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Global constraint on the magnitude of anomalous chiral effects in heavy-ion collisions
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When searching for anomalous chiral effects in heavy-ion collisions, one of the most crucial points is the
relationship between the signal and the background. In this Letter, we present a simulation in a modified blast
wave model at CERN Large Hadron Collider energy, which can simultaneously characterize the majority of
measurable quantities, in particular, the chiral magnetic effect (CME) and the chiral magnetic wave (CMW)
observables. Such a universal description, naturally and quantitatively unifies the CME and the CMW studies
and brings to light the connection with the local charge conservation (LCC) background. Moreover, a simple
phenomenological approach is performed to introduce the signals, aiming at quantifying the maximum allow-
able strength of the signals within experimental precision. Such a constraint provides a novel perspective to
understand the experimental data and sheds new light on the study of anomalous chiral effects as well as charge
dependent correlations.
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Introduction. Collisions between heavy ions at ultrarela-
tivistic energies have been extensively used in the last decades
to study the transition to a deconfined state of matter, the quark
gluon plasma (QGP). This transition, according to quantum
chromodynamics (QCD) calculations on the lattice, is ex-
pected to take place at energy densities and temperatures
which are accessible in the laboratories such as the BNL
Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC). In addition, such collisions provide
the unique opportunity to test novel QCD phenomena that
are directly connected to the rich structure of the vacuum of
the theory [1,2]. These phenomena are associated with tran-
sitions that lead to chirality imbalance and consequently to P
(parity) and/or CP (charge-parity) violating effects in strong
interactions [3–9]. Theoretical studies highlighted that in the
presence of an external strong magnetic field, like the one
generated at the initial stages of a heavy ion collision [10–12],
such transitions can lead to the development of macroscopic
phenomena such as the chiral magnetic effect (CME) [9,13–
15] and the chiral magnetic wave (CMW) [16–19]. Both the
CME and the CMW are argued to have an experimentally
accessible signal, see Refs. [20–24] for the latest review.

Specifically, the CME is theorized to manifest itself in a
finite electric dipole moment in the QGP and develops along
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the direction of the magnetic field. Taking advantage of the
azimuthal emission of final state hadrons, it is feasible to
detect the CME-induced signal via the correlators of γ ≡
cos(φα + φβ − 2�) and δ ≡ cos(φα − φβ ) [13,25], where φα

and φβ are azimuthal angles of two particles of interest, and
� is that of the reaction plane, the plane defined by the impact
parameter between the two colliding nuclei and the beam axis.
This measurement is usually performed with the same-sign
(SS) and opposite-sign (OS) charge combinations of α and β,
and their differences are used to explore the possible signal

�γ ≡ γOS − γSS, �δ ≡ δOS − δSS. (1)

Meanwhile, the CMW is expected to create an electric
quadrupole moment in the participant region, where the
“poles” (out of plane) and the “equator” (in plane), respec-
tively, acquire additional positive or negative charges [16].
Such an effect can be probed by the charge asymmetry (Ach)
dependence of elliptic flow (v2) between the positively and
negatively charged particles:

�v2 ≡ v−
2 − v+

2 � rAch, (2)

where Ach ≡ (N+ − N−)/(N+ + N−) with N denoting the
number of particles in a given event, and the slope r is used to
quantify the signal.

Over the past decade, the charge separations caused by
the CME and the CMW have been carefully sought by the
STAR [26–37], ALICE [38–41], and CMS [42–44] experi-
ments at different collision energies and systems with multiple
observables. Though early data suggest some hints matching
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theoretical expectations, it is soon found that the background
effects play a dominant role in experimental measurements.
In both CME and CMW studies, for instance, the observables
dramatically vary as v2 changes [40,45], indicating significant
contributions from the interplay between the way particles
are being produced in pairs of oppositely charged partners,
referred to as local charge conservation (LCC) and collective
flow. Accounting for this background in the measurement
reveals that the signal is consistent with zero within uncer-
tainties. To understand the background and to disentangle
the signal, various theoretical and phenomenological models
containing different background and signal sources are de-
veloped to interpret the data, such as AVFD [46–48], AMPT
[49–51]. These models succeed in describing some aspects
of the measurements while, unfortunately, fail in others. A
one-size-fits-all description reasonably coinciding with most
experimental observables remains incomplete.

The CME and the CMW are usually treated as two inde-
pendent analyses up to now, via methods in Eqs. (1) and (2),
respectively. Even though the collectivity-convolved LCC is
now clearly realized to be the background for both, no attempt
has been made yet to unify the studies of the CME and the
CMW, in particular, to estimate a comprehensive background
in a realistic environment comparable to experimental data.
In this Letter, we present simulation results using a modified
blast wave (BW) model [52,53] at LHC energy. We will show
that, when most global observables (pT spectrum, v2, and, in
particular, charge balance function) are tailored to describe
experimental measurements (the data-driven way), the CME
and CMW observables (e.g., �γ , �δ, Ach–v2 slope) can be
simultaneously and naturally reproduced. Based on that, the
maximum allowable strength of the signal for both CME
and CMW is further deduced through a phenomenological
method, which sheds new light on the search for anomalous
chiral effects.

Methodology. The blast wave model is extensively used
in heavy-ion collisions [52,53], providing a convenient and
straightforward way to describe the production of particles
as well as their collective motions. It generates an expanding
and locally thermalized fireball, which decays into fragments
and subsequently emits hadrons. The thermal equilibrium of
hadrons is based on the Boltzmann distribution with kinetic
freeze-out temperature Tkin. The phase space distribution of
the fragments is determined on the assumption that the radial
expansion velocity is proportional to the distance from the
center of the system. The initial shape of the fireball is con-
trolled by a geometry parameter Rx/Ry describing the spacial
asymmetry and the collectivity is determined by the radial
flow parameter ρ0 and the elliptic flow parameter ρ2 in form
of ρ cos(2φ) with φ being the boost angle. For simplicity,
higher order flow components are omitted since v2 is the
leading-order term and all particles are set to have pion mass.

It is worth noting that the BW does not include any evolu-
tion process, which is not the goal of this work either. Here,
the BW simply serves as a generator, providing a decent
description of basic features of the event, which could be
replaced by other models with similar functions. This study
is performed in Pb-Pb collisions at

√
sNN = 5.02 TeV and the

aforementioned parameters are listed in the top four rows

of Table I, with which the basic feature of pT distribution
and v2 measured by ALICE experiment [54,55] can be well
reproduced. For instance, the mean values of calculated in-
tegrated v2 within pT < 2 GeV/c and |η| < 0.8 at 5–10 %,
30–40 %, 50–60 % centrality intervals are 0.035, 0.081, 0.078,
respectively, with negligible statistical uncertainties, matching
experimental values [55] within 3% relative deviations.

Of particular importance for this work is the joint treat-
ment of the multiplicity and the balancing charge. A realistic
multiplicity value is usually taken into account for the study
of particle production, however, is sometimes ignored for
studies of correlations. For charge dependent correlations, we
argue that a comparable multiplicity is significantly important
because of two reasons: (I) In the CME study, the transverse
momentum conservation (TMC) plays a non-negligible role.
As pointed out in Refs. [56,57], inclusive γ and δ can be writ-
ten into 〈cos φ〉2 − 〈sin φ〉2 − v2/N and 〈cos φ〉2 + 〈sin φ〉2 −
1/N , respectively, with 〈〉 being the event average. It is ob-
vious that both 〈sin φ〉 and 〈cos φ〉 obey the law of large
numbers (the central limit theorem as well), which manifests
itself through the multiplicity. Events with high or low mul-
tiplicity (tight or loose TMC condition), therefore, naturally
give rise to different γ and δ results. (II) In the CMW study,
as shown in Eq. (2), the Ach is a key observable determining
the signal. By definition, the Ach follows a negative bino-
mial (NBD) distribution. The larger the multiplicity is, the
narrower the Ach distribution would be. Here, in each central-
ity, we sample the multiplicity event by event following the
NBD with mean and variance from the ALICE results [54]. It
will be shown later that the Ach distribution can be precisely
reproduced.

It is well known that, in heavy-ion collisions, for every pro-
duced particle in a specific phase space window, there should
be a corresponding antiparticle with the opposite charge,
which is commonly quantified by the balance function [58].
To introduce such a local charge dependent correlation, parti-
cles are emitted in pairs with conserved charge (one positively
and one negatively charged) at some spatial points which are
uniformly distributed within an ellipse, as illustrated in Fig. 1.
The momenta of particles in a given pair are independently
sampled and then boosted together so particles eventually
follow a common collective velocity. For the rest of the spatial
points, only one particle is generated with random charge.
The percentage of points emitting pairs, fLCC, is used to
parametrize the strength of LCC. We tune the value of fLCC

in each centrality to match the experimental result of charge
balance function, e.g., in 30–40 %, the fLCC = 0.54 gives
the width of the balance function of 0.64 ± 0.014, which is
consistent with the ALICE measurement [59–61] within 5%
relative deviations. Note that the fLCC decreases as collision
goes from central to peripheral, indicating that the charge
correlation gradually becomes weak, matching the ALICE
measurement [61] (see Supplemental Material in [62] for
more discussions). Since the evolution is not taken into ac-
count, we treat primordial particles following the LCC and
resonances as a same kind of source. This is acceptable be-
cause, from the standpoint of final observables, both of them
are clusters emitting a pair of correlated positive and negative
particles. Moreover, nonflow effects were recently proposed
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TABLE I. List of the modified BW parameters for Pb-Pb collisions at
√

sNN = 5.02 TeV.

Centrality 0–5 % 5–10 % 10–20 % 20–30 % 30–40 % 40–50 % 50–60 % 60–70 %

Tkin 111.34 106.96 104.78 107.37 111.63 115.14 118.14 128.20
Rx/Ry 0.956 0.934 0.905 0.872 0.845 0.823 0.807 0.786
ρ0 1.262 1.267 1.254 1.226 1.196 1.148 1.087 0.994
ρ2 0.054 0.063 0.11 0.135 0.15 0.145 0.121 0.115
Nch (|η| < 0.8) 2290 1858 1334 904 608 369 222 117
fLCC 0.71 0.62 0.58 0.56 0.54 0.48 0.47 0.46

to play roles in the measurement, however, mainly in RHIC
energy [63]. In TeV scale, it may be largely diluted by the
high multiplicity so it is also ignored here.

CME and CMW observables. Figure 2 presents the CME
observables �γ and �δ as functions of centrality on the basis
of the aforementioned model configuration. It is not surprising
that the ALICE measured �δ can be perfectly described by
the model since, as mentioned in [41,64], �δ is an equiva-
lent form of the charge balance function. More importantly,
the calculated �γ values are found to be quantitatively in
line with ALICE data as well within 5% relative deviations
in central and semicentral collisions. In the most peripheral
collisions, the deviation increases to 10%, mainly owing to the
fluctuation at low multiplicity. In Ref. [41], ALICE performed
a similar comparison and found that when tuning the BW
model to match the measured �δ, the model underestimates
the measured �γ by around 40%. We would like to point out
that such a discrepancy actually comes from the incomplete
treatment of the LCC fraction and the multiplicity. With such

FIG. 1. A schematic view of a BW event with improved treat-
ment of the LCC. Grey arrows indicate the collective expansion.
Positive and negative charges are marked in red and blue respectively.
Open and full circles denote the single particle production and the
pair production, respectively.

an issue being properly addressed, a quantitative description
of both �δ and �γ can be achieved.

In addition to the CME study, the BW+LCC model has
also been used for the study of CMW. As demonstrated in our
early work [65], when selecting events with a specific Ach,
in practice, one preferentially applies nonuniform kinematic
cuts on charged particles and such a LCC background is too
ubiquitous to be eliminated. The underlying mechanism has
also been clearly discussed in Refs. [66–68]. Nevertheless, an
accurate estimation remains unexplored. Figure 3 shows the
calculated normalized slope of Ach–�v2 in this model. It can
be seen that the slope values match the ALICE measurement
within 12% relative deviation. The centrality dependence can
be naturally described as well: the slight decrease of the slope
is due to the smaller number of balancing pairs when colli-
sions becomes more peripheral. As a detailed example, the
linear dependence between v±

2 and Ach and the Ach distribution
in 30–40 % centrality are attached in the embedded panels (a)
and (b), respectively. Note that the Ach distribution is in good
accord with the ALICE result [45], supporting our explanation
in the previous section.

The set of parameters summarized in Table I may not be
the only viable configuration, however, given the fact that
the small experimental uncertainty of �γ (≈10−4) imposes
a strong constraint on the model, there is little room for those
parameters to change.

Taken together, the consistency between the modified BW
model and the ALICE data suggests that the current ex-
perimental measurements of anomalous chiral effects can
be reasonably explained by a simple and realistic LCC
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FIG. 2. The CME observables �γ and �δ as functions of cen-
trality. The ALICE results are from [41].
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FIG. 3. The CMW observable, normalized slope of Ach–�v2, as
a function of centrality. The ALICE results are from [45]. Insets:
(a) the linear dependence between v±

2 and Ach, (b) Ach distribution, in
30–40 % centrality.

background. Nevertheless, it does not yet rule out signals of
the CME and the CMW. Even though the signals are widely
believed to be small [69], from the perspective of observables,
there is a possibility that, in principle, both CME and CMW
can exist concurrently together with a slightly weaker LCC
background. On the basis of the model with a comprehensive
understanding of the background, we take one step further
to determine the maximum allowable strength of signals by
introducing charge separations in a phenomenological ap-
proach.

Constraint on the Signal. In previous AMPT studies
[50,51], the y component of the momentum (position) coor-
dinate for some “above-plane” (in-plane) particles carrying a
given charge are randomly interchanged with those “below-
plane” (out-of-plane) ones carrying the opposite charge to
mimic the CME (CMW) signal. Such a straightforward op-
eration has proven to be fairly effective. In this work, it
should be emphasized that, instead of switching particles’
positions or momenta, we simply interchange their charges,
which is indeed equivalent to the former when the evolution
is not taken into account. Specifically, only charges of those
single-produced particles, denoted by white dots in Fig. 1,
are swapped following the above mentioned method, while
the pair-produced ones remain unchanged so the LCC back-
ground can be separately under control. Figures 4(b), 4(c), and
4(d) show the net electric charge distributions in the transverse
plane after incorporating signals of the CME, the CMW, and
a superposition of both, respectively. It is easy to prove that
two kinds of signals are independent, namely, the CME signal
has no effect on the CMW observable and vice versa, so the
superposition can be decomposed without mutual interaction.
Note that the signals in Fig. 4 are intentionally enhanced for
better visualization and only one of two dipole and quadrupole
configurations is presented as an example. The strengths of
both signals, SCME and SCMW, are quantified by the number of
pairs being interchanged. Our goal is to quantitatively find out
the maximum strength of signal that can be tolerated within
experimental precision.

The influences of four key parameters (multiplicity, fLCC,
SCME, and SCMW) on three observables (�δ, �γ , and the
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FIG. 4. The net electric charge distributions in the transverse
plane when the signal is (a) not imported, (b) imported to mimic
the CME-induced dipole moment, (c) imported to mimic the CMW-
induced quadrupole moment, (d) imported to mimic a superposed
effect of both CME and CMW. Signals are intentionally enhanced
here for better visualization.

slope) are summarized in Table II. First, to accommodate both
signals, which increase the �γ and the slope, the fLCC must
be reduced. However, this will lead to the further decrease
of the �δ. Consequently, as a compensation, the multiplic-
ity needs to be reduced as well, which is the only viable
solution for making the signal and the background coexist.
Note that the multiplicity is a robust observable rather than
a freely adjustable parameter but the measurement allows up
to 10% uncertainty around the mean values [54]. Therefore,
we reduce the multiplicity by a few percent (< 10%) in each
centrality, ensuring that the Ach distribution remains compa-
rable to the data. With the fixed multiplicity, the fLCC is then
tweaked as small as it can go to match the limits of the mea-
sured charge balance function and the �δ. Compared to the
values in Table I, fLCC are diminished by ≈15%, ≈10%, and
≈1% in the most central, the semicentral, and the peripheral
collisions, respectively.

In the absence of the LCC background, i.e., when all par-
ticles are single-produced, it is discovered that the natural
charge fluctuation can produce a �δ and a �γ on the order
of ≈10−7–10−6, serving as a baseline. Swapping the charge
once to create one pair of dipole moment is able to generate

TABLE II. The impact of four key parameters on the CME and
the CMW observables.

�δ �γ Slope

Mult. ↘ ↗ ↗ −
fLCC ↘ ↘ ↘ ↘
SCME ↗ ↘ ↗ −
SCMW ↗ − − ↗
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FIG. 5. The CME observables �γ and �δ as functions of cen-
trality when the signal is imported. Set (I) is still comparable with the
ALICE data while set (II) is not, indicating the maximum allowable
strength.

a �δ ≈ −10−5 and a �γ ≈ 10−5. Since the variation of �δ

and �γ is simply proportional to the interchange time, SCME,
following the rule of S2

CME, switching three times will almost
increase the observables by one order of magnitude. Simi-
larly, creating one quadrupole gives rise to the �v2 ≈ 10−3

when Ach ≈ ±0.1, and the further variation follows the rule
of 2SCMW. These simple rules serve as reference when adding
the signal.

Two sets of CME signal, (I) and (II), are implemented.
In set (I), the SCME is linearly related to the multiplicity, so
the values vary event by event from 1 to 3 for central and
semicentral collisions and from 0 to 1 for peripheral colli-
sions. In set (II), the SCME is fixed to 3 (1) for central and
semicentral (peripheral) collisions. Figure 5 shows the com-
parison between two sets and the ALICE data. It is obvious
to see that the finely tuned set (I) is still roughly consistent
with the data. However, the fixed set (II), providing signals
over much, fails, in particular for peripheral collisions, which
indicates that the signal does not likely to appear there. The
deviation from data continues to increase as the SCME grows.
In 30–40 % centrality, the mean SCME value is ≈ 1 and the
net CME-induced �γ when SCME = 1 is 2 × 10−5. Com-
pared to the total �γ of 1.5 × 10−4, therefore, the allowable
maximum fraction of CME signal should be no more than
≈13%. Likewise, the average allowable SCMW in 30–40 %
centrality is ≈0.5, meaning that one signal is permitted in
every two events, and the calculated maximum fraction of
CMW in the slope is found to be ≈2%. A larger signal, e.g.,
SCMW = 1, would result in the increase of the slope by a
factor of 3. Note that such estimations do not take any mea-
suring factor into account. Considering various experimental
uncertainties (detector-wise and methodology-wise), the final
measured signals, even existing, would be further reduced. In
a word, any experimental results larger than these upper limits

might be unreasonable and there are very few opportunities to
capture such tiny signals in LHC energy, matching the current
ALICE and CMS conclusions.

Conclusion. In heavy-ion collisions, when studying the
charge dependent correlations to search for anomalous chi-
ral effects, the LCC effect is recognized as one of the most
important backgrounds. Meanwhile, the CME and the CMW,
despite sharing a similar background mechanism, have al-
ways been handled as two separate analyses. In this Letter,
we present a simulation using a modified BW model, which
naturally describes most experimental results, including the
CME and the CMW observables, at the same time. Such a
universal description, unifies the CME and the CMW stud-
ies and quantitatively reveals the connections between the
observable, the signal and the LCC background. Following
the principle of parsimony, we argue that, in LHC energy,
the measured results of both the CME and the CMW can
be interpreted to a great extent by the LCC entwined with
the collective flow. We then propose a phenomenological ap-
proach of incorporating the CME and the CMW signals to
quantify the maximum allowable strength of the signal. Our
calculation shows that the CME and CMW fractions in the
observables, even in the most ideal condition, should be no
more than 13% and 2%, respectively. Such a global constraint
provides a fresh perspective to understand the experimental
data.

The BW model is quite straightforward and the realistic
environment is obviously more complicated. However, the
calculation in this work is tightly based on experimental re-
sults and the success of this model, particularly in unifying the
CME and the CMW observables, may enlighten other more
fundamental studies. We strongly suggest that this method,
after being properly modified, should be extended to RHIC
energy, where signals are expected to be stronger due to possi-
bly longer life time of the magnetic field, to further nail down
the interpretation. It is also desirable to introduce identified
particles to investigate more subtle correlations.
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