuclear
plus Coulomb interactions.2 The corresponding S matrix, S =
1 − 2iπT , is computed through the complex Kohn variational
principle [29,30], with trial variational functions 
LSJJz =

C + 
A, composed of an internal part 
C , expanded in the
PHH functions [21], and an asymptotic part, 
A, describing
the relative motion between the proton and the deuteron at
large distance. The latter is a linear combination of the ingo-
ing and outgoing solutions of the Coulomb p-d Schrödinger
equation, �∓

LSJJz
, regularized at small distances,


A = �−
LSJJz

+
∑
L′S′

SJ
LS,L′S′ (q)�+

L′S′JJz
. (33)

The Hamiltonian is decomposed as

H = HNN + V (0)
3N,� + V (2)

3N,�, (34)

where HNN contains the kinetic energy plus the AV18 2N
interaction with Coulomb potential and V (0)

3N,� + V (2)
3N,� contain

the 3N interaction. Specifically, we consider, in addition to the
induced contact interaction V (2)

3N,�, as in Eq. (18) of Ref. [11],
a leading order contact interaction

V (0)
3N,� = E0

∑
i jk

Z�(ri j )Z�(rik ). (35)

The problem is thus reduced to a linear one (see [17] for
further details). Using the PHH expansion a convergence of
observables to less than 1% accuracy [31–33] is attained with

2The effects of other components of the electromagnetic interaction
are discussed in Ref. [28].
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matrices of approximately 2000 × 2000. In this way comput-
ing the phase shifts and mixing angles requires few seconds
on an ordinary desktop for each channel.

Fit results. The observables used in the fitting procedure
are the p-d differential cross section, the two vector analyzing
powers Ay and iT11, the three tensor analyzing powers T20, T21,
T22 and the doublet and quartet n-d scattering lengths. In
particular we determine the leading contact LEC E0 from the
experimental triton binding energy. Then, we fit the experi-
mental doublet and quartet n-d scattering lengths [34,35] and
the six p-d scattering observables at center-of-mass energy
Ec.m. = 2 MeV [23], amounting to 282 experimental data. The
theoretical observables are calculated from the transition ma-
trix M of Eq. (32) (see Ref. [36]), starting from the S matrix
in Eq. (33). At the energy considered, states up to L = 2 are
calculated using the full Hamiltonian, whereas for L > 2 the
three-body potential was neglected due to its short-range char-
acter (see also Ref. [37]), while the strong two-body potential
was included up to a maximum value of L = 6 in the partial
wave expansion of the observables, which is enough at the
energy of interest.

For the differential cross section we include in the χ2

definition an overall normalization factor Z of the data points,
i.e.,

χ2 =
∑

i

(
dexp

i

/
Z − d th

i

)2

(
σ

exp
i

/
Z
)2 (36)

with Z obtained from the minimization condition as

Z =
∑

i dexp
i d th

i

/(
σ

exp
i

)2

∑
i

(
d th

i

)2/(
σ

exp
i

)2 . (37)

In Eqs. (36) and (37) dexp /th
i are the experimental data points

and their theoretical predictions, while σ
exp
i is the experimen-

tal error. In our study we have checked that Z never differs
from 1 by more than 2% [38]. For the other observables, we
treat the normalization Z = 1.00 ± 0.01 as an additional ex-
perimental datum since, according to Ref. [23], the systematic
uncertainty is estimated as 1%.

For an initial random set of the five αi parameters of
Eqs. (3)–(7), we solve the scattering and bound states problem
and calculate the corresponding observables. The correspond-
ing LECs characterizing the induced 3N interaction are
obtained from Eqs. (12)–(24) with the values of CS and
CT taken from Eqs. (29)–(31). The corresponding fits will
be denoted, respectively, as “fit A”, “fit B”, and “fit C”.
At each step the LEC E0 in Eq. (35) is determined to re-
produce the triton binding energy. Using the POUNDerS
algorithm [39] we start an iterative procedure to minimize
the global χ2. Using different initial random input of αi

values, we repeat the algorithm trying to localize the deep-
est minimum. The results are displayed in Table I for the
choices A, B, and C of the 2N LO contact LECs. The qual-
ity of the fits is largely independent of the above choice,
corresponding for all models to χ2/d.o.f. =1.7, of the same
quality as the most accurate multiparameter fits to the same
data performed so far [17]. Also shown in the same table
(within brackets) are the results from three-parameter fits,

TABLE I. Results of the five-parameter (three-parameter) fits,
the latter one obtained ignoring the P-dependent 2N contact in-
teraction, i.e., setting α4 = α5 = 0. Columns A, B, and C refer,
respectively, to values (29), (30), and (31) for the LECs of the
LO pionless model for the AV18 2N potential. See text for more
explanations.

Fit A B C
χ 2/d.o.f. 1.7 [2.3] 1.7 [2.4] 1.7 [2.4]

e0 0.685 [−1.570] −0.377 [−2.117] 0.239 [−1.844]
α̃1CS 1.410 [−3.611] −0.485 [−4.120] 0.516 [−4.183]
α̃2CS 0.211 [−0.483] 0.190 [−0.531] 0.218 [−0.375]
α̃3CS −0.370 [0.209] 0.267 [0.583] −0.113 [0.377]
α̃4CS 1.735 [0] 1.549 [0] 1.513 [0]
α̃5CS 2.266 [0] 3.412 [0] 2.840 [0]
2and [fm] 0.648 [0.647] 0.650 [0.622] 0.642 [0.633]
4and [fm] 6.31 [6.32] 6.32 [6.32] 6.31 [6.32]

which ignore the P-dependent 2N contact interaction, i.e.,
with α4 = α5 = 0, in order to assess the relevance of the
LECs D16 and D17, which were never considered before. No
spin-orbit operators, of the kind proposed in Ref. [40], are
present in this case, and the minimum χ2/d.o.f. increases to
2.3.

Figure 1 shows the best fit curves (fit A) for the Ay and iT11

analyzing power in 	p-d and 	d-p scattering, compared to the
predictions from the purely 2N AV18 interaction and from the
addition of the Urbana IX 3N interaction. We conclude that
the effective N3LO induced 3N contact interaction allows to
solve the longstanding Ay problem. Also the description of the
vector analyzing power iT11 is drastically improved. We also
show in the same figure the corresponding curves obtained
from the three-parameter fits which do not include the α

parameters of the P-dependent N3LO 2N contact interaction,
i.e., with α4 = α5 = 0. In Fig. 2 we show the same curves for
the tensor analyzing powers of 	d-p elastic scattering and for

FIG. 1. Proton and deuteron analyzing power in 	p-d and 	d-p
scattering at Ec.m. = 2 MeV. The full (black) lines result from a
global five-parameter fit, the dashed (blue) lines from a three-
parameter fit excluding the P-dependent 2N interaction, the dotted
(pink) lines are the predictions from the 2N AV18 potential, while
the dashed-dotted (red) lines are the predictions including also the
3N Urbana IX interaction. Experimental data are from Ref. [23].
Here, we only show the results from fit A, since fit B and C yield
very similar results.
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FIG. 2. Same as Fig. 1 but for T20, T21, T22 tensor observables in
	d-p scattering and for the unpolarized differential cross section at
Ec.m. = 2 MeV.

the differential cross section. By inspection of the figures, we
can conclude that all the observables are nicely reproduced.

The fitted parameters αi are displayed in Table I, together
with the corresponding values of the LO 3N contact LEC
E0, in natural units, dictated by naive dimensional analysis
[41,42], i.e.,

e0 = E0F 4
π �, α̃i = αiF

4
π �3, (38)

where Fπ = 92.4 MeV is the pion decay constant and � =
500 MeV is the cutoff in the 3N interaction. Also shown in
the table are the doublet and quartet n-d scattering lengths, to
be compared with the experimental values 2and = (0.645 ±
0.003 ± 0.007) fm [34] and 4and = (6.35 ± 0.02) fm [35].
It is interesting to observe that the fitted 3N interaction pa-
rameters are of a natural size for a N3LO contribution. In
order to see this, we can translate the values of the αi’s into
combinations of the N3LO 2N LECs Di’s using Eqs. (3)–(7).
This is done in Table II for the two fitting procedures. As
a reference, we report in the same table the corresponding
combinations of LECs obtained from 2N data in Ref. [4], and
used in the Idaho N3LO 2N chiral potential with � = 500
MeV. The comparison of the actual values has little meaning,
also due to the hybrid character of our calculation. However
it is interesting to observe that the orders of magnitude are
the same. In particular, for the five-parameter fit, the LECs
combinations are not larger than those obtained in the Idaho
N3LO chiral potential.We advocate that, were those combi-
nations fitted in the A = 3 system, the Ay puzzle would be
solved at N3LO. However this remains to be seen explicitly in
a consistent chiral calculation.

Conclusions. A suitable choice of unitary transforma-
tion allows to reduce the number of LECs parametrizing
the N3LO 2N contact interaction to twelve. This procedure
generates a 3N interaction depending on five unconstrained
LECs. In the present paper we examined the effect of this
induced 3N interaction on polarization observables of p-d
scattering below the breakup threshold. We showed that the

TABLE II. Estimation of some N3LO LECs combinations from
fit A, B, and C. The Di are in units of 104 GeV−4, and we
have defined D̃13 = 16D1 + D2 + 4D3, D̃14 = 16D5 + D6 + 4D7,
and D̃15 = D14 + 16D11 + 4D12 + 4D13. We show between brackets
the values obtained from the three-parameter fits and, in the last
column, the values obtained in Ref. [4] and used for the Idaho N3LO
2N potential with � = 500 MeV.

LECs Fit A Fit B Fit C Ref. [4]

D̃13 −3.96 [10.15] 0.39 [3.31] −0.69 [5.61] 6.41
D̃14 −0.59 [1.36] −0.15 [0.43] −0.29 [0.50] 4.05
D̃15 2.08 [−1.17] −0.43 [−0.94] 0.30 [−1.01] −3.04
D16 −0.61 [0] −0.16 [0] −0.25 [0] −
D17 −0.54 [−0.15] −0.40 [−0.12] −0.44 [−0.13] −

LECs can be adjusted allowing to solve the longstanding Ay

puzzle.
The induced 3N interaction can be thought of as a spe-

cific off-shell extension of the 2N interaction, leaving the 2N
observables unchanged. Such off-shell extension of the 2N
potentials were considered in the past (see, e.g., Ref. [43]) and
found to have a prominent role in the N-d Ay puzzle [44]. We
remark in passing that a satisfactory fit (with χ2/d.o.f. =1.8)
can be obtained even without including any 3N interaction
except for the induced one, i.e., with E0 = 0. We emphasize
that the novelty of our proposal lies in the identification of
its precise form in the context of a systematic low-energy
expansion, where it starts to contribute at N3LO. This state-
ment has also a quantitative content, despite all the limitations
of our hybrid calculation, in light of the comparison of the
magnitudes of the involved LECs with those inferred within
the ChEFT framework of the 2N interaction, as shown in
Table II.

It will be interesting to repeat the above analysis in a fully
consistent ChEFT framework for 2N and 3N interactions. In
this respect, also the induced 3N interaction from the unitary
transformation of the one-pion exchange 2N potential has to
be taken into account. To the best of our knowledge such
contribution, first worked out in Ref. [13], has never been
considered in the literature so far. In the present work it
was implicitly taken into account through the values of the
LECs CS and CT , by considering a pionless representation of
the AV18 potential. It will be also necessary to explore the
energy dependence of the predicted p-d scattering observables
and confront it with experimental data. Such exploration has
been pursued in Ref. [17] to energies lower than Ec.m. = 2
MeV using a restricted form for the subleading 3N con-
tact interaction, leading to quite satisfactory results. Finally,
the same shuffling of contact operators between the 2N and
3N sectors applies to the pionless formulation of the EFT.
The counting of the induced 3N operators examined in the
present paper should follow from the corresponding count-
ing of the 2N operators. A further peculiarity in this case is
the promotion of the 3N force to LO. Thus the appropriate
counting should be re-examined in this perspective (see also
Ref. [45]). Work along these lines is deferred to forthcoming
investigations.
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