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Neutrino mean free path for proto–neutron star matter within the Skyrme model
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The neutrino mean free path is evaluated in hot proto–neutron star matter under a strong magnetic field. We
consider densities in the range 0.04 � ρ � 0.4 fm−3, several proton fractions from symmetric matter up to pure
neutron matter, temperatures up to 30 MeV, and two magnetic field strengths B = 1017 and 1018 G. Polarized
proto–neutron star matter is described within the nonrelativistic Hartree-Fock model using the LNS Skyrme
interaction, where the proper treatment for instabilities for low densities and temperatures is implemented. Under
the same conditions, the degree of polarization of protons is stronger than the one for neutrons. For the neutrino
mean free path we consider three reactions: the neutrino-neutron and neutrino-proton scattering, ν + n → ν ′ + n′

and ν + p → ν ′ + p′, respectively, and the neutrino absorption reaction ν + n → e− + p. The magnetic field
induces an asymmetry in the mean free path which favors the flux of neutrinos parallel to the magnetic field
in the case of neutron scattering and the absorption reaction, whereas it is antiparallel in the case of proton
scattering. For most of the conditions the absorption reaction is the dominant one. The dependence of the neutrino
mean free path on the magnetic field, the temperature, and the proton fraction is different for each reaction. As
a representative case of our results, the asymmetry in the mean free path is ≈21% at saturation density for
B = 1018 G, T = 15 MeV, and symmetric matter, while we have ≈ −1% for B = 1017 G and the same values of
all the other conditions.

DOI: 10.1103/PhysRevC.107.065804

I. INTRODUCTION

The neutrino physics is important to understand many as-
trophysical problems. In particular, they play a fundamental
role all over the stages of the collapse of a massive star,
starting from the supernova explosions [1–11], the early de-
velopment of compact stellar remnants [12–14], to the neutron
star cooling [15,16] and merging of neutron stars [17–21].
There are many mechanisms which produce neutrinos. Just
to name a few of them, we have direct Urca, modified Urca,
baryon bremsstrahlung, and Coulomb bremsstrahlung, which
are mainly originated from the neutron star core, while pro-
cesses like electron-positron annihilation, plasmon decay, and
electron-nucleus bremsstrahlung are attributed to the neutron
star crust (a discussion of these different mechanisms can be
found in Refs. [22,23]). The transport properties of neutrinos
are necessary for a good understanding of stellar evolution.
These properties are modified by the presence of strong
magnetic fields. In the case of the so-called magnetars, the
magnetic field intensity can reach values up to 1014–1015 G at
the star surface and it can grow by several orders of magnitude
in its dense interior [24]. In fact, the emission of neutrinos
is expected to depend on the direction of the magnetic field.
This asymmetrical emission of neutrinos has been suggested
as a possible mechanism to explain the “pulsar kick problem”:
the observation that pulsars do not move with the velocity of
their progenitor star, but rather with a substantially greater
speed [25].

Several mechanisms have been suggested as possible ex-
planations for the pulsar kick problem. Some of them do
not involve neutrinos, like an asymmetry in the gravitational
collapse of the progenitor, acceleration due to the pulsar elec-
tromagnetic radiation, or the evolution of a binary system
which may produce rapidly moving pulsars. Another possi-
ble mechanism is the asymmetrical emission of neutrinos,
because an asymmetry as small as ≈1% would be enough
to explain the pulsar movement. The asymmetrical emission
of neutrinos can have two different origins. Neutrino os-
cillation can be altered by the magnetic field, resulting in
an anisotropy in the momentum of the outgoing neutrinos
[26]. A second source is the neutrino parity violation, which
can also induce an asymmetry on the emission when multi-
ple scattering of neutrinos in polarized matter is taken into
account [27–30]. This last possibility is the one which we
explore in this work. In particular, we evaluate the neutrino
mean free path (NMFP), for hot polarized proto–neutron star
matter.

The NMFP in dense matter has been studied with and
without the presence of a magnetic field by many authors
using various approximation schemes. It has been exten-
sively discussed in the absence of magnetic field (see, e.g.,
Refs. [31–44] and references therein). There are also many
works which discussed the NMFP in the presence of a strong
magnetic field (see, e.g., Refs. [26,27,45–54]). To model the
NMFP, an equation of state (EOS) is required to describe the
medium in which the neutrino is moving. In addition, we need
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a scheme to describe the interaction of the neutrino with the
particles of this dense medium. Note that the neutrino cross
section is evaluated both in free space and in a dense medium.
The weak transition matrix element for both cases is basically
the same. The cross section in a dense medium incorporates
particle distribution functions which limits the phase space of
the particles involved in the neutrino reactions. These parti-
cle distribution functions use the single-particle energies and
chemical potential from the EOS. The magnetic field induces
a quantization for the charge particles in the medium, called
the Landau quantization. Obviously this quantization affects
both the EOS and the wave functions of initial and final
particles required in the weak transition matrix element, as
long as they are charged particles.

In this work we study the NMFP in hot proto–neutron
star matter with a strong magnetic field and a fixed proton
fraction. In previous works we analyzed pure neutron matter,
considering the inelastic neutrino-neutron scattering and the
absorption of a neutrino by a neutron [53,54]. A set of the
possible reactions of a neutrino can be found in Ref. [39]. The
evaluation of the NMFP starts with the EOS. For hot polarized
proto-neutron star matter, the EOS is developed within the
nonrelativistic Hartree-Fock model using the LNS Skyrme
interaction [55]. With a different nuclear interaction, this EOS
was already developed in Ref. [56]. For systems with two
or more different kinds of particles, the nuclear interaction
induces an instability for low temperatures and densities. The
stability is restored by splitting the system into two phases,
with different densities, spin, and isospin composition for
each phase. Once the EOS is established, one has to choose a
set of reactions between the neutrino and the particles present
in the medium. In our case, we consider the neutrino-proton
and -neutron scattering reactions, together with the absorption
one. The evaluation of the NMFP for each reaction shows that
their functional behavior with density, temperature, magnetic
field, and proton fraction is different. We consider that these
variables are locally constants, due to the scale of the reaction.
Then we evaluate the asymmetry in the NMFP.

The work is organized as follows. In Sec. II, we develop
the formalism for the calculation of the NMFP. This is done
in four parts: in Sec. II A, we outline the EOS for hot polarized
proto–neutron star matter; in Sec. II B, we give some details
on the instability region; in Sec. II C, we discuss the initial
wave function for our problem; and in Sec. II D, we give
an analytical expression for the neutrino-proton scattering.
Note that the corresponding expressions for the neutrino-
neutron and absorption cross section are already given in
Refs. [53] and [54], respectively. In Sec. III, we discuss our
results, putting special emphasis on the asymmetry in the
NMFP. Finally, in Sec. IV, we give the conclusions of our
work.

II. THE NEUTRINO MEAN FREE PATH

In this section we present expressions for the NMFP (λ),
for hot nonrelativistic proto–neutron star matter under a strong
constant magnetic field and for a fixed value for the proton
fraction. The model for the EOS of matter fulfilling these
conditions is discussed in the next section.

To evaluate the NMFP, we consider the following reac-
tions: first, the scattering reactions,

νi + ni → ν f + n f , (1)

νi + pi → ν f + p f , (2)

and second, the absorption reaction,

νi + ni → e−
f + p f . (3)

Reactions (1) and (3) were studied for pure neutron matter
in Refs. [53] and [54], respectively. For proto–neutron star
matter the results for these reactions change, as for a fixed
baryonic density, the neutron density is smaller. This point is
discussed in detail in Sec. III. Explicit expressions for reaction
(2) are given in this section.

A. Polarized proto–neutron star matter in the Skyrme model

For the benefit of the reader, in this section we resume
the model developed in Ref. [56], with the addition of some
details needed for the NMFP. To obtain the EOS we employ
the Hartree-Fock approximation with the Skyrme effective
nuclear interaction. This scheme allows us to find an energy
density functional, which is a convenient way to study thermo-
dynamic properties of the system. For simplicity, this is named
the Skyrme model. Details on the particular parametrization of
the Skyrme interaction are left to Sec. III.

The inputs of our EOS model are the baryonic density, the
proton fraction, the temperature, and the magnetic field. In a
neutron star there is a spatial dependence on these quantities.
In particular, we consider a constant magnetic field in the ẑ
direction, �B = Bk̂. For the whole neutron star one can imple-
ment a realistic model for the magnetic field, as well as for the
density and the temperature. The curvature of the magnetic
field from a realistic model would allow us to consider it as
locally uniform due to the scale of the reactions under con-
sideration. Analogous hypotheses are valid for both density
and temperature. From the EOS we obtain the single-particle
energies of protons and neutrons, their chemical potentials,
and spin asymmetries. These magnitudes are needed for the
evaluation of the NMFP.

The magnetic field modifies the single-particle spectra of
the standard Skyrme model. In the first place, there is a di-
rect coupling between nucleons and the magnetic field, due
to their intrinsic magnetic moments leading to an additional
term −μN Bsp, ngp, n, where μN is the Bohr magneton (μN

∼=
3.15245 × 10−18 MeV/G), sp, n is the spin z projection and the
g factors take account of the anomalous magnetic moments
with values gp = 2.793 and gn = −1.913, for protons and
neutrons, respectively. Furthermore, for protons the magnetic
field induces a quantization of the energy spectra. In the case
of a uniform field, the dynamics of the problem exhibits
quantized eigenvalues associated with the motion in the plane
orthogonal to the applied field. They are oscillatorlike levels,
depending on a discrete quantum number in the form (Np +
1/2) ωp, with ωp = eB/mp being the cyclotron frequency for
each particle. This is known as Landau quantization and the
quantum number Np takes the same values as the quantum
oscillator. We show now the single-particle energies for the
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protons and neutrons,

Esp (pz, Np) = mp + p2
z

2m∗
sp

+ 1

8
vsp + μpB(2Np + 1 − spgp),

(4)

Esn ( �p) = mn + p2

2m∗
sn

+ 1

8
vsn − μN Bsngn, (5)

where �p is the momentum and pz its z projection. Note that
s j takes the values +1 (−1) for spin up (down). The nuclear
effective interaction is present through the effective nucleon
masses m∗

sp (n)
and the single-particle Skyrme potential energy

vsp (n) , having the explicit expressions

1

m∗
si

= 1

mi
+ 1

4
ρ (b0 − b2wIi ) + 1

4
si

∑
j

(b1 + IiI jb3) Wj

(6)

and

vsi = (a0 − a2wIi ) ρ +
∑
j, s′

j

(b0 + IiI jb2)Kj, s′
j

+ si

∑
j

(a1 + a3IiI j )Wj + si

∑
j, s′

j

s′
j (b1 + b3IiI j )Kj,s′

j
,

(7)

with i, j = p, n and we have defined Ip = 1 and In = −1.
The isospin asymmetry fraction is w = (ρn − ρp)/ρ, where
ρ = ρn + ρp. Since the spin states are not symmetrically
occupied, one can define for each isotopic component the
number density of particles with a given spin polarization ρi, si .
The spin asymmetry density Wi gives a measure of the spin
polarization Wi = ∑

si
si ρi, si . The expressions for the kinetic

energy density Ki,si are presented below. The coefficients al

and bl are built up from the Skyrme interaction according to

a0 = 6t0 + t3ρ
σ ,

b0 = [3t1 + t2(5 + 4x2)]/2,

a1 = −2t0(1 − 2x0) − t3(1 − 2x3)ρσ /3,

b1 = [t2(1 + 2x2) − t1(1 − 2x1)]/2,

a2 = −2t0(1 + 2x0) − t3(1 + 2x3)ρσ /3,

b2 = [t2(1 + 2x2) − t1(1 + 2x1)]/2,

a3 = −2t0 − t3ρ
σ /3,

b3 = (t2 − t1)/2,

where the different constants appearing on the right-hand side
(rhs) of these expressions are standard coefficients for the
Skyrme interaction (see, for instance, Ref. [55]).

We show now the expressions for the spin number densities
ρi, si , the spin asymmetry density Wi, and the kinetic energy
density Ki,si , for each particle:

ρp, sp = eB

(2π )2

∞∑
Np=0

∫ ∞

−∞
d pz f

(
Esp, μp, T

)
, (8)

Wp = eB

(2π )2

∑
sp, Np

sp

∫ ∞

−∞
d pz f

(
Esp, μp, T

)
, (9)

Kp, sp = eB

(2π )2

∑
Np

∫ ∞

−∞
d pz p2

z f
(
Esp, μp, T

)
, (10)

ρn, sn = 1

(2π )3

∫
d3 p f

(
Esn , μn, T

)
, (11)

Wn =
∑

sn

sn

(2π )3

∫
d3 p f

(
Esn , μn, T

)
, (12)

Kn, sn = 1

(2π )3

∫
d3 p p2 f

(
Esn , μn, T

)
. (13)

Here μp (n) is the chemical potential. The parameter T stands
for the temperature. In thermal equilibrium f (Esi , μi, T ) is
given by the Fermi-Dirac particle distribution function,

f
(
Esi , μi, T

) = 1

1 + exp
[(

Esi − μi
)
/T

] . (14)

Owing to the minimization of the thermodynamic potential,
the chemical potential cannot depend on the spin projection.
But the single-particle energy Esj does, which allows the pos-
sibility that ρi, si=+1 	= ρi, si=−1. Instead of working with Wi, it
is convenient to define a dimensionless spin asymmetry Ai,

Ai ≡ ρi, si=+1 − ρi, si=−1

ρi, si=+1 + ρi, si=−1
= Wi

ρi
, (15)

where ρi = ρi, si=+1 + ρi, si=−1. Note that we have two inde-
pendent spin asymmetries: An and Ap.

Now we have all the elements to show the thermodynamic
potential. The energy density is given by

E =
∑
i,si

Ki, si

2m∗
i, si

+ 1

16

[
a1

( ∑
i

Wi

)2

+ a3

(∑
i

IiWi

)2

+ (a0 + a2w
2) ρ2

]
+ μN B(2L + ρp − gpWp − gnWn),

(16)

where ρ = ρp + ρn and

L = eB

(2π )2

∑
sp, Np

Np

∫ ∞

−∞
d pz f

(
Esp, μp, T

)
. (17)

For completeness we also show the expression for the entropy
density S ,

S = Sp + Sn,

Sp = − eB

(2π )2

∑
sp,Np

∫ ∞

−∞
d pz

{
f
(
Esp, μp, T

)
ln

[
f
(
Esp, μp, T

)]

+ [
1 − f

(
Esp, μp, T

)]
ln

[
1 − f

(
Esp, μp, T

)]}
,

Sn =
∑

sn

1

(2π )3

∫
d3 p

{
f
(
Esn , μn, T

)
ln

[
f
(
Esn , μn, T

)]
+ [

1 − f
(
Esn , μn, T

)]
ln

[
1 − f

(
Esn , μn, T

)]}
.
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The entropy is needed to build up the free energy F = E −
TS and the pressure P = ∑

a μana − F .
We can ascribe the free energy the following functional

dependence,

F = F
(
ρsp=1, ρsp=−1, ρsn=1, ρsn=−1, T, B

)
, (18)

with two constraints:

ρ = ρsp=1 + ρsp=−1 + ρsn=1 + ρsn=−1, (19)

w = 1

ρ
(ρn − ρp). (20)

The inputs of our problem are ρ, w, B, and T . Then the
partial densities ρi, si are varied to find the minimum of the free
energy F , which represents the physical state. The knowledge
of these partial densities implies the knowledge of the single-
particle energies, chemical potential, and spin asymmetries.
From this analysis it is clear that the system is polarized by
the action of the magnetic field. The degree of polarization
is given by the spin asymmetry. In general, the system is
partially polarized: there is a competition among the Pauli
principle which favors an equal number of nucleons with spin
up and down, and the magnetic field, which tries to align all
spin projections in the same direction. The minimum of F is
usually a partial polarization. As we show soon in this section,
these quantities are required in the evaluation of the NMFP.

B. Coexistence of phases in proto–neutron star matter

For certain conditions of low densities and temperatures,
the nuclear interaction favors a phase transition into a nonuni-
form system [57–60]. For proto–neutron star matter, the
system splits into two coexisting phases, one of low density
and the other one with higher density, which are interpreted
as a gas-liquid system. Moreover, for nonsymmetric matter
the isospin composition of each phase is different. This is a
general property of all thermodynamic systems with two or
more different kinds of particles, with or without magnetic
field. Now we focus on our particular system. Starting at low
densities for fixed values for the temperature, magnetic field,
and proton fraction, the system shows a small amount of the
liquid phase which grows until the gas disappears and the
system is uniform again. The EOS described in the previous
section predicts this phase transition by showing an instabil-
ity. To be clear, this instability is sometimes depicted in the
EOS by decreasing values of the pressure when the density
increases, even taking negative values. There are also more
subtle behaviors such as a change in the curvature of the
pressure. We refer the reader to the work of Chomaz et al. [59]
for a complete discussion on the subject. In this section we
show some simple elements needed in the evaluation of the
NMFP.

Let us denote with the superscripts a and b the gas and
liquid phases, respectively. The system is stable against sepa-
ration into two phases when

F (ρ, T, B) < (1 − α)F (ρa, T, B) + αF (ρb, T, B), (21)

for any value of α in the range 0 � α � 1. In this expression
we simplified the density dependence for convenience. The
actual dependence is the one in Eq. (18). The instability is

the density region where condition (21) is not fulfilled. The
new equilibrium is reached when the following conditions are
satisfied,

P
(
ρa

sp=1, ρ
a
sp=−1, ρ

a
sn=1, ρ

a
sn=−1, T, B

)
= P

(
ρb

sp=1, ρ
b
sp=−1, ρ

b
sn=1, ρ

b
sn=−1, T, B

)
, (22)

μp
(
ρa

sp=1, ρ
a
sp=−1, ρ

a
sn=1, ρ

a
sn=−1, T, B

)
= μp

(
ρb

sp=1, ρ
b
sp=−1, ρ

b
sn=1, ρ

b
sn=−1, T, B

)
, (23)

μn
(
ρa

sp=1, ρ
a
sp=−1, ρ

a
sn=1, ρ

a
sn=−1, T, B

)
= μn

(
ρb

sp=1, ρ
b
sp=−1, ρ

b
sn=1, ρ

b
sn=−1, T, B

)
, (24)

with the constraints

ρ = (1 − α) ρa + α ρb, (25)

ωρ = (1 − α) ωa ρa + α ωb ρb, (26)

where ρa (b) = ρa (b)
n + ρa (b)

p and ωa (b) = (ρa (b)
n − ρa (b)

p )
/(ρa (b)

n + ρa (b)
p ). Equations (25) and (26) tell us that the total

baryonic density and isospin asymmetry are conserved. The
solution of these sets of equations is quite involved and their
results are known as Gibbs construction (for technical details
see Ref. [59] and references therein). By hypothesis, the
instability region starts with a uniform system with density
ρa and ends with also a uniform system with density ρb.
But from the beginning of the instability region these partial
densities change. Not only the values of ρa and ρb, but also
their spin and isospin composition vary along the instability
region, constrained by conditions (25) and (26). In our case,
the ω value is fixed and the partial densities ρa (b)

sa (b)
, together

with the parameter α, are evaluated for each value of ρ within
the instability region.

From the Gibbs construction, the value of the pressure
within the instability region is obtained. An important quantity
for our problem is the spin asymmetry density, Wi (i = p, n).
It is easily calculated as

Wi = (1 − α)W a
i + αW b

i . (27)

Within the instability region this value differs from the one
of a uniform system. For further use, it is convenient to show
also the spin asymmetry fraction, Ai:

Ai = 1

ρi

[
(1 − α)Aa

i ρa
i + αAb

i ρb
i

]
. (28)

Having all these elements, to evaluation the NMFP first
we calculate the partial values λa and λb (the NMFPs for the
systems “a” and “b,” respectively). Then we have

1

λ
= 1 − α

λa
+ α

λb
. (29)

The total baryonic density for this λ is implicitly contained
in the values of ρa, ρb, and α. Our concern is the asymmetry
in the NMFP due to the presence of a strong magnetic field.
Beyond its actual relevance, a reliable evaluation of this asym-
metry requires the construction in Eq. (29).

The Gibbs construction is required for asymmetric mat-
ter. Neutron matter (w = 1) shows no instability, whereas
symmetric matter (w = 0) is much simpler as it requires the
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Maxwell construction [58]. Briefly, when the pressure is plot-
ted against the volume it shows a local minimum followed by
a local maximum. The Maxwell construction of equal areas
gives us ρa and ρb, the values for the total baryonic density at
both ends of the instability region, which remain unchanged
along the instability region. In this case only the parameter
α varies. It does so monotonously according to Eq. (25):
α = (ρ − ρa)/(ρb − ρa). Also λa and λb are fixed by the
values at both extremes of the instability region. Therefore,
the evaluation of λ for different densities is straightforward
from Eq. (29).

A further point which deserves attention is that, for low
temperatures and subnuclear densities, there may exist non-
homogeneous matter in different geometric structures, called
a pasta phase, which result from the competition between
the Coulomb and the strong interaction [61]. Most of these
models are developed at zero temperature. The effect of the
magnetic field over the pasta phase was studied recently (see
Ref. [62] and references therein). In these works it is dis-
cussed that strong magnetic fields cause an extension of the
inner crust of the neutron stars and an increase of the proton
fraction, among other effects. However, the effect of the mag-
netic field is washed out for temperatures bigger than 109 K
(≈0.09 MeV) [63]. The pasta phase represents another kind of
nonhomogeneous possible state of matter. However, the study
of the NMFP in the pasta phase goes beyond the scope of this
work.

C. Initial spin wave function for protons
and neutrons

To evaluate the NMFP we employ Fermi’s golden rule,
where we sum up over all possible final states and average
over the initial states, as long as we do not know which is the
initial state. In this section we show that the knowledge of the
spin polarization from the EOS gives us the information over
the initial spin wave function. This section is also a summary
of the more complete discussion in Ref. [53].

The polarization of the system is an average property,
which can be parametrized by means of the spin asymmetries
Ap and An. These asymmetries depend on the baryonic den-
sity, the temperature, and the intensity of the magnetic field.
The chemical potential of protons and neutrons also depends
on the magnetic field. To learn more about the polarization,
we consider a small volume V inside the neutron star, for
which the density, temperature, and magnetic field can be
considered as constant. To study the spin polarization of a
set of Ni particles (i = p, n) within this volume, we have to
evaluate

〈Ŝi, z〉System =
(

Ni, sz=+1 − Ni, sz=−1

Ni, sz=+1 + Ni, sz=−1

)
h̄

2
, (30)

where Ŝi, z is the spin projection operator in the z axis for
the particle i; Ni, sz=+1 and Ni, sz=−1 are the numbers of i
particles with spin up and down, respectively. Note that Ni =
Ni, sz=+1 + Ni, sz=−1. Writing now Ni, sz=±1 = V ρi, sz=±1 and
using the definition of the spin asymmetry Ai in Eq. (15), it

is easy to see that

〈Ŝi, z〉System = Ai
h̄

2
. (31)

Now we have to establish a link between Ai, which is a global
property of the particles within V , and the wave function of a
single particle. This is simple, because we know that the mean
value of the operator Ŝi, z evaluated with the wave function of
particle i must have the same value as the one from the whole
system [64]. More explicitly, if particle i has a spinor |Ui〉, we
have

〈Ui|Ŝi, z|Ui〉 = 〈Ŝi, z〉System. (32)

The left-hand side (lhs) in this equality is a matrix element of
a single particle, while the rhs is an average from all particles
within V . After some algebra, we get (for more details see
Appendix B in Ref. [53])

|Ui〉 =
√

1 + Ai

2

∣∣Ui, si=+1
〉 +

√
1 − Ai

2

∣∣Ui, si=−1
〉
,

with i = p, n. (33)

In this expression the ket |Ui, si=+1〉 (|Ui, si=−1〉) is the spin-up
(spin-down) spinor for the i particle. As we know the initial
spin component of the wave function, it is not necessary to
average over the initial spin state.

D. The neutrino-proton scattering cross section
for a polarized system

In this section we show an expression for the inelastic
neutrino-proton scattering cross section per unit volume for
a polarized system. The NMFP is the inverse of this cross
section. The cross section for the reaction νi + pi → ν f + p f

can be written as

σprotscatt
(
�pνi

)
V

=
∫

d	ν f

∫
d	p f

∫
d	pi W

prot
f i

× [
1 − f

(
Esp f

, μp, T
)]

f
(
Espi

, μp, T
)
,

(34)

where the symbol
∫

d	 j represents the summation over all
possible states of particle j and it is defined soon.

We focus on the transition rate Wprot
f i . The indices i and

f stand for the initial and final states, respectively. To eval-
uate the transition rate we employ the scattering operator
Ŝ, given by Ŝ = Û (−∞,∞), where Û (t2, t1) is the time-
evolution operator [65]. By keeping only the leading term, we
have

Ŝ = i
∫

d4x Ĥint, (35)

where Ĥint is the Hamiltonian density. We employ an ef-
fective Hamiltonian which is the low-momentum limit of
the weak vertex from the standard model (see, for instance,
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Ref. [38]),

Ĥint = GF√
2


̄p f γμ(CV − CAγ5)
pi 
̄ν f γ
μ(1 − γ5)
νi + H.c.

(36)

In this expression 
 j is the field operator for particle j.
Here GF is the Fermi weak-coupling constant (GF /(h̄c)3 =
1.16637(1) × 10−5 GeV−2). For the vector and axial-vector
couplings we have CV = 0.08 and CA = 1.23, respectively.
These values are taken from Ref. [38].

The scattering matrix S f i is the Ŝ operator evaluated be-
tween the initial and final states. The square of S f i, divided by
time, is the transition rate:

Wprot
f i = |S f i| 2

T , (37)

where T is the time interval where the transition takes
place [66].

A complete discussion of the wave functions for all par-
ticles is given in Appendix A in Ref. [54]. For the benefit
of the reader, it is convenient to reproduce here the proton
wave function, where the spatial dependence is expressed in

cylindrical coordinates (ρ, φ, z),

ψp(ρ, φ, z, t ) = L−1/2ei(pp,zz−Ept )

(
eB

2π

)1/2

× ei(Rp−Np)φ IRp,Np (ξ )Up, (38)

where Up is the proton spinor which was discussed in
Sec. II C. The index Np is the energy level quantum number
for the proton Landau state. The explicit expression for the
function IRp,Np (ξ ) is given by

IRp,Np (ξ ) =
(

Np!

Rp!

)1/2

e−ξ/2ξ (Rp−Np)/2LRp−Np

Np
(ξ ), (39)

with ξ = eB ρ2/2 and for the definition of the Laguerre poly-
nomials Li

j we adopted the one from Ref. [67]. The Rp is
called the radial quantum number and its values are discussed
in Appendix A in Ref. [54], together with the neutrino wave
function. All wave functions are normalized in a volume V =
LA, where L is the length along the z axis and A is the area in
the perpendicular plane.

Using these wave functions together with the interaction in Eq. (36), and after some algebra, the S f i matrix for the proton is
given by

Sprot
f i = i

GF√
2

L−1V −1(2π )2δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣)δ(pp f ,z + pν f ,z − ppi,z − pνi,z
)( eB

2π

) ∫ ∞

0
dρ ρ

×
∫ 2π

0
dφ ei�ν⊥ ·�x⊥ ei(Np f −Rp f )φ e−i(Npi −Rpi )φIRpi ,Npi

(ξ )IRp f ,Np f
(ξ ) Ūp f γμ(CV − CAγ5)Upi Ūν f γ

μ(1 − γ5)Uνi , (40)

where �ν⊥ = (pνi,x − pν f ,x ) ı̂ + (pνi,y − pν f ,y) ĵ and �x⊥ = x ı̂ + y ĵ . To square the modulus of this expression we employ the
properties

δ2
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣) = δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣) T
2π

,

δ2
(
pp f ,z + pν f ,z − ppi,z − pνi,z

) = δ
(
pp f ,z + pν f ,z − ppi,z − pνi,z

) L

2π
. (41)

The transition rate is written as

Wprot
f i = (2π )2

LV 2
δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣)δ(pp f ,z + pν f ,z − ppi,z − pνi,z
) ∣∣Mprot

f i

∣∣2
, (42)

where we define

∣∣Mprot
f i

∣∣ 2 = G2
F

2

(
eB

2π

)2 ∣∣∣∣
∫ ∞

0
dρ ρ

∫ 2π

0
dφ ei�ν⊥ ·�x⊥ ei(Np f −Rp f )φ e−i(Npi −Rpi )φ

× IRpi ,Npi
(ξ )IRp f ,Np f

(ξ ) Ūp f γμ(CV − CAγ5)Upi Ūν f γ
μ(1 − γ5)Uνi

∣∣∣∣
2

. (43)

The integration over the cylindrical coordinates ρ and φ can be done using relations (4.6) and (4.7) from Chap. II in Ref. [68]:∫ 2π

0

dφ

2π
ei�ν⊥ ·�x⊥ ei(Np f −Rp f )φ e−i(Npi −Rpi )φ = JNp f −Rp f −(Npi −Rpi )(ν⊥ ρ), (44)

where Jn(x) is the nth Bessel function and∫ ∞

0
dρ ρ IRpi ,Npi

(ξ )IRp f ,Np f
(ξ )JNp f −Rp f −(Npi −Rpi )(ν⊥ ρ) = 1

eB
INpi ,Np f

(ω⊥)IRpi ,Rp f
(ω⊥), (45)
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where ω⊥ = ν2
⊥/2eB. Using these integrals, Eq. (43) is given by

∣∣Mprot
f i

∣∣ 2 = G2
F

2
I2
Npi ,Np f

(ω⊥)I2
Rpi ,Rp f

(ω⊥)
∣∣Ūp f γμ(CV − CAγ5)Upi Ūν f γ

μ(1 − γ5)Uνi ,
∣∣2

. (46)

With this expression we evaluate Wprot
f i in Eq. (42). Before we show an explicit expression for the total cross section, it is

convenient to show the phase-space summations for protons and neutrinos:∫
d	p =

Np, max∑
Np=0

Rp, max∑
Rp=0

∑
sp=±1

L

2π

∫ ∞

−∞
d pp, z, (47)

∫
d	ν f = V

(2π )3

∫
d3 pν f . (48)

The value for Rp, max = eBA/2π , while Np, max is determined by the energy conservation: we fix the energy of the incident
neutrino and the function f (Espi

, μp, T ) limits the maximum value for energy of the incident proton, which also limits Npi, max.
Once the initial energy has a maximum value, so do Np f , max and Ne f , max (see Appendix B in Ref. [54]). Now, the total scattering
proton cross section is

σprotscatt ( �pνi )

V
= G2

F

2

(2π )2

LV 2
V

∫
d3 pν f

(2π )3

Np f , max∑
Np f =0

Rp f , max∑
Rp f =0

∑
sp f =±1

L

2π

∫ ∞

−∞
d pp f , z

Npi , max∑
Npi =0

Rpi , max∑
Rpi =0

∑
spi =±1

L

2π

∫ ∞

−∞
d ppi, z

× δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣)δ(pp f ,z + pν f ,z − ppi,z − pνi,z
)[

1 − f
(
Esp f

, μp, T
)]

f
(
Espi

, μp, T
)

× I2
Npi ,Np f

(ω⊥)I2
Rpi ,Rp f

(ω⊥)
∣∣Ūp f γμ(CV − CAγ5)Upi Ūν f γ

μ(1 − γ5)Uνi

∣∣2
. (49)

In this expression all the Rpi and Rp f dependence is in the function I2
Rpi ,Rp f

. From Eq. (11.7) in Ref. [68], we have

Rpi , max∑
Rpi =0

Rp f , max∑
Rp f =0

I2
Rpi ,Rp f

=
Rmax∑

Rpi =0

1 = Rmax = A eB

2π
, (50)

where Rpi, max = Rp f , max = Rmax is discussed in Appendix A in Ref. [54]. We define the proton structure function as

Sprot
spi ,sp f ,Npi ,Np f

=
∫ ∞

−∞

d ppi,z

2π

∫ ∞

−∞

d pp f ,z

2π
(2π )2 δ

(
Esp f

+ ∣∣pν f

∣∣ − Espi
− ∣∣pνi

∣∣)
× δ

(
pp f ,z + pν f ,z − ppi,z − pνi,z

)
f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]

. (51)

An analytical expression for this structure function is given in Appendix A. Furthermore, it is convenient to define the lepton
and hadron tensors as

Lμα = U ν f γ
μ(1 − γ5)UνiU νiγ

α (1 − γ5)Uν f , (52)

Hμα = U p f γμ(CV − CAγ5)UpiU piγα (CV − CAγ5)Up f . (53)

It is easy to check that

HμαLμα = ∣∣Ūp f γμ(CV − CAγ5)Upi Ūν f γ
μ(1 − γ5)Uνi

∣∣2
. (54)

By making all these replacements in Eq. (49), the following is obtained:

σprotscatt ( �pνi )

V
= G2

F

2

eB

2π

∫
d3 pν f

(2π )3

Np f , max∑
Np f =0

∑
sp f =±1

Npi , max∑
Npi =0

∑
spi =±1

I2
Npi ,Np f

(ω⊥)Sprot
spi ,sp f ,Npi ,Np f

HμαLμα. (55)

We replace now the initial proton spin wave function from Eq. (33),

σprotscatt ( �pνi )

V
= G2

F

2

eB

2π

∫
d3 pν f

(2π )3

Np f , max∑
Np f =0

∑
sp f =±1

Npi , max∑
Npi =0

I2
Npi ,Np f

(ω⊥)

×
[(

1 + Aprot

2

)
Sprot

si=1,sp f ,Npi ,Np f
HμαLμα|si=1,s f +

(
1 − Aprot

2

)
Sprot

si=−1,sp f ,Npi ,Np f
HμαLμα|si=−1,s f

]
. (56)
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Finally for this section, we show the explicit expression for the contraction of the leptonic and hadronic tensors,

HμαLμα = C2
V

(
1 + spi sp f

)(
1 + cos θν f cos θνi + sin θν f sin θνi cos φν f

) + C2
A

[
3 − cos θν f cos θνi

− sin θν f sin θνi cos φν f − spi sp f

(
1 − 3 cos θν f cos θνi + sin θν f sin θνi cos φν f

) + 2
(
spi − sp f

)(
cos θνi − cos θν f

)]
+ 2CACV

(
sp f + spi

)(
cos θνi + cos θν f

)
. (57)

In this expression we have employed spherical angles, where
as mentioned we choose the z axis in the direction of the
magnetic field. The θ angle uses this axis, while for the az-
imuthal angle we arbitrarily choose φνi = 0 and then φν f is the
azimuthal angle between the ingoing and outgoing neutrino.
In Appendix B we discuss the limit of Eq. (56) for B = 0.

III. RESULTS AND DISCUSSION

In this section we present and discuss our results for the
NMFP in homogeneous hot proto–neutron star matter under
the presence of a strong magnetic field. We consider a range of
densities 0.04 � ρ � 0.4 fm−3, corresponding approximately
to the outer core region of a neutron star, temperatures up to
T = 30 MeV, two intensities for the magnetic field (B = 1017

and 1018 G), and different values for the proton fraction, rang-
ing from symmetric matter (N = Z) up to pure neutron matter.
The EOS is evaluated within the Hartree-Fock model, using
LNS Skyrme interaction developed by Cao et al. [55]. The
choice of this interaction is for two reasons. In the first place,
in Ref. [53] we studied the inelastic scattering of neutrinos
by neutrons, where we employed the same Skyrme model
and the Brueckner-Hartree-Fock (BHF) approach using the
Argonne V18 [69] nucleon-nucleon potential supplemented
with the Urbana IX [70] three-nucleon force, having obtained
a good agreement between both models. It is worth mention-
ing that the LNS Skyrme interaction is especially suitable for
a comparison with the BHF model, since its parameters were
determined by fitting the nuclear matter EOS calculated in the
BHF framework. The second point refers to the effective mass
predicted by the Skyrme model. Some Skyrme parametriza-
tion predicts small effective masses for high densities, which
leads to a nonphysical increase of the NMFP. Effective masses
evaluated using the LNS Skyrme interaction do not have this
problem and we find that this parametrization is the most
suitable for our problem.

As already mentioned, in this work we performed a self-
consistent calculation of the NMFP. We start with the EOS for
hot polarized proto–neutron star matter and then, using the
single-particle energies, the chemical potentials, and the spin
asymmetries from the EOS, we evaluate the NMFP. The spin
asymmetries Ap and An are important quantities because they
allow us to quantify the degree of polarization of the system.
These quantities are evaluated from the EOS according to
Eqs. (9), (12), and (15). The spin asymmetries appear explic-
itly in the cross-section reaction [see, for instance, Eq. (56)].
Also the single-particle energies and chemical potential are
needed in the evaluation of the cross section, through the
structure function as shown in Eq. (51). In Ref. [54] we
showed that for the absorption reaction, the main source of
asymmetry is not the An contribution in the initial spin wave

function, but the one from the structure function. Owing to
this finding, we understand that it is important to perform a
self-consistent treatment.

In the first place we discuss our results for the spin asym-
metries Ap and An. A similar analysis was done in Ref. [56],
but for a different interaction and for other conditions. The
behavior of spin asymmetries can be understood through the
interaction between three elements:

(i) The direct coupling of particles with the magnetic
field. For very low densities, this would lead to Ap =
1 and An = −1.

(ii) The Pauli exclusion principle, which favors the con-
dition Ap = An = 0. Clearly, we are solving the EOS
and, in the absence of a magnetic field, the minimum
of the energy configuration is the one which populates
equally the levels with spin up and down.

(iii) The nuclear interaction. While the behavior of the first
two points is simple, this last element is more difficult.
Based on the first two points, one expects that the
magnitude of the spin asymmetries starts with a max-
imum at low density, and decreases monotonously as
the density grows. As we soon see, the inclusion of
the nuclear interaction could alter this pattern.

In Fig. 1, we study the instability construction for the spin
asymmetry as shown in Eq. (27). We consider the condition
B = 1018 G, T = 5 MeV, with two values for the spin asym-
metry ω = 0 and 0.5. The value ω = 0 at T = 5 MeV is an
extreme condition for the instability (it is solved using the
Maxwell construction), whereas ω = 0.5 at the same temper-
ature represents an intermediate situation which allows us to
discuss the Gibbs construction. The system becomes unstable
due to the nuclear interaction among protons and neutrons.
This takes place for low densities and temperatures, with or
without a magnetic field. When the proton fraction decreases,
so does the instability region, which is absent for pure neutron
matter. We have organized this figure into two columns: the
first one for ω = 0 and the second one for ω = 0.5. The finite
density region of the instability starts very close to the origin
and it has not been drawn; by a vertical dotted line (in all pan-
els) we show the upper limit for the instability. In the first row
[Figs. 1(a) and 1(b)], we show α as a function of the baryonic
density. In Fig. 1(a) we have ω = 0. In this case, α is a linear
function of the density as discussed in Sec. II B. Figure 1(b) is
evaluated using the Gibbs construction and exhibits a similar
behavior as in Fig. 1(a), but it is no longer a linear func-
tion. To understand the instability construction in Eq. (27), in
Figs. 1(c) and 1(d), we depict Wp and Wn (we recall that Wi =
ρi,si=1 − ρi,si=−1). We employed a continuous (dash-dotted)
line for the asymmetries with (without) the instability con-
struction. In Fig. 1(c), there are four horizontal dashed lines
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FIG. 1. The spin asymmetry with and without the instability construction for both protons and neutrons. The magnetic field intensity is
B = 1018 G, T = 5 MeV, and we consider two values of the isospin asymmetry ω. [(a), (b)] The parameter α [see Eq. (21)]. [(c), (d)] The
continuous line is the final result for Wn and Wp, while the dash-dotted line is the result without the instability construction. In these same
panels we have plotted W a

i and W b
i by dashed lines. The final value for Wi is obtained with α and these quantities using Eq. (27). Finally, in

(e) and (f), we have An and Ap, where the continuous (dash-dotted) lines include (do not include) the instability construction. In all panels a
vertical dotted line indicates the upper limit of the instability. The lower limit is very close to the origin and it is not shown. Units for Wi are
fm−3.

representing the constant values for W a
p and W b

p (positives)
and W a

n and W b
n (negatives). From Eq. (27), the final result for

Wi starts at W a
i in the lower limit of the instability and ends

at W b
i . In Fig. 1(d) we have ω = 0.5 and in this case α, W a

i ,
and W b

i are all functions of the density. Beyond this density
dependence, the construction is the same as in Fig. 1(c). In
Figs. 1(e) and 1(f), we give the final values for Ap and An,
with and without the instability construction. We notice that

the existence of two phases significantly reduces the degree
of polarization, due to the admixture with a higher density
and weaker polarization state, resulting from the equilibrium
conditions of the EOS. In what follows we present results for
other temperatures and isospin asymmetries. The change from
the extreme conditions in this figure up to the disappearance
of the instability is continuous. Except for ω = 0 and as long
as there is an instability, the two coexisting phases have a
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FIG. 2. Density dependence of the proton and neutron spin
asymmetries for T = 5 MeV, as defined in Eq. (15). The magnetic
field is (a) B = 1017 and (b) B = 1018. Both panels give results for
different values of the isospin asymmetry ω. In this figure the Gibbs
or Maxwell construction has been already implemented.

different density, spin, and isospin asymmetries, subject to
the constraints in Eqs. (19) and (20). But the effects of these
changes are not significant over the NMFP, as we show soon.

In Fig. 2, we present our results for Ap and An as a function
of the total baryonic density for two values of the magnetic
field and for different isospin asymmetries. These results take
care of the instability construction. By comparison between
Figs. 2(a) and 2(b), the spin asymmetry decreases in mag-
nitude for decreasing values of the magnetic field intensity.
Beyond this point, in this figure we want to study the de-
pendence of Ap and An with the proton fraction. Values of
these quantities are given from symmetric matter (ω = 0),
where the numbers of protons and neutrons are the same, up
to pure neutron matter (ω = 1, where Ap is absent). Owing
to the scale of the figure and to avoid confusion, for An

we omitted the intermediate values ω = 0.25 and 0.75. Our
results are consistent with those in Ref. [56], which corre-
spond to a different nuclear interaction. The overall behavior
shows a stronger dependence with the proton fraction for
Ap. This results from the stronger coupling of protons with

FIG. 3. Proton and neutron spin asymmetries for different values
of the isospin asymmetry.

the magnetic field than the one for neutrons. In this figure,
we can analyze three baryonic density regions: low densities,
medium densities, and high densities. For medium densities
we notice that the magnitude of An decreases for increasing
values of ω, while the inverse situation takes place for Ap. As
ω grows, the proton fraction decreases. That is, an increase
in the relative density of neutrons reduces its polarization.
Alternatively, a lower density of protons favors higher values
for Ap. For higher densities the increase of the polarization is a
particular result for the Skyrme model due to its ferromagnetic
instability.

For further use, in Fig. 3 we plotted the spin asymmetries
Ap and An within the density region of interest to us, for B =
1018 G, = 15 MeV, and ω = 0, 0.5, and 1. For this temperature
the spin asymmetry is more important for Ap, even for ω = 0.

This is more noticeable for low densities, but is also present
for intermediate ones. For ω = 0.5, we have that Ap is much
bigger than |An|, as the spin asymmetry grows for lower partial
densities. For this temperature, the instability is only present
for ω = 0, but it is almost negligible.

The effect of the temperature over the spin asymmetries is
shown in Fig. 4, for two different isospin asymmetries: ω = 0
and 0.5. As expected, an increase in temperature decreases
the magnitude of spin asymmetries, since this increase favors
spin disorder. However, for a certain low-density region the
depolarization due to the two coexisting phases at T = 5 MeV
is more important than the thermal effect. In Fig. 4(a) we
show our results for symmetric matter, where both |Ap| and
|An| exhibit the same behavior. In this case, for low densities
the depolarization at T = 5 MeV due to the coexistence of
two phases is more important than the thermal depolariza-
tion at T = 15 MeV. The same happens for An for ω = 0.5
[Fig. 4(b)]. But for Ap also for ω = 0.5, the situation is no
longer symmetric and except for a few points the thermal
effect is more important. Moreover, the split among differ-
ent temperatures increases significantly for Ap. The reason is
simply because for ω = 0.5 the proton density is smaller and
thermal effects are more important.
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FIG. 4. Density dependence of the proton and neutron spin
asymmetries for different temperatures and for two isospin asym-
metries. Only for T = 5 MeV the instability construction shows a
sizable effect.

We turn now to the NMFP. We recall that we consider three
reactions: (i) the neutron inelastic scattering νi + ni →
ν f + n f , (ii) the proton inelastic scattering νi + pi →
ν f + p f , and (iii) the neutrino absorption νi + ni →
e−

f + p f . Reactions (i) and (iii) were studied for pure neutron
matter in Refs. [53] and [54], respectively. The employment
of proto-neutron star matter requires some further analysis for
these reactions, which we will consider soon. We start by dis-
cussing the neutrino-proton scattering reaction. To the best of
our knowledge, this reaction has not been discussed yet within
proto-neutron star matter with a strong magnetic field in a
self-consistent way. In doing so, we will compare with previ-
ous results for the neutron scattering and neutrino absorption
reactions, particularly the ones in Fig. 11 in Ref. [53] and in
Fig. 6 in Ref. [54]. This is only a qualitative comparison, as
those works use pure neutron matter.

In Fig. 5, we present our result for the neutrino-proton
scattering NMFP as a function of the density, at a temperature
T = 15 MeV, for two values of the magnetic field B = 1017 G
and B = 1018 G, an isospin asymmetry ω = 0.5 and for three
different angles of the incoming neutrino. In the first place, the
NMFP decreases for increasing values of the magnetic field
intensity. Let us focus on the θν = π/2 case. For this angle
and for the neutron scattering reaction, the result is almost

FIG. 5. The proton scattering NMFP as a function of the density
and for three different values for the neutrino incoming angle, θν .
Results for a magnetic field intensity (a) B = 1017 G and (b) B =
1018 G. For both panels, the momentum of the incoming neutrino is
| �pν | = 3T , T = 15 MeV, and ω = 0.5.

independent of B. For the proton scattering and absorption
reactions the situation is different: having charge particles the
Landau quantization comes into play. From B = 1017 G to
B = 1018 G there is a reduction in the NMFP. As in the case
of the absorption reaction, for proton scattering the number of
possible Landau final states decreases as B grows. However,
the degeneracy of the levels is given by a factor eBA/2π

[71]. This increasing degeneracy factor competes with the
reduction of Landau levels and from the numerical analysis
it results in a reduction for the NMFP, similar to the case of
the absorption reaction.

Continuing with the analysis of Fig. 5, we now study the re-
sults for the three angles θν = 0, π/2, and π . In the first place,
neutrinos are more transparent to polarized proto–neutron star
matter when moving in a direction antiparallel to the magnetic
field (θν = π ). The situation is the opposite of the one for the
absorption and neutron scattering. This is easily understood
due to the coupling of the proton with the magnetic field,
which is already present in the different sign between Ap

and An. Therefore, while the asymmetry induced by the mag-
netic field favors a bigger flux of neutrinos antiparallel to the
magnetic field for the proton scattering reaction, the opposite
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happens for the two remaining reactions. But perhaps the most
striking point is the degree of reduction in the asymmetry in
the NMFP from B = 1018 G to B = 1017 G, which can be
defined as the difference between the mean free paths for the
extreme values θν = 0 and θν = π [an analytical expression
is given in Eq. (59)]. For the same reduction in the magnetic
field strength, the decrease in the mean free path asymmetry
is much more pronounced for the absorption and the neutron
scattering reactions. In a certain way, we could anticipate this
result by the values of the spin asymmetries in Fig. 3: for
ω = 0.5 we have |Ap| ≈ 2 |An|. This single point is not enough
to understand the different rate in the reduction of the mean
free path asymmetries. To get a better understanding of the
problem, we can consider three elements which are responsi-
ble for the asymmetry in the NMFP: (1) the spin asymmetry
in the initial wave function as shown in Eq. (33), where Ai

appears explicitly; (2) the structure function [Eq. (51)], which
depends on the single particle energies and chemical potential
from the EOS; and (3) the weak interaction transition matrix
element in Eq. (43), which has a spin dependence. Obviously
the combined effect of all these elements leads to the final
result. From the numerical analysis it turns out that it is the
way in which the structure functions weight the different weak
terms in Eq. (56), the main effect which explains the behavior
for the proton-scattering reaction. This significant difference
between the reduction rate among the different reactions em-
phasizes the need for performing a self-consistent treatment
of the problem.

In Fig. 6 we consider the effect of the temperature over
the proton scattering NMFP. We show results for the NMFP
for temperatures T = 5, 15, and 30 MeV, for two values of
the magnetic field, ω = 0.5 and θν = π/2. There is a strong
dependence of the NMFP on the temperature, where the
NMFP decreases for increasing values of temperature. This
qualitative behavior is a common feature of all mean free
paths: as temperatures increase, so does the available phase
space of final states. However, while this dependence is weak
for the absorption reaction, both proton and neutron scattering
reactions show a strong dependence. Also in this figure we
have evaluated the instability construction, only needed for
T = 5 MeV, which can be noticed at low densities. In the
next figure we analyze in detail the effect of the instability
construction.

To analyze the effect of the instability construction over
the NMFP, we now consider the three reactions discussed in
this work. This is done in Fig. 7, where we set B = 1018 G,
ω = 0, and T = 5 MeV. We have chosen these values for
the isospin asymmetry and temperature because they are the
values for which the instability construction is most important.
The effect of the instability construction over the mean free
path for each reaction is rather similar. Note that the initial and
final densities which determine the instability region come
from the EOS and are common to any reaction mechanism.
We show results for the NMFP starting at ρ = 0.04 fm−3.
For lower densities the NMFP takes big values which would
mask the results within the density region of interest. But
to build up the instability construction the starting density
is very small. More specifically the instability region for the
conditions of these figures is ρ ∈ [0.55 × 10−3, 0.187] fm−3.

FIG. 6. The proton scattering NMFP as a function of the density
and for three different values for the temperature for θν = π/2 and
ω = 0.5. As in Fig. 3, results for a magnetic field intensity (a) B =
1017 and (b) B = 1018 G, respectively, using the same approximation
for the momentum of the incoming neutrino.

In this figure we look at the results for three incoming angles:
θν = 0, π/2, and π . The continuation of dotted lines is the
result without the instability construction. One first conclu-
sion from the instability construction is that it reduces the
asymmetry in the NMFP. This is consistent with the results
from the spin asymmetries in Fig. 1 (note that this figure starts
at ρ = 0). Second, the instability construction reduces the
importance of all the reactions, as it leads to a longer NMFP.
This results from the instability construction in the same way
as it was discussed in Fig. 1, but now the mean free path
summation is given by Eq. (29). In what follows, the instabil-
ity construction will be implemented wherever is necessary.
For growing temperatures and for smaller proton fraction, it
becomes less important and eventually it disappears. As men-
tioned, the instability originates from nuclear interaction and
the instability region depends on the particular model for this
interaction.

Before we discuss our final results for the total NMFP, in
Fig. 8 we study the dependence of the neutrino mean path with
the isospin asymmetry, starting from symmetric matter (ω = 0
or ρp = ρn = ρ/2) to pure neutron matter (ω = 1 or ρp = 0
and ρn = ρ), considering several intermediate values. In this
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FIG. 7. Effect of the instability over the NMFP. In all curves the
dotted lines represent the result without the instability construction.
We have employed B = 1018 G, T = 5 MeV, ω = 0, and three values
for the incoming neutrino angle θν . The momentum model for the
incoming neutrino is the same as in Fig. 5.

figure we used B = 1018 G and T = 15 MeV. Only for ω = 0
do we have the instability construction, which is almost negli-
gible. These results are easily understood because, for a given
total baryonic density ρ and for an isospin asymmetry ω, the
partial proton and neutron densities are ρp = ρ (1 − ω)/2 and
ρn = ρ (1 + ω)/2, respectively. For the absorption and for
the neutron scattering reaction, the neutrino interacts with a
neutron, which means that these reactions are governed by
ρn, while for the proton scattering the dependence is with
ρp. For increasing values of ω and for a fixed ρ, we have
that ρn increases, while ρp decreases. This means that the

FIG. 8. The NMFP for different values of the isospin asymmetry
ω. For ω = 0 the curve is divided into a solid line and a dotted
line, which represent the result with and without the instability con-
struct, respectively. In this figure we have used B = 1018 G and T =
15 MeV. For the incoming neutrino, we have employed θν = π/2
and the same model for the momentum as in Fig. 5.

absorption and neutron scattering have an increasing partial
density which reduces their mean free path, and the opposite
occurs for the proton scattering reaction, which explains the
results in this figure.

Finally, in Figs. 9 and 10, we present our results for the
total NMFP, for B = 1017 G and B = 1018 G, respectively.
We fix the temperature at T = 15 MeV and we show results
for three isospin asymmetries: ω = 1, 0.5, and 0. The total
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FIG. 9. The total NMFP for different values of the isospin asym-
metry ω and for three different angles of the incident neutrino. In
this figure we have used B = 1017 G and T = 15 MeV. We have
employed the same model for the momentum as in Fig. 5.

NMFP results from the addition of the mean free path for each
reaction as

λtot =
(

1

λ neut scatt
+ 1

λ prot scatt
+ 1

λ neut abs

)−1

. (58)

For convenience we first discuss Fig. 10. In this case the total
NMFP is dominated by the absorption reaction. When moving
from neutron matter to symmetric matter, the neutron compo-

nent of the medium decreases which results in an increase of
the absorption mean free path, as seen in both Figs. 9 and 10.
At this point, it is convenient to define the asymmetry of the
NMFP as

Aλ ≡ λθν=0 − λθν=π

λθν=0 + λθν=π

. (59)

The aim of these figures is to discuss the dependence of the
asymmetry in the mean free path with the proton fraction.
Under the presence of a strong magnetic field, each contri-
bution to the total NMFP has common features: λ increases
for decreasing partial densities (ρn or ρp), but the opposite
happens with Aλ—both λ and Aλ decrease for increasing
temperatures. Obviously Aλ increases as the magnetic field
grows. We recall that λprot scatt (λneutscatt and λneutabs) is sen-
sitive to the partial proton (neutron) density. On the other
hand, while λneutscatt (θν = π/2) is almost independent of the
magnetic field intensity, both λprot scatt and λneutabs decrease
when the magnetic field is incremented. The degree of the
dependence of each mean free path with these variables differs
from one reaction to another.

Under the conditions of Fig. 10 and for ω ≈ 0.5,
there is a quasicancellation among the asymmetries
in the mean free path between λprot scatt and λneut scatt .
To be clear, λprot scatt (θν = π/2) ∼ λneut scatt (θν = π/2),
λprot scatt (θν = π ) ∼ λneut scatt (θν = 0), and λprot scatt (θν =
0) ∼ λneut scatt (θν = π ). From the figure itself Aλ looks
similar for all the isospin asymmetries. In Table I, we show
explicit values for three representative densities. We see
that for B = 1018 G, Aλ take similar values. Unfortunately
the Skyrme interaction shows an unphysical polarization at
high densities. Beyond this point, Aλ is dominated by the
absorption reaction as mentioned. Starting at ω = 1, we
observe an increase of Aλ at ω = 0.5. This is because the
scattering reactions are neutralized between each other and
the decrease of the partial neutron density induces an increase
of Aλ for the absorption reaction. From ω = 0.5 to ω = 0
the same happens for the absorption reaction, but now the
partial density of protons is important and the asymmetry
from the proton scattering reaction becomes more relevant
and produces a small decrease in Aλ.

For Fig. 9, the general considerations discussed for Fig. 10
remain valid. As expected, the reduction in one order of
magnitude for the magnetic field strongly reduces the split
among the different θν components of the mean free path. This
reduction is not uniform: it is very important for the neutron
scattering and for the neutron absorption reactions, but it is
weaker for the proton scattering reaction, as already discussed
(see Fig. 5). In fact, for symmetric matter (ω = 0) where the
weight for the proton scattering reaction is maximum, Aλ

changes its sign. This is more clearly seen in Table I. The
conditions for which this change in sign takes place depend on
the particular model and the nuclear interaction chosen for the
calculation. However, the general behavior of each component
must still be valid, and this change in sign is expected.

The presence of a strong magnetic field deeply modifies
the NMFP. In the absence of a magnetic field and using an
analogous nonrelativistic model (see, for instance, Ref. [40]),
the analytical expressions for the three reactions considered
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FIG. 10. The total NMFP for different values of the isospin
asymmetry ω and for three different angles of the incident neutrino.
In this figure we have used B = 1018 G and T = 15 MeV. We have
employed the same model for the momentum as in Fig. 5.

in this work are the same. Each reaction has its own cou-
pling constants and from the EOS neutrons and protons have
different values for their single-particle energies and chemical
potentials. But the functional dependence on temperature and
density is basically the same for all reactions. In the first place,
the magnetic field modifies the EOS, leading to a partially po-
larized system. For the neutron scattering reaction, the NMFP
for a neutrino incoming angle θν = π/2 is very similar to
the result for B = 0. The main sources of asymmetry in the
neutron scattering mean free path are the initial spin wave

TABLE I. Some values for the asymmetry in the NMFP from
Eq. (59). These asymmetries refers to λtot and correspond to the
conditions in Figs. 9 and 10, for B = 1017 G and B = 1018 G,
respectively.

B (G) ρ (fm−3) Aλ (ω = 1) Aλ (ω = 0.5) Aλ (ω = 0)

1017 0.08 0.048 0.015 −0.021
0.16 0.047 0.022 −0.009
0.32 0.060 0.025 −0.018

1018 0.08 0.243 0.258 0.241
0.16 0.191 0.227 0.211
0.32 0.211 0.286 0.260

function shown in Eq. (33) and the weak interaction matrix
element. The two remaining reactions involved charged par-
ticles for which the Landau quantization comes into play.
For these reactions, there is a strong correlation between the
strong interaction in the EOS and the weak interaction which
leads to particular behaviors for each reaction. Obviously the
proton fraction is in this case an important variable: having a
different behavior for each reaction, the proton fraction alters
the relative weight of each reaction. This is clearly reflected
in the results from Fig. 9 contained in Table I.

In this work our main concern has been the asymmetry
in the NMFP for hot proto–neutron star matter. In particular,
we analyzed the dependence of this quantity on the proton
fraction. Neutrinos play an important role in the cooling of
neutron stars and, in the early stages of this compact object,
the proton fraction can be important. A different approach
would be to consider β-stable matter with charge neutrality.
In this case, electrons must be considered both in the EOS
and in the total NMFP. At present we are working on an EOS
for this case [72]. Relativistic effects cannot be neglected for
the electrons. For the EOS and neglecting the electromagnetic
interaction with protons and between electrons, we take care
of relativistic effects by proper choice of the single-particle
energy. But the situation is more complex for the evaluation
of the mean free path, because one has to employ relativistic
structure functions. This point is discussed in the absence of
magnetic fields by Horowitz and Wehrberger [36]. Also the
electron neutrino inelastic scattering within a dense medium,
at finite temperature, and for a strong magnetic field is dis-
cussed by Bezchastnov and Haensel [45]. In this work a fully
relativistic formalism is developed for the electron neutrino
differential cross section, but instead of developing an EOS,
the authors take constant values for the electron chemical
potential. Electrons play a role in the NMFP, but its inclusion
using β-stable matter with charge neutrality is beyond the
scope of this work.

Several works discuss the neutrino cross section or mean
free path under the presence of a strong magnetic field and
in Ref. [54] we give a brief overview of these works, which
we do not repeat here. What differentiates ours from these
works is the self-consistent treatment that we do, where we
evaluate the EOS for the same conditions that we use later for
the NMFP.

Before we end this section, it is worth commenting on
some subjects where our scheme could be applied. To start
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with, in this work we considered only neutrinos. A similar
analysis can be performed for antineutrinos. In this case, we
have the scattering reactions ν̄ + n → ν̄ ′ + n′ and ν̄ + p →
ν̄ ′ + p′, together with the antineutrino absorption ν̄ + p →
e+ + n. In Ref. [4], for instance, the rates for the charged-
current processes ν + n � e− + p and ν̄ + p � e+ + n are
evaluated for a strong magnetic field and finite temperature.
This calculation is done in free space. These rates are impor-
tant for understanding the dynamics of supernova explosion
(a related discussion on the dynamics of supernovas can be
found in Ref. [5]) as well as the evolution of the proto–
neutron star just after its formation [12–14]. In another work
[6] (see also Ref. [7] for a review on the subject), the effect
of neutrinos on the r-process nucleosynthesis is discussed:
in the absorption reaction ν + n → e− + p, the capture of a
neutrino by a neutron produces a proton (and an electron).
The produced protons rapidly form low-mass seed nuclei (es-
pecially α particles) for the r process. Clearly, there would
be a competition with the antineutrino absorption reaction
ν̄ + p → e+ + n. However, in the referred work no magnetic
field is considered and the effect of the medium on the NMFP
is incorporated in an approximate way.

As a further comment on these charged-current reactions,
it should be mentioned that there are several works which
deal with this subject in the absence of magnetic fields (or
using weak magnetism) [8–11]. All these works evaluate
the (anti)neutrino rate in hot and dense matter in the mean
field level. The employment of an EOS induces changes in
the charged-current (anti)neutrino opacities which have im-
portant consequences for nucleosynthesis, flavor oscillations,
and neutrino detection on Earth (for details see Ref. [8]). In
Ref. [9] random phase approximation correlations are also
included, weak magnetism is considered in Ref. [10], while
charged currents with muons are discussed in Ref. [11]. The
general conclusion from these works is that correlations are
important for an accurate evaluation of charged-current reac-
tions.

Similar calculations within our model are feasible, but they
are not straightforward. In the first place, we have made a
point on a self-consistent treatment of the EOS and the eval-
uation of the neutrino cross section. Therefore, to evaluate
the rates, the EOS must contain electrons and positrons, a
point which we briefly discussed above and certainly is a
quite involved task when a strong magnetic field is present.
In addition, the antineutrino weak matrix elements are dif-
ferent from the neutrino ones. It should be noted that the
antineutrino results cannot be added to the neutrino ones. In
particular, a model for the relative abundance of neutrinos and
antineutrinos is required. In a rather arbitrary way, we can
group the contributions just discussed into two sets: the ones
which consider a strong magnetic field but no EOS, and the
ones which employ an EOS without a strong magnetic field.
The overall result is that both the EOS and the magnetic field
induce significant changes in the charged-current processes.
In the present work, we have shown that the relative impor-
tance of each contribution depends on the condition in which
they were evaluated. From this, and without the inclusion of
antineutrinos, we prefer not to draw any conclusion on the
effect of the magnetic field over these astrophysical problems.

We understand that the model developed in this contribution
is suitable for the inclusion of antineutrinos, together with the
inverse reactions, once a more elaborated EOS is developed.
However, and due to its complexity, we leave this analysis for
a future work.

IV. SUMMARY AND CONCLUSIONS

In this work we evaluated the NMFP for hot proto–neutron
star matter under a strong magnetic field. We considered den-
sities in the range 0.04 � ρ � 0.4 fm−3, temperatures of 5,
15, and 30 MeV, two magnetic field strengths B = 1017 and
1018 G, and different proton fractions ranging from symmetric
matter up to pure neutron matter. Due to the scale of the
processes involved, we consider the density, magnetic field,
temperature, and proton fraction as locally constant. In the
first place, we developed an EOS for polarized proto–neutron
star matter using the nonrelativistic Hartree-Fock model with
the LNS Skyrme interaction. This physical system shows an
instability for low temperatures and densities which requires
the Gibbs (Maxwell) construction for asymmetric (symmet-
ric) matter. We discussed three reactions for the NMFP:
the neutron and proton scattering, ν + n → ν ′ + n′ and
ν + p → ν ′ + p′, respectively, and the absorption reac-
tion ν + n → e− + p. In the presence of a magnetic field,
the NMFP depends on the angle between the momentum of
the neutrino and the magnetic field (which we take as the
ẑ axis). This induces an asymmetry in the mean free path
which favors the flux of neutrinos parallel (antiparallel) to the
magnetic field for the neutron scattering and the absorption
reaction (proton scattering).

We have paid special attention to develop a self-consistent
treatment of the NMFP. All the reactions also take place in
free space, where the magnitude of interest is the cross sec-
tion. It is not difficult to recalculate these cross sections when
the reactions occur in a dense medium: the corresponding
particle distribution functions are incorporated, where single-
particle energies and chemical potentials are needed. There
is a delicate balance between λneut scatt , λprot scatt , and λneutabs,
where the effect of the medium is very important. Reliable
results can only be achieved if the values for the single-
particle energies and chemical potential are consistent with
the density, temperature, magnetic field, and proton fraction
used in the evaluation of the NMFP. It is in this sense that
we understand the self-consistency of our model. In summary,
our point of view is that an accurate evaluation of the NMFP
requires the evaluation of the EOS on the same footing as the
NMFP itself.

As mentioned, the nuclear interaction leads to an instability
in the EOS for systems of two or more different kinds of
particles. Within proto-neutron star matter, to restore the sta-
bility the system splits into two phases of different densities,
spin and isospin composition. This two-phase system is as a
whole less polarized than the unstable one-phase system. To
the best of our knowledge, we have evaluated for the first time
the NMFP in this two-phase region. Our results show a de-
crease in the NMFP asymmetry and an increase in the NMFP.
Therefore, the system is more transparent and less polarized
for neutrinos with respect to the unstable one-phase system.
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This takes place in a density-temperature region which is not
our main concern; however, its inclusion was required for
completeness.

Our main concern is the asymmetry in the NMFP due to
the presence of a strong magnetic field. Each channel con-
tributing to the total NMFP exhibits a particular behavior. This
is because of the Landau quantization for charged particles.
Clearly this does not apply to λneut scatt , where there are no
charged particles; but λprot scatt exhibits the Landau quanti-
zation both in the initial and final states, while for λneutabs

Landau levels are only in the final state. By turning off the
external magnetic field, the Landau quantization disappears
and λneut scatt , λprot scatt , and λneutabs have a similar functional
dependence. We focus now on two aspects of this particular
behavior. First, variations in the proton fraction act differently
on λneut scatt and λneutabs than on λprot scatt: as the proton fraction
increases so does the partial density of protons leading to
a decrease in λprot scatt , with the opposite effect on the two
remaining channels. The second and more important point is
that the coupling of the protons with the magnetic field is
stronger than that for neutrons. This is clear from the spin
asymmetry calculations. We showed that for B = 1018 G the
asymmetry in the mean free path is dominated by λneut scatt

and λneutabs. But for B = 1017 G and symmetric matter, it is
λprot scatt which dominates this asymmetry, leading to a change
of sign for this quantity. This results from the combined action
of the strong and weak interactions.

Finally, we recall that we assume that temperature, bary-
onic density, magnetic field, and the proton fraction are locally
constants. A realistic calculation of the asymmetry in the

neutrino emission from the neutron star would require a model
for the distribution for these quantities as a function of the
position and time, starting from its early formation, when the
proton fraction is more important. As mentioned in Sec. I, one
important motivation to perform these calculations is to know
if the asymmetry in the neutrino emission could be the source
of the so-called pulsar kick. In this work, we called attention
to the dependence on the proton fraction of the asymmetry of
the neutrino emission. Our results show that the presence of a
strong magnetic field has a different effect on each of the three
reactions that we considered. Moreover, a reliable summation
of each contribution requires a self-consistent treatment with
the EOS. Perhaps the evaluation of the NMFP in a system
of protons, neutrons, and electrons in β equilibrium, charge
neutrality, and a strong magnetic field would be the simplest
realistic model to describe this problem. We understand that
such a model is not available yet. From this, we believe
that the asymmetry in the neutrino emission still should be
considered as a possible explanation for the pulsar kick phe-
nomenon.
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APPENDIX A: THE STRUCTURE FUNCTION FOR THE PROTON INELASTIC SCATTERING

We recall the proton structure function defined in Eq. (51),

Sprot
spi ,sp f ,Npi ,Np f

=
∫ ∞

−∞

d ppi,z

2π

∫ ∞

−∞

d pp f ,z

2π
(2π )2 δ

(
Esp f

+ ∣∣pν f

∣∣ − Espi
− ∣∣pνi

∣∣)
× δ

(
pp f ,z + pν f ,z − ppi,z − pνi,z

)
f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]

, (A1)

where f (Esp, μp, T ) is given in Eq. (14). The single-particle energies Esp and the chemical potential μp are obtained from a
particular model for the medium, which in our case is the Hartree-Fock approximation using the Skyrme model for the nuclear
interaction. Within this model, the nucleon single-particle energy in a magnetic field is shown in Eq. (4).

Now we use the δ function representing the momentum conservation in Eq. (A1),

Sprot
spi ,sp f ,Npi ,Np f

=
∫ ∞

−∞
d p pi,z δ

(
Esp f

− Espi
− q0

)
f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]

, (A2)

where p p f ,z = p pi,z + qz. We have defined q0 = |pνi | − |pν f | and the z component of the momentum transfer by the interaction
can be written as qz = p νi,z − p ν f ,z.

The remaining integral in Eq. (A2) can be done by solving the energy-conservation equation:

Esp f
− Espi

− q0 = 0. (A3)

When m∗
p, spi

	= m∗
p, sp f

, this equation is a polynomial of second order in p pi,z. After some algebra, we have

αp p2
pi,z + βp p pi,z + γp = 0, (A4)
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where

αp = 1

2

(
1

m∗
p, sp f

− 1

m∗
p, spi

)
, βp = qz

m∗
p, spi

,

γp = q2
z

2m∗
p, sp f

− q0 + μN B
[
2
(
Np f − Npi

) − (
sp f − spi

)
gp

] + 1

8

(
vp, sp f

− vp, spi

)
. (A5)

Note that the energy momentum of the neutrino enters into the structure function through the external quantities q0 and qz.
Energy conservation can now be rewritten as

δ
(
Esp f

− Espi
− q0

) = 1(
β2

p − 4α2
pγ

2
p

)1/2

[
δ
(
p pi,z − p+

pi,z

) + δ
(
p pi,z − p−

pi,z

)]
, (A6)

where p±
pi,z are the roots of Eq. (A4). Finally, the expression for the structure function is given by

Sprot
spi ,sp f ,Npi ,Np f

= 1(
β2

p − 4α2
pγ

2
p

)1/2

{
f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]∣∣

p pi ,z=p+
pi ,z

+ f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]∣∣

p pi ,z=p−
pi ,z

}
. (A7)

For the case m∗
p, spi

= m∗
p, sp f

, we have

pr
pi,z = −γp

βp
, (A8)

and finally,

Sprot
spi ,sp f ,Npi ,Np f

= 1

|βp| f
(
Espi

, μp, T
) [

1 − f
(
Esp f

, μp, T
)]∣∣

p pi ,z=pr
pi ,z

. (A9)

APPENDIX B: PROTON SCATTERING CROSS SECTION AT B = 0

In this Appendix we consider the limiting case of the proton scattering cross section in Eq. (56), for B → 0, showing its
coincidence with the well-known expression in the absence of a magnetic field. As this task is rather involved, it is done in three
steps. The first one is rather simple: we obtain the B = 0 limit for the weak matrix transition element. In the second step, we
operate over the B 	= 0 cross section to obtain a certain expression. Finally, in the third step, we also operate over the B = 0 cross
section until we arrive at the same expression as in the second step. In this way, we conclude that our B 	= 0 cross section has
the right limit.

Step i: The weak transition matrix element from Eq. (56). From that expression, we extract the factor

Wfactor = 1

2

∑
sp f =±1

[
HμαLμα

∣∣
si=1,s f

+ HμαLμα
∣∣
si=−1,s f

]
Sprot

Npi ,Np f
, (B1)

where we have already put Aprot = 0, the value for the spin asymmetry when B = 0. Also, the structure function does no longer
depend on the spin and it has been replaced by a common function Sprot

Npi ,Np f
. Now, from Eq. (57), it is straightforward to perform

the spin summation, which leads to

WB=0
factor = 2

[
C2

V

(
1 + cos θνi,ν f

) + C2
A

(
3 − cos θνi,ν f

)]
Sprot

Npi ,Np f
, (B2)

where we have employed

cos θνi,ν f = cos θν f cos θνi + sin θν f sin θνi cos φν f . (B3)

For the next two steps we follow the prescriptions given by Bezchastnov and Haensel [45].
Step ii: The total cross section for B 	= 0 in Eq. (56). For convenience, we repeat the expression for the cross section:

σprotscatt ( �pνi )

V
= G2

F

2

eB

2π

∫
d3 pν f

(2π )3

Np f , max∑
Np f =0

∑
sp f =±1

Npi , max∑
Npi =0

I2
Npi ,Np f

(ω⊥)

×
[(

1 + Aprot

2

)
Sprot

si=1,sp f ,Npi ,Np f
HμαLμα

∣∣∣∣
si=1,s f

+
(

1 − Aprot

2

)
Sprot

si=−1,sp f ,Npi ,Np f
HμαLμα

∣∣∣∣
si=−1,s f

]
.
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Following Ref. [45], we employ

∑
Npi ,Np f

→
∫∫

d 2 p⊥d 2 p′⊥
4(eB)2

, (B4)

I2
Npi ,Np f

(ω⊥) → 2eB

π

√(
p2

1 − ν2
⊥
)(

ν2
⊥ − p2

2

) , (B5)

where

ω⊥ = ν2
⊥/2eB,

�ν⊥ = (
pνi,x − pν f ,x

)
ı̂ + (

pνi,y − pν f ,y
)
ĵ ,

�p⊥ = ppi,x ı̂ + ppi,y ĵ ,

�p′⊥ = pp f ,x ı̂ + pp f ,y ĵ ,

�p1 = �p′⊥ + �p⊥,

�p2 = �p′⊥ − �p⊥,

�k⊥ = pνi,x ı̂ + pνi,y ĵ ,

�k′⊥ = pν f ,x ı̂ + pν f ,y ĵ .

Note that Eq. (B5) is discussed in Ref. [73]. For further use, we have already shown the expressions for �k⊥ and �k′⊥.
Now we replace Eqs. (B2), (B4), and (B5), together with the definition of the structure function given in Eq. (51), into

Eq. (56), and we obtain

σprotscatt
(
�pνi

)
V

= G2
F

(2π )2

∫
· · ·

∫
d3 pν f

(2π )3
d 2 p⊥ d 2 p′

⊥ d ppi,z d pp f ,z
1√(

p2
1 − ν2

⊥
)(

ν2
⊥ − p2

2

)
× [

C2
V

(
1 + cos θνi,ν f

) + C2
A

(
3 − cos θνi,ν f

)]
δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣)
× δ

(
pp f ,z + pν f ,z − ppi,z − pνi,z

)
f
(
Epi , μp, T

) [
1 − f

(
Ep f , μp, T

)]
. (B6)

Note that all eB factors have already canceled out.
Step iii: The total cross section for B = 0. In the absence of a magnetic field, the analytical expression for the total cross

section is the same for both the neutron and proton scattering reactions. The only difference is in the values for the coupling
constants CA and CV . We take the expression for the cross section from Ref. [53], where we have replaced the structure function
for its explicit expression:

σ B=0( �pνi )

V
= G2

F

(2π )2

∫
· · ·

∫
d3 pν f

(2π )3
d 3 ppi d

3 pp f

[
C2

V (1 + cos θνν ′ ) + C2
A(3 − cos θνν ′ )

]
× δ

(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣) δ
(
�pp f + �pν f − �ppi − �pνi

)
f
(
Epi , μp, T

) [
1 − f

(
Ep f , μp, T

)]
. (B7)

The momentum conservation can be rewritten as

δ
(
�pp f + �pν f − �ppi − �pνi

) = δ
(
pp f ,z + pν f ,z − ppi,z − pνi,z

)
δ( �p′⊥ + �k′⊥ − �p⊥ − �k⊥). (B8)

We employ now the following identities (also from Ref. [45]):

d 3 ppi d
3 pp f = 1

4 d ppi,z d pp f ,z d 2 p⊥ d 2 p′
⊥ dχ dβ (B9)

and

R ≡
∫ 2π

0
dχ

∫ 2π

0
dβ δ( �p′⊥ + �k′⊥ − �p⊥ − �k⊥) = 4√(

p2
1 − ν2

⊥
)(

ν2
⊥ − p2

2

) . (B10)

We refer the reader to Ref. [45] for the demonstration of the last expression. We replace these expressions in Eq. (B7), in two
steps,

σ B=0
(
�pνi

)
V

= G2
F

4 (2π )2

∫
· · ·

∫
d3 pν f

(2π )3
d 2 p⊥ d 2 p′

⊥ d ppi,z d pp f ,z
[
C2

V (1 + cos θνν ′ )

+ C2
A(3 − cos θνν ′ )

]
δ
(
Ep f + ∣∣pν f

∣∣ − Epi − ∣∣pνi

∣∣) δ
(
pp f ,z + pν f ,z − ppi,z − pνi,z

)
× R f

(
Epi , μp, T

) [
1 − f

(
Ep f , μp, T

)]
, (B11)
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where the replacement of R [Eq. (B10)] into this expression shows the coincidence with Eq. (B6).
Before we finish this Appendix, we should pay attention to a subtle point. Under the presence of a magnetic field, a charged

particle has a value for the momentum only in the z direction, that is, pz. In Eqs. (B4) and (B5), it is implicit that in the limit
process B → 0, the quantum number N is replaced by the vector �p⊥ = px ı̂ + py ĵ . Owing to this prescription the single-particle
energies in Eqs. (B6) and (B11) are the same and so is the distribution function f (Ep, μp, T ). While the procedures in points (i)
and (iii) are exact, the one in point (ii) is a reasonable assumption needed to obtain the right limit. A more complete discussion
can be found in Ref. [73].
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