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Transfer reactions are essential to determine spectroscopic factors and astrophysical reaction rates. However,
their theoretical evaluation is typically effected using standard reaction theory, from which structure degrees
of freedom are absent. While reaction cross sections have been implemented in the frame of the no-core shell
model with continuum, this model can be applied in practice only to the lightest nuclei. The use of the core +
valence nucleon picture is then necessary to include internucleon correlations in reaction cross sections involving
medium nuclei. For this, we will use the recently developed coupled-channel Gamow shell model (GSM-CC)
for direct reactions and extend it to the evaluation of transfer cross sections. As an example, we will study the
40Ca(d, p) transfer reaction with GSM-CC. Experimental data can be successfully reproduced, but at the price
of the use of a very phenomenological Hamiltonian.
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Introduction. Nuclear reaction rates are among the most
important ingredients in describing many astrophysical phe-
nomena. However, direct measurements of the cross sec-
tions at stellar energies are very challenging, especially when
they involve charged particles. Instead, transfer reactions
can be used as an indirect method to access the desired
reaction rates of astrophysical interest [1,2]. More particu-
larly, (d, p) reactions have been extensively used to extract
spectroscopic factors for astrophysically relevant isotopes to
constrain neutron-capture rates [3–7]. Indeed, one-nucleon
transfer reactions are the probe of choice to obtain information
about the nuclear response to nucleon addition (single-particle
strength) as a function of energy, angular momentum, and
parity. Traditionally, one-nucleon transfer reactions to bound
states can be used to extract information regarding direct cap-
ture, where those populating the continuum are used to extract
the resonant and/or compound capture.

To describe the thousands of reactions of astrophysical
interest at the relevant energies, one has to rely on the-
oretical approaches. The properties of radioactive nuclei,
underpinning the nuclear mechanisms involved in astrophys-
ical processes, are strongly affected by couplings to the
many-body continuum of scattering and decay channels.
Therefore, a unified theory of these nuclei involves a compre-
hensive description of bound states, resonances, and scattering
many-body states within a single theoretical framework, and
this is one of the main goals of the nuclear theory. A pio-
neer work in this direction was initiated with the continuum
shell model [8–13], and has been extended to ab initio de-
scription of structure and reactions of light nuclei within
the no-core shell model coupled with the resonating-group

*nicolas.michel@impcas.ac.cn

method (NCSM/RGM) [14,15] and the no-core shell model
with continuum (NCSMC) [16,17]. Deuteron induced transfer
reactions to s shell and p shell have been investigated with
NCSM/RGM [18,19] in the context of primordial and stellar
nucleosynthesis. In the same effort to unify nuclear structure
and reactions, progress has been made in the development of
microscopic ab initio optical potentials for deuteron induced
transfer reactions [20].

An alternative approach to describe radioactive nuclei
within a unifying framework has been proposed with the
open quantum system formulation of the shell model, the
Gamow shell model (GSM) [21,22]. GSM offers the most
general treatment of couplings between discrete and scatter-
ing states, as it makes use of Slater determinants defined
in the Berggren ensemble [23] of single-particle states. For
the description of scattering properties and reactions, it is
convenient to formulate GSM in the representation of reac-
tion channels (GSM-CC) [24]. The Hamiltonian of GSM-CC
is Hermitian because matrix elements are calculated in the
harmonic oscillator basis. However, the calculation of reso-
nances using this Hamiltonian is done in the Berggren basis,
so that the Hamiltonian matrix in GSM-CC becomes complex
symmetric. The cross sections are calculated by coupling the
real-energy incoming partial waves to the target states given
by the Hermitian Hamiltonian. Consequently, the framework
related to cross section calculation is fully Hermitian, whereas
complex energies arise for resonances because one diago-
nalizes the complex symmetric Hamiltonian matrix induced
by the Berggren basis representation. GSM in the coupled-
channel representation, which is based on the RGM, has been
applied to the description of 6Li via deuteron induced elastic
scattering on 4He [25].

To benchmark GSM-CC for transfer reactions, we apply it
to (d, p) reactions on the doubly magic stable 40Ca nuclei. The
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Letter is organized as follows. The general formalism of the
GSM-CC is briefly introduced in the first section. The Hamil-
tonian and results of GSM-CC calculations are presented next.
In particular, the low-energy spectra and binding energies of
41Ca, 41Sc, 42Ca, 42Sc, 42Ti are discussed and the description
of elastic cross sections: 40Ca(n, n) 40Ca, 40Ca(p, p) 40Ca, and
transfer cross section 40Ca(d, p) 41Ca is presented. Finally,
conclusions are summarized.

Theoretical framework. In this section, we will briefly out-
line the GSM-CC formalism, as more details can be found in
Refs. [22,24,25].

We work in the cluster orbital shell model (COSM) formal-
ism [26], i.e., all space coordinates are defined with respect to
that of a given inert core:

r = rlab − R(core)
C.M. , (1)

where rlab is the space coordinate in the laboratory frame,
R(core)

C.M. is the center-of-mass coordinate of the inert core in
the laboratory frame, and r is the COSM space coordinate.
More precisely, rlab and r are respectively the laboratory
and COSM valence nucleon coordinates in the case of one-
nucleon systems, while they correspond to the center-of-mass
coordinate in the laboratory and COSM frames, respectively,
in the case of a many-nucleon cluster projectile. The fun-
damental advantage of COSM is that it is translationally
invariant, as COSM space coordinates are clearly relative, so
that no spurious center-of-mass excitation can occur therein
[22,26].

The A-body state of the system is decomposed into reaction
channels:

∣∣�JA
MA

〉 =
∑

c

∫ +∞

0

∣∣(c, r)JA
MA

〉 uJAMA
c (r)

r
r2 dr, (2)

where the radial amplitude uJAMA
c (r), describing the relative

motion of the projectile with respect to the core in a channel
c, is the solution to be determined for a given total angular
momentum JA and its projection MA. Note that, in case of a
cluster channel, the coordinates of the cluster nucleons are not
present in Eq. (2), as r is the COSM radial coordinate of the
cluster center of mass. This is in contrast with usual formula-
tions of channels in other models and embodies the cluster
approximation used in GSM-CC. In fact, we do not need
to explicitly treat nucleonic coordinates inside the composite
projectile, as we restrict our GSM-CC basis to the two-cluster
mass partitioning case. However, it is possible to effectively
include deuteron breakup by including channels that involve
intrinsic scattering states of the deuteron calculated using the
Berggren basis. This was done in Ref. [25], where the scatter-
ing reaction 4He(d, d ) is considered.

The channel states are defined as

|(c, r)〉 = Â ∣∣{ ∣∣�JT
T

〉 ⊗ |r � Jint JP〉
}JA

MA

〉
. (3)

The channel index c stands for the partitions and quantum
numbers {A − a, JT; a, L, Jint, JP}, and Â is the inter-cluster
antisymmetrizer that acts among the nucleons pertaining to
different clusters. The states |�JT

T 〉 and |r � Jint JP〉 are the
target and projectile channel states with their associated total

angular momenta JT and JP, respectively. The angular momen-
tum couplings read JP = Jint + � and JA = JP + JT.

The coupled-channel equations can then be formally de-
rived from the Schrödinger equation, H |�JA

MA
〉 = E |�JA

MA
〉, as

∑
c

∫ ∞

0
r2[Hcc′ (r, r′) − ENcc′ (r, r′)]

uc(r)

r
= 0, (4)

with E the scattering energy of the A-body system, and where
the kernels are defined as

Hcc′ (r, r′) = 〈(c, r)| Ĥ |(c′, r′)〉 , (5)

Ncc′ (r, r′) = 〈(c, r)|(c′, r′)〉 . (6)

For the sake of clarity, we have dropped the total angular
momentum labels JA and MA, but one should keep in mind
that the resolution of Eq. (4) is done for fixed values of JA

and MA.
Due to the decoupling of the target and projectile at high

energy, it is more convenient to express the Hamiltonian Ĥ as
simply

Ĥ = ĤT + ĤP + ĤTP, (7)

where ĤT and ĤP are the Hamiltonians of the target and pro-
jectile, respectively, while the intercluster Hamiltonian ĤTP is
defined as ĤTP = Ĥ − ĤT − ĤP, where Ĥ is considered here
as a standard shell model Hamiltonian.

To be more specific, ĤT is the center-of-mass free intrinsic
Hamiltonian of the target, and its eigenvectors are |�JT

T 〉 with
eigenvalues EJT

T . The projectile Hamiltonian is then given by
ĤP, and can be decomposed as ĤP = Ĥint + ĤC.M., where Ĥint

describes its intrinsic properties and ĤC.M. the movement of
its center of mass, defined in a single channel c, and where
one radial coordinate r occurs:

ĤC.M. = h̄2

2m̃P

(
− d2

dr2
+ �(� + 1)

r2

)
+ U �

C.M.(r), (8)

where m̃P in this equation is the reduced mass of the projec-
tile and U �

C.M.(r) is the basis-generating Woods-Saxon (WS)
potential for the nucleon projectile, while it is the weighted
sum of proton and neutron basis-generating WS potentials
for deuteron wave functions [22,25]. Its central and spin-orbit
parts U �

C.M.,C(r) and U �
C.M.,SO(r) read in the latter case

U �
C.M.,C(r) = U �

p,C (r) + U �
n,C (r), (9)

U �
C.M.,SO(r) = 1

2 U �
p,SO(r) + 1

2 U �
n,SO(r), (10)

where U �
p,C (r), U �

p,SO(r), and U �
n,C (r), U �

n,SO(r) are the WS
basis-generating central and spin-orbit potentials for proton
and neutron, respectively. The potential U �

C.M.(r) of Eq. (13)
then reads

U �
C.M.(r) = U �

C.M.,C(r) + 1
2 U �

C.M.,SO(r) (� · Jint ), (11)

where an additional 1/2 factor in the spin-orbit part arises
because the deuteron nucleons have an orbital angular mo-
mentum approximately equal to �/2 [22,25].
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In order to calculate the kernels Eqs. (5) and (6), one
expands |(c, r)〉 onto a one-body Berggren basis:

|(c, r)〉 =
∑

n

un�(r)

r
|(c, n)〉 , (12)

where |(c, n)〉 = Â |{|�JT
T 〉 ⊗ |n � Jint JP〉}JA

MA
〉, with

ĤC.M. |n�〉 = EC.M. |n�〉, implying that n refers to the projectile
center-of-mass shell number in the Berggren basis state. Spin
dependence has not been added in the un�(r) wave function
notation for simplicity. The basis of |n�〉 states is then
generated by diagonalizing ĤC.M.. Note that |Jint〉 is the
eigenvector of Ĥint with the eigenvalue EJint

P .
Consequently, we can expand Eq. (5) onto the basis of

|(c, n)〉 using Eq. (12) and derive the following expression for
the Hamiltonian kernel:

Hcc′ (r, r′) = (
ĤC.M. + EJT

T + EJint
P

)δ(r − r′)
rr′ δcc′ + Ṽcc′ (r, r′)

(13)

where Ṽcc′ (r, r′) includes the remaining short-range potential
terms of the Hamiltonian kernels and is the inter-cluster po-
tential. Note that Hcc′ (r, r′) reduces to its diagonal part at large
distance as Ṽcc′ (r, r′) vanishes identically at a large but finite
radius outside the target. Hence, nucleon transfer, which is
induced by Ṽcc′ (r, r′), and consequently ĤTP, can only occur
in the vicinity of the target and not in the asymptotic region.

Clearly, the determination of Ṽcc′ (r, r′) involves the calcu-
lation of the matrix elements of ĤTP, which contain a shell
model Hamiltonian. In order to compute ĤTP, one has to
expand each |(c, n)〉 onto a basis of Slater determinants built
upon single-particle (s.p.) states of the Berggren ensemble. In
practice, the intrinsic target and projectile states, |�JT

T 〉 and
|Jint〉 respectively, are already calculated with that basis, as ĤT

and Ĥint are solved using the GSM. Note that, in general, as we
deal with very light projectiles, Ĥint is solved within a no-core
framework, and this will be the case in the present study. The
remaining task consists of expanding |n � Jint〉 in a basis of
Slater determinants. In GSM-CC, this is done by applying
a center-of-mass excitation raising operator onto |Jint〉. More
details can be found in [22,25].

The many-body matrix elements of the norm kernel Eq. (6)
are calculated using the Slater determinant expansion of
the cluster wave functions |(c, n)〉. The treatment of the
nonorthogonality of channels is the same as in the one-
nucleon projectile case [24]. Note that the antisymmetry of
channels, enforced by the antisymmetrizer in Eq. (3), is ex-
actly taken into account through the expansion of many-body
targets and projectiles with Slater determinants.

Once the kernels are computed, the coupled-channel equa-
tions (4) can be solved using a numerical method based on a
Berggren basis expansion of the Green’s function (H − E )−1,
that takes advantage of GSM complex energies. Details of this
method can be found in Refs. [22,25].

Note that a formulation of coupled-channel equa-
tions based on Berggren basis expansions was formulated in
Ref. [27] and applied therein to the calculation of the deuteron
bound state and phase shifts.

TABLE I. The central (Vo) and spin-orbit (Vso) potential depths of
the core WS potentials in proton (p) and neutron parts (n) for partial
waves � = 0, . . . , 4 (in MeV).

Depth � = 0 � = 1 � = 2 � = 3 � = 4

Vo(p) 50 55.142 62 56.601 56.5
Vso(p) 6.012 5 2.884 7
Vo(n) 60.5 54.302 59.5 54.204 40
Vso(n) 5.007 2 2.850 2

Results and discussions. We consider a 40Ca core with one
or two valence nucleons to study the 40Ca(d, p) reaction. All
partial waves up to � = 4 are included in the model space
of GSM and GSM-CC. As all considered target nuclei are
well bound, it is sufficient to define model spaces with HO
wave functions in GSM, i.e., GSM reduces to standard shell
model for target structure. For this, one includes all HO wave
functions bearing n � 5 in s, p, d, f , g partial waves above
the 40Ca core. The HO length used is 1.88 fm. No truncation
is imposed. As described in the section Theoretical frame-
work, the many-body resonant and scattering wave functions
in GSM-CC are expanded in a Berggren basis of reaction
channels.

The core of the Hamiltonian in both GSM and GSM-CC
is mimicked by a WS potential and the residual interaction
between nucleons is the Furutani-Horiuchi-Tamagaki (FHT)
interaction [28]. Basis-generating potentials in GSM-CC are
also of WS type.

All WS potentials possess a diffuseness d = 0.65 fm and a
radius R0 = 1.27A1/3 = 4.34 fm, so that they differ only by
the central and spin-orbit potential depths, denoted respec-
tively by Vo and Vso.

The single-particle states of 41Ca and 41Sc, that is the
7/2−

1 , 3/2−
1 , 5/2−

1 , and 1/2−
1 states, correspond to the one-

body states of the f p shell. Thus, the core WS potentials for
partial waves � = 1, 3 have been fitted to reproduce the single-
particle states of 41Sc and 41Ca, respectively. Core potentials
for � = 0, 2, 4 partial waves play a very small role in the
structure of A = 40–42 nuclei, hence they cannot be deter-
mined on experimental energies. Therefore, their values have
been fitted to reproduce the reaction cross sections. WS core
potential depths are listed in Table I. The parameters of the
FHT interaction have been fitted to reproduce the low-lying
spectra of A = 42 nuclei in GSM and GSM-CC and are listed
in Table II.

The deuteron projectile is issued from a GSM calculation
using a Berggren basis defined with two-body relative coordi-

TABLE II. The optimized parameters of the FHT interaction
consist of central (V ST

c ), spin-orbit, (V ST
LS ), and tensor (V ST

T ) coupling
constants [30]. S = 0, 1 and T = 0, 1 are the spin and isospin of
the two nucleons, respectively. Parameters are given in MeV for the
central and spin-orbit parts, and in MeV fm−2 for the tensor part.

V 11
c V 10

c V 00
c V 01

c V 10
LS V 11

LS V 10
T V 11

T

17.745 −4.516 −0.210 −7.386 −2509 1000 −4.102 −0.257
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TABLE III. Same as Table I, but for the basis-generating WS
potentials.

Depth � = 0 � = 1 � = 2 � = 3 � = 4

Vo(p) 61 60 43 56 59
Vso(p) 6.681 5 2.854 5
Vo(n) 65 54.302 65.13 54.204 65
Vso(n) 5.007 3.9 2.850 5

nates, whereby the N3LO interaction is diagonalized (see also
Ref. [22] for calculations of diproton, dineutron, and deuteron
observables in that framework). One has to generate antisym-
metric composite states by adding deuteron wave functions
to target states afterwards. However, as the latter are defined
in HO model spaces with laboratory coordinates, deuteron
wave functions must be expanded in the same basis. For this,
the bound and scattering deuteron eigenstates issued from
Berggren basis diagonalization are first expanded in a basis
of HO states defined with two-body relative coordinates and
then in a basis of HO states in laboratory coordinates using
Talmi-Brody-Moshinsky coefficients. For the latter operation,
one uses an HO basis defined in a 10h̄ω space. The trans-
formation from laboratory coordinates to COSM coordinates
is neglected, as it can be shown that its effect is minimal
compared to the other theoretical approximations present in
our model [22]. This allows one to recapture the overall
structure of deuteron eigenstates. The energy of the deuteron
ground state is fixed at its experimental energy of −2.2 MeV,
which is close to its theoretical value, equal to −2.1 MeV.
Deuteron breakup can be taken into account by including
the scattering deuteron eigenstates arising from the Berggren
basis diagonalization, as was done in Ref. [25]. However, as
we only consider a small deuteron projectile energy in the fol-
lowing, of about 1.8 MeV, along with an inert 40Ca target core,
deuteron breakup cannot occur in our present calculations due
to energy conservation, so that only the deuteron ground state
will be included in deuteron channels.

As only nucleon projectiles are present in 40Ca(p, p)
and 40Ca(n, n) reactions, the GSM-CC reaction channels
[40Ca(0+

1 ) ⊗ p(Lj )]Jπ

and [40Ca(0+
1 ) ⊗ n(Lj )]Jπ

are directly
defined and solved in the GSM-CC Berggren basis. However,

this is not possible when considering the 40Ca(d, p) reaction,
where one has to use the HO basis to build all composite
states, as we saw for 40Ca +d channels. Thus, in this case,
proton and neutron wave functions are also expanded with the
HO basis in order to form the composite basis HO states of
41Ca +p and 41Sc +n.

The HO composite basis states are used only for the gen-
eration of the potentials entering Eq. (13), where HO energy
truncation is effected at E (HO)

max = 8h̄ω. The GSM-CC Hamil-
tonian of Eq. (13) is solved afterwards using the GSM-CC
Berggren basis (see Sec. II D of Ref. [25]). The GSM-CC
Berggren basis of proton, neutron, and deuteron projectiles
is generated by WS potentials whose parameters are listed in
Table III (see the section Theoretical framework for formulas).

The Berggren basis of protons and neutrons consists of all
partial waves up to � = 4. Those for the deuteron consist of
3S1,

3P0,
3P1,

3P2,
3D1,

3D2,
3D3 channels. Consequently, the

composite channels are those of 40Ca(0+
1 ) + d , 41Ca(Kπ ) +

p, and 41Sc(Kπ ) + n, where Kπ = 1/2−, 3/2−, 5/2− and
7/2−.

For the calculation of cross sections, the Jπ quantum
numbers of composites are restricted to 0−, 1−, 2−, 1+, 2+,
and 3+. Contours are discretized with 21 Gauss-Legendre
points for protons and neutrons and 30 Gauss-Legendre points
for deuterons. Contours are defined with kpeak = 0.2 − 0.01i,
kmiddle = 0.4 − 0.01i, and kmax = 2 fm−1. Corrective factors
have been added in positive-parity channels; they are equal
to 1.14, 0.99, 1.08, 1.04, 1.1, and 1.12 in 0+, 1+, 2+, 3+,
5+, and 7+ channels, respectively. They allow us to repro-
duce the low-energy, positive-parity spectra of 42Ca, 42Sc,
and 42Ti nuclei (see Fig. 1). Note that their influence on the
40Ca(d, p) cross section is minimal. The larger values of the
corrective factors for 0+, 5+, and 7+ channels might be due
to the absence of 0+

2 , 3−
1 , and 2+

1 low-energy core excitation
in 40Ca.

Results for one- and two-nucleon separation energies Sn,
Sp, S2n, S2p, and Sd calculated in GSM-CC for A = 41 and
42 nuclei are compared with experimental separation ener-
gies in Table IV. The excited states of A = 42 nuclei are
reproduced in GSM-CC with a typical precision of ≈50 keV.
However, their impact on considered cross sections is
minimal.

FIG. 1. The low-energy positive-parity states of 42Ca, 42Sc, and 42Ti nuclei calculated using the GSM-CC are compared to the experimental
data [29].
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TABLE IV. The comparison of GSM-CC separation energies Sn,
Sp, S2n, S2p, and Sd with experimental ones [29]. Energies are given
in units of MeV.

Nucleus S(th)
n S(exp)

n S(th)
2n S(exp)

2n S(th)
d S(exp)

d

41Ca 8.38 8.363
42Ca 11.36 11.48 19.74 19.8
42Sc 11.42 11.55 12.53 12.48

Nucleus S(th)
p S(exp)

p S(th)
2p S(exp)

2p S(th)
d S(exp)

d
41Sc 1.11 1.09
42Ti 3.57 3.75 4.68 4.83
42Sc 4.15 4.27 12.53 12.48

The calculated cross sections are compared with the data in
Figs. 2 and 3. The GSM-CC transfer cross section 40Ca(d, p)
is very well reproduced in both form and magnitude. Also the
calculated proton and neutron elastic cross sections reproduce
experimental data very well, except for 40Ca(n, n) at large
angles θC.M. where the GSM-CC cross section exhibits small
oscillations. It is possible to determine a WS neutron core
potential reproducing correctly the 40Ca(n, n) cross section in
the full range of θC.M.. However, in this case, the 40Ca(d, p)
cross section cannot be reproduced satisfactorily, so that we
preferred not to optimally fit the 40Ca(n, n) cross section for
other cross sections to be well reproduced.

Note that it is possible to obtain a good reproduction of
the 40Ca(d, p) cross section data only by fine tuning both
the Hamiltonian parameters and the WS basis-generating po-
tential describing the continuum wave functions and their
asymptotes, which is essential for a correct description of the
cross sections. Indeed, 40Ca(d, p) cross sections vary by large
factors in an energy interval centered on 1.853 MeV of a few
hundreds of keV [33]. Thus, important cancellations occur
between all partial waves. Hence, in order to compensate for

FIG. 2. Cross sections 40Ca(p, p) at C.M. energy 9.61 MeV
and 40Ca(n, n) at C.M. energy 2.69 MeV. Cross section and an-
gle are given in C.M. coordinates. Experimental data for cross
sections 40Ca(p, p) and 40Ca(n, n) are taken from Refs. [31,32],
respectively.

FIG. 3. Cross section 40Ca(d, p) at C.M. energy 1.853 MeV.
Besides projectile energy, cross section and angle are given in lab-
oratory coordinates. Experimental data are taken from Ref. [34].

these intricate phenomena, the parameters of the WS basis-
generating potential had to be fitted as well to reproduce the
experimental data.

Conclusions. The microscopic description of reaction cross
sections demands the use of models where structure and re-
action degrees of freedom are present. This is the case in
GSM-CC, where target and projectile wave functions are cal-
culated with the shell model. Scattering wave functions can
be evaluated afterwards from coupled-channel equations, de-
fined with the microscopically calculated reaction potentials.
However, in contrast to direct reactions, transfer reactions are
very rarely studied at the microscopic level.

Thus, we studied the 40Ca(d, p) transfer reaction cross
section in GSM-CC, along with associated direct nucleon
scattering reactions 40Ca(p, p) and 40Ca(n, n). This is, to our
knowledge, the first calculation of this type in heavier nuclei
combining shell model and coupled-channel equation ap-
proaches. We were able to obtain a good overall reproduction
of experimental cross sections, except for 40Ca(n, n) at large
angle. The 40Ca(d, p) transfer reaction cross section is par-
ticularly well described. However, this came at the price of
having to very precisely fine tune Hamiltonian and Berggren
basis parameters.

Consequently, while the first GSM-CC calculation applied
to transfer reaction cross section is satisfactory from a phe-
nomenological point of view, it still remains very difficult in
practice to systematically study transfer reaction cross sec-
tions with the GSM-CC. The renormalization of neglected
reaction channels using complex coupling channel-channel
potentials seems to be necessary in the future for this purpose.
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Foundation of China under Grants No. 12175281 and No.
11975282; the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant No. XDB34000000; and
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Peking University under Grant No. NPT2020KFY13.
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