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A new anchor-based optimization method of defining energy density functionals (EDFs) is proposed. In this
approach, the optimization of the parameters of EDFs is carried out for a selected set of spherical anchor nuclei,
the physical observables of which are modified by the correction function, which takes into account the global
performance of EDFs. It is shown that the use of this approach leads to a substantial improvement in the global
description of binding energies for several classes of covariant EDFs. The computational cost of defining a new
functional within this approach is drastically lower as compared with the one for the optimization which includes
the global experimental data on spherical, transitional, and deformed nuclei in the fitting protocol.
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Nuclear density functional theory (DFT) is presently one
of the most widely used self-consistent approaches in low-
energy nuclear physics [1–4]. It is based on the concept of
the energy density functional (EDF), the several parameters of
which are defined by the properties of finite nuclei and nuclear
matter properties. This approach is universal in a sense that
it allows the global description of nuclear properties covering
the nuclear landscape from light to very heavy nuclei and from
known to unknown nuclei [5,6]. It also provides important
information, such as masses, decay and fission rates, etc., for
nuclear astrophysics [7,8].

However, the definition of EDFs is not unique and faces
a number of challenges, some of which are related to fitting
protocols [9,10]. At present, an absolute majority of the EDFs
are fitted to the properties of spherical nuclei. This has led
to a huge number of functionals, the global performance of
which is not established. There are more than 300 relativis-
tic (covariant) EDFs (CEDFs) (see, for example, Ref. [11])
and a comparable number of nonrelativistic Skyrme EDFs.
However, such an approach creates a substantial bias towards
spherical nuclei: the improvement of the functional for spher-
ical nuclei frequently leads to a degradation of its global
performance. Only very limited number of non-relativistic
Skyrme and Gogny EDFs and only one CEDF have been fitted
globally to experimental data, which includes spherical, tran-
sitional and deformed nuclei (see Refs. [12–17]). However,
the computational cost of the generation of such functionals is
enormous.

In the present paper a new method of anchor-based opti-
mization of the functionals is proposed in order to alleviate
these problems. It combines the simplicity of the optimization
of EDFs to spherical nuclei with the information on their
global performance. In contrast to global fits of EDFs, it
typically requires only several rounds of global calculations
to achieve a significant improvement of global performance
of CEDFs. This was verified for several classes of CEDFs and
is achieved at a moderate increase of computational time as
compared with the optimization to only spherical nuclei.

The general procedure for the anchor-based optimization
of EDFs is the following:

(1) The set of “anchor” spherical nuclei is selected and
the optimization of the functional is carried out with
spherical relativistic Hartree-Bogoliubov (RHB) com-
puter code using experimental data on these nuclei and
nuclear matter properties (NMP) (see Refs. [6,18] and
Supplemental Material [19] for details). The obtained
functional is labeled as EDFi (i = 0). Here i is the
counter of the iteration in the anchor-based optimiza-
tion.

(2) Global calculations of the masses, charge radii and
other physical observables are carried out with axially
deformed RHB code using EDFi for the set of nu-
clei in which respective experimental data exist. The
set of binding energies EEDFi (Z, N ) is defined for n
even-even nuclei, the masses of which have been either
measured or estimated in the AME2016 mass eval-
uation [20]. Note that this set of the nuclei includes
spherical, transitional, and deformed nuclei.

(3) The correction function

Ecorr(Z, N ) = αi(N − Z ) + βi(N + Z ) + γi (1)

is added1 to the obtained set of calculated binding
energies:

Epseudo(Z, N ) = EEDFi (Z, N ) + Ecorr(Z, N ). (2)

Then, the optimal parameters αi, βi and γi are deter-
mined by minimizing �Erms defined as:

�Erms =
√∑n

k=1[Epseudo(Z, N ) − Eexp(Z, N )]2

n
, (3)

1Alternative functional dependencies have been explored. How-
ever, Eq. (1) brings the best improvement of the EDFs.
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where Eexp(Z, N ) is experimental binding energy of
the kth nucleus with (Z, N ) and k runs over all even-
even nuclei for which experimental data exist. Thus,
the addition of Ecorr(Z, N ) to binding energies aims at
the minimization of global difference between calcu-
lated and experimental binding energies. The variation
of the parameters αi, βi, and γi with iteration number
during the iterative procedure are illustrated in Tables
1– 3 of the Supplemental Material [19].

(4) The energies of spherical anchor nuclei are redefined
as

Epseudo
exp (Z, N ) = Eexp(Z, N ) + Ecorr(Z, N ), (4)

where Ecorr(Z, N ) is calculated for optimal parameters
αi, βi, and γi defined in the previous step. A new set of
parameters EDFi+1 is defined using Epseudo

exp (Z, N ) as
“experimental” data and the procedure of point 1.

(5) New global calculations are carried out using EDFi+1

and the procedure of point 2. A significant improve-
ment in the global description of masses has been
achieved at the first step of the iterative procedure for
the DD-MEY, NL5(Y), and PC-Y functionals and at
third step for the DD-MEX1 one.2 Further repetition
of steps 3–5 leads to only moderate improvement of
the global description of the masses.

The convergence of the iterative procedure is
reached in the limit αi → 0, βi → 0, and βi → 0.
However, the analysis presented in Tables 1– 3 of the
Supplemental Material [19] clearly suggests that the
termination of the iterative procedure before reaching
this limit may lead to only very small (if any) degrada-
tion of the global description of masses.

The spherical and deformed calculations are carried out
using the RHB computer codes developed in Refs. [6,18]. The
truncation of the basis is performed in such a way that all
states belonging to the major shells up to NF = 20 fermionic
shells for the Dirac spinors and up to NB = 20 bosonic
shells for the meson fields are taken into account. Note that
the latter applies only to the functionals which contain me-
son exchange such as those belonging to nonlinear meson
coupling (NLME) and density dependent meson-nucleon cou-
pling (DDME) classes of the functionals (see Refs. [6,18]).
The accuracy of the truncation of the basis is discussed in the
Supplemental Material [19].

In order to avoid the uncertainties connected with the def-
inition of the size of the pairing window, the separable form
of the finite range Gogny pairing interaction introduced by
Tian et al. [24] is used with two versions of the strength f
of the pairing. In the first one (called further “Pair 1”), the
pairing strength is dependent on proton number (see Ref. [6]
for detail). In the second one called “Pair 2” (see Ref. [25] for
detail), the proton pairing is made mass dependent via

fπ = 1.877(N + Z )−0.1072, (5)

2This feature of the anchor based optimization method can be
extremely useful for theoretical groups with limited computational
resources.

and neutron pairing is isospin dependent via

fν = 1.208e−0.674 |N−Z|
N+Z . (6)

This type of phenomenological scaling of pairing strength
provides the best reproduction of the experimental pairing in-
dicators (see Ref. [25]). Note that the labels of the functionals
defined with Pair 2 pairing contain the letter “Y” at/near their
end.

The anchor-based optimization method is applied here
for the DDME, NLME, and point coupling (PC) classes of
CEDFs (see Refs. [10,18] and the Supplemental Material [19]
for technical details). For each class, the functionals with the
best global performance such as DD-ME2 [22], NL5(E) [10],
and PC-PK1 [23] are used as a starting point. In addition, the
basic features of their fitting protocols are employed here. As
a consequence, there are 12 anchor spherical nuclei in the
DDME and NLME models and 60 anchor spherical nuclei
in the PC model. The types of the input data for the fitting
protocols and related adopted errors are summarized in Table
4 of the Supplemental Material [19].

The optimization of the CEDFs in spherical nuclei is per-
formed in the following way. First, approximately 200 trials
of minimization from the sets of initial parameters, randomly
generated in a large parameter hyperspace, are performed
using the simplex based minimization method. Second, the
minimization is repeated by using initial parameters gener-
ated in smaller parameter hyperspaces around several local
minima characterized by the lowest penalty functions using
both simplex-based and simulated annealing3 minimization
methods. This procedure guarantees the convergence to the
global minimum and provides information on parametric cor-
relations between the parameters of CEDFs (see Ref. [18]).

The global performance of existing [DD-ME2, NL5(E)
and PC-PK1] and new [DD-MEX1, DD-MEX2, DD-MEY,
NL5(Y), PC-Y and PC-Y1] functionals obtained by means of
anchor-based optimization method are summarized in Table I.
When considering the quality of the functionals one should
take into account the ranges of the nuclear matter properties
(NMPs) recommended for relativistic functionals in Ref. [11].
These are ρ0 ≈ 0.15 fm−3, E/A ≈ −16 MeV, K0 = 190–270,
J = 25–35 MeV (J = 30–35 MeV) and L0 = 25–115 (L0 =
30–80) for the SET2a (SET2b) sets of the constraints on the
experimental/empirical ranges for the quantities of interest.

The DD-MEX1 functional originates from the DD-ME2
one: both have the same fitting protocol (see Supplemental
Material [19]) but the CEDF DD-ME2 is fitted at the BCS
level employing monopole pairing while the DD-MEX1 one is
fitted at the RHB level with the Pair 1 separable pairing. How-
ever, the DD-MEX1 functional, fitted with the anchor-based
optimization method, provides a substantial improvement in
the global description of binding energies (from �Erms =
2.436 MeV for DD-ME2 down to �Erms = 1.651 MeV for
DD-MEX1; see Table I). It also provides a slight improvement

3It is our experience that the simulated annealing method is
extremely costly and numerically unstable for large parameter hy-
perspaces.
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TABLE I. The rms deviations �Erms, �(S2n)rms, �(S2p)rms, and �(rch )rms between calculated and experimental binding energies E , two-
neutron (two-proton) separation energies S2n (S2p), and charge radii rch. The first three observables are determined with respect to a “measured
+ estimated” set of experimental masses of 855 even-even nuclei from the AME2016 mass evaluation [20]. The �(rch)rms values are calculated
using experimental data on charge radii of 305 even-even nuclei from Ref. [21]. The values shown in parentheses are the rms deviations for the
subset of nuclei which excludes light nuclei with A < 70. The incompressibility K0, the symmetry energy J , and the slope L0 of the symmetry
energy of the functionals under study are shown in columns 6, 7, and 8, respectively.

�Erms �(S2n)rms �(S2p)rms �(rch)rms K0 J L0

(MeV) (MeV) (MeV) (fm) (MeV) (MeV) (MeV)
1 2 3 4 5 6 7 8

DD-ME2 [22] 2.436 (2.300) 1.056 (0.854) 0.949 (0.750) 0.0266 (0.0262) 250.9 32.9 49.4
DD-MEX [18] 2.849 (2.963) 1.095 (0.972) 0.978 (0.847) 0.0247 (0.0249) 267.0 32.9 47.8
DD-MEX1 1.637 (1.539) 1.045 (0.873) 0.896 (0.704) 0.0261 (0.0263) 291.8 32.5 51.8
DD-MEX2 2.236 (1.791) 1.228 (0.913) 1.271 (0.928) 0.0466 (0.0488) 255.8 35.9 85.3
DD-MEY 1.734 (1.414) 1.259 (0.876) 1.026 (0.755) 0.0264 (0.0244) 265.8 32.8 51.8
NL5(E) [10] 2.802 (2.689) 1.204 (0.864) 1.366 (1.033) 0.0285 (0.0271) 253.0 38.9 125.0
NL5(Y) 2.362 (1.675) 1.256 (0.709) 1.222 (0.772) 0.0297 (0.0292) 254.5 36.6 116.7
PC-PK1 [23] 2.400 (2.149) 1.331 (0.932) 1.354 (0.875) 0.0306 (0.0269) 238 35.6 113
PC-Y 1.951 (1.600) 1.438 (0.770) 1.175 (0.690) 0.0311 (0.0247) 241 35.1 105
PC-Y1 1.849 (1.509) 1.345 (0.846) 1.106 (0.822) 0.0294 (0.0249) 240 34.9 107

in the description of two-neutron and two-proton separation
energies and charge radii. Most of the NMPs of this functional
are within the SET2b limits: the only exception is incompress-
ibility K0 which exceeds the SET2b upper limit.

It is interesting to see whether the binding energies and
charge radii alone can provide a reasonable constraint on
NMPs and neutron skins. For that, the DD-MEX2 and DD-
MEY functionals have been created, the fitting protocols of
which do not contain any information on NMPs and neutron
skins (see Table 4 in the Supplemental Material [19]). In
addition, the adopted errors for binding energies are fixed
at 1.0 MeV for all nuclei in this class of functionals. The
DD-MEX2 functional has been optimized with the Pair 1
separable pairing. As compared with DD-ME2 (DD-MEX1)
it leads to some improvement (degradation) in the description
of binding energies but provides less accurate description of
two-proton and two-neutron separation energies and charge
radii as compared with the two above-mentioned functionals
(see Table I).

The situation drastically improves when the Pair 2 sepa-
rable pairing is used. This leads to the DD-MEY functional,
which provides the second best global description of binding
energies (�Erms = 1.734 MeV) and the best description of the
binding energies of the A > 70 nuclei (�Erms = 1.414 MeV)
among considered functionals (see Table I) Despite the fact
that the DD-MEY functional was fitted without constraint on
NMPs, they are within the SET2b limits (see Table I). In par-
ticular, it gives a more reasonable value of incompressibility
K0 than the DD-MEX1 functional. These facts potentially in-
dicate the importance of the isospin dependent neutron pairing
in the simultaneous description of binding energies and NMP.
However, the description of two-neutron and two-proton sep-
aration energies with this functional is somewhat worse than
in the DD-MEX1 one.

To verify the results obtained with anchor based
optimization method we also employed the method of
minimization of Ref. [26], which is used in nuclear mass
table fits by the Brussels group. In this method, the binding

energies of deformed and transitional nuclei are corrected by
the deformation energies so the optimization is carried out
for the energies of spherical solution of the nuclei used in the
fitting protocol. In a given nucleus, the deformation energy
represents the difference between the energy of the global
minimum with deformations βi �= 0 (i = 2, 4, . . . ) and that
of the spherical solution with βi = 0. Because of available
computers we used 400 even-even nuclei evenly spread over
nuclear chart (starting from actinides and going down to light
nuclei and eliminating each second even-even nucleus) in
these calculations. The iterative procedure in this method
requires new calculations of deformation energies at each
iteration (see Ref. [26] for details) and it turns out that their
convergence is quite slow, especially in the DD-MEX1 type
of the functional. The rms deviations between experimental
and calculated binding energies �Erms obtained in these
calculations are 1.672(0.068)4 and 1.613(0.258) MeV for the
DD-MEY and DD-MEX1 functionals, respectively. Thus,
the results obtained with this approach are in line with those
obtained in anchor based optimization approach (see Table I);
some difference in the results are due to different selection of
the nuclei directly included in the fitting protocol. Note that
this approach is numerically substantially more time consum-
ing as compared with the anchor based optimization approach
because (i) substantially more “spherical” nuclei (400 versus
12) are used in the minimization procedure and (ii) there is
slow convergence of deformation energies in the iterative
procedure.

The anchor-based optimization method has been applied
also to the NLME and PC classes of the CEDFs. In both cases,
it leads to an improvement of global description of masses.
The NL5(E) functional (see Ref. [10]) is the starting point for

4The numbers shown in parentheses are the errors in deformation
energies due to limited number of iterations in the iterative proce-
dure.
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FIG. 1. The differences Eth − Eexp between calculated (Eth) and experimental (Eexp) masses for indicated CEDFs. All 855 even-even nuclei
for which measured and estimated masses are available in the AME2016 compilation [20] are used in this comparison. If Eth − Eexp < 0, the
nucleus is more bound in the calculations than in experiment.

the optimization of the NL5(Y) CEDF. Note that the Pair 1 and
Pair 2 separable pairings are used in the fitting protocols of the
NL5(E) and NL5(Y) CEDFs, respectively. Table I shows that
the application of the anchor based optimization method in
combination with the use of isospin dependent neutron pairing
leads to a substantial improvement of global mass description
and some improvement of the symmetry energy J and the
slope of the symmetry energy L0. The same situation exists
also for the PC functionals. The anchor based optimization
starting from the PC-PK1 functional leads to the CEDF PC-
Y, which provides a substantial improvement of the global
description of binding energies (see Table I).

Note that the fitting protocols of the above-mentioned
DDME and NLME functionals include only 12 spherical
anchor nuclei. For these functionals it was verified that the
increase of the number of spherical anchor nuclei to 60 (as in
the fitting protocol of the PC-PK1 functional [23]) does not
lead to an improvement of the global description of binding
energies. The same conclusion is valid for the PC model: the
reduction of the number of the anchor spherical nuclei from
60 in the PC-Y functional down to 12 in the PC-Y1 functional
(see Table 1 in the Supplemental Material [19]) leads to some

improvement in the description of physical observables (see
Table I).

With the exception of the DD-MEX2 functional all CEDFs
shown in Table I give comparable rms deviations for charge
radii �(rch)rms ≈ 0.026 fm, corresponding to a high precision
of ≈0.5% in charge radii predictions. These results and the
analysis of Ref. [27] suggest that the inclusion of global data
on charge radii will not likely lead to an appreciable improve-
ment of the functionals.

Figure 1 illustrates the improvements in the global descrip-
tion of the masses and related physical observables when the
anchor-based optimization method is employed. DD-MEX is
the best DDME functional as defined by the penalty function
of the fitting protocol including only spherical nuclei (see
Ref. [18]). However, this bias towards spherical nuclei leads to
�Erms = 2.849 MeV in the global description of the masses
(see Table I) and appreciable deviations between theory and
experiment displayed in Figs. 1(a) and 1(c). In particular,
it leads to a systematic shift of the average Eth − Eexp val-
ues from the Eth − Eexp = 0 line [see Fig. 1(a)]. In contrast,
such a shift does not appear for the DD-MEY functional
[see Fig. 1(a)] which, in addition, improves the description
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of isospin dependence of the Eth − Eexp values [compare
Figs. 1(c) and 1(d)].

Note that these improvements are obtained by a larger
emphasis on medium and heavy mass nuclei with A > 70
in the anchor-based optimization method. For these nuclei
a substantial improvement in the description of the masses
and two-particle separation energies is obtained [see Table I
and compare Figs. 1(a) and 1(b) and Figs. 1(c) and 1(d)]. In
contrast, the spreads in the Eth − Eexp values are getting larger
for the light (A < 70) nuclei [compare Figs. 1(a) and 1(b)].
However, this is not critical since beyond-mean-field effects
are expected to be larger in light (A < 70) nuclei as com-
pared with heavier ones. This is in line with the observation
that the accuracy of the description of the masses and two-
particle separation energies improves substantially when light
A < 70 nuclei are excluded from the analysis (see Table I).
This improvement is especially drastic for the DD-MEX1,
DD-MEX2, DD-MEY, NL5(Y), PC-Y, and PC-Y1 functionals
defined by the anchor-based optimization method.

It is interesting to compare the performance of these func-
tionals with those obtained in Skyrme DFT for the UNEDF*
class of the functionals, which, similarly to our approach,
has been defined at the mean field level without inclusion
of rotational and vibrational correlations. The UNEDF0 [14],
UNEDF1 [15], and UNEDF2 [28] EDFs were optimized by
fitting their parameters to large (but restrictive) sets of exper-
imental data involving spherical and deformed nuclei. These
EDFs describe globally nuclear masses with �Erms = 1.428
MeV (UNEDF0), 1.912 MeV (UNEDF1), and 1.950 MeV
(UNEDF2). These values are close to those obtained with
the DD-MEX1, DD-MEY, PC-Y, and PC-Y1 CEDFs, but
numerical cost of the optimization of these Skyrme EDFs is
drastically larger than that in the anchor-based optimization
method.

In conclusion, a new anchor-based optimization method
of defining the energy density functionals has been pro-
posed. It combines the simplicity of the fitting of EDFs

to spherical nuclei with global information on the repro-
duction of experimental masses by EDFs. This is done by
correcting the binding energies of the anchor spherical nuclei
used in optimization. As a consequence, the computational
cost of defining a new functional is drastically lower as
compared with alternative methods of optimization which si-
multaneously include the experimental data on spherical and
deformed nuclei. Despite that, the global performance of the
functionals defined by the anchor-based optimization method
becomes comparable with the one obtained for the UNEDF*
class of nonrelativistic Skyrme functionals. Although the
anchor-based method is applied here for CEDFs, it can also
be used for non-relativistic Skyrme and Gogny functionals.

The functionals studied in the present paper are restricted
to the ones defined at the mean field level. However, the
anchor-based optimization method can be easily generalized
to approaches which include correlations beyond mean field.
For that the RHB approach in the point 2 of the anchor-
based optimization method procedure has to be replaced by
an appropriate beyond-mean field-method (such as a five-
dimensional collective Hamiltonian [29–31]).5 This will allow
one to bypass the existing challenge of extreme computational
cost of fitting EDFs at the beyond-mean-field level and gen-
erate such functionals. It is reasonable to expect that they will
lead to a further improvement of the description of binding
energies (see, for example, Refs. [34,35]).

Note that, in addition to the references directly cited in
the main body of the paper, the Supplemental Material [19]
provides citations to Refs. [36–44].

5Alternatively, one can use a more simplistic approach and add
phenomenological rotational corrections to the binding energies
calculated in the RHB or similar nonrelativistic approach; this is
done in a number of the calculations of masses (see, for example,
Refs. [32–34]).
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