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Precision pulse shape simulation for proton detection at the Nab experiment
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The Nab experiment at Oak Ridge National Laboratory, USA, aims to measure the beta-antineutrino angular
correlation following neutron β decay to an anticipated precision of approximately 0.1%. The proton momentum
is reconstructed through proton time-of-flight measurements, and potential systematic biases in the timing
reconstruction due to detector effects must be controlled at the nanosecond level. We present a thorough and
detailed semiconductor and quasiparticle transport simulation effort to provide precise pulse shapes, and report
on relevant systematic effects and potential measurement schemes.
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I. INTRODUCTION

Precise measurements of weak interaction effects in (nu-
clear) β decay have been at the forefront of the standard
model’s (SM) development and continue to provide stringent
tests of beyond SM physics [1–11]. The neutron, in particular,
is an attractive system due to the absence of nuclear struc-
ture corrections, its role in cosmology and accessibility by
lattice QCD techniques [12–19]. Within the standard model,
the decay process can be completely determined through mea-
surements of the neutron lifetime [20–26], and the admixture
of vector and axial vector strengths in its decay through, e.g.,
angular correlation measurements [27–31]. Stringent tests of
the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing ma-
trix using these results are particularly powerful [32,33] due to
the absence of nuclear structure corrections that dominate the
uncertainty on the global average on Vud , the up-down matrix
element [34]. The importance of the latter is amplified by
the current tension in the top-row CKM unitarity requirement
[35,36] (the so-called Cabibbo angle anomaly [37–40]), and
recent progress on electroweak radiative corrections [41–46].
Additionally, spectral and angular correlation measurements
have complementary sensitivity to exotic scalar and tensor
currents in the weak interaction [47–52], including right-
handed neutrino couplings [9,35].

*Corresponding author: lmhayen@ncsu.edu

The Nab experiment[53] aims to measure the angular cor-
relation between the emitted electron and the antineutrino
following neutron β decay at the per-mille level, resulting
in a determination of the axial-to-vector coupling constant
at the 0.04% level. When combined with a measurement of
the neutron lifetime at the 0.25 s (0.03%) level [22], this will
enable a determination of Vud at precision levels comparable
to the superallowed Fermi decay data set. Given the exceed-
ingly small interaction cross section for antineutrinos, this
correlation is typically measured by detecting the outgoing
proton, possibly in coincidence with the outgoing electron.
Because the proton emerges with a maximal kinetic energy
of 751 eV, these are detected after postacceleration using a
variety of detector technologies [54–60]. The Nab experiment
uses high-purity, thick silicon detectors [61,62] which display
excellent linearity over the full range of energies for electrons
emerging from neutron β decay. The proton momentum is
reconstructed from the time of flight from the decay vertex to
its detection after passing through a magnetic field-expansion
region. As a consequence, for Nab to reach its anticipated
precision, systematic effects in the timing reconstruction must
be understood at the subnanosecond level. As such, detector-
related effects that change the anticipated pulse shape must be
sufficiently understood.

A detailed description of the response of high-purity sil-
icon detectors under irradiation is a central pillar of much
of nuclear and particle physics [63–67]. In particular, the
segmentation and extreme radiation conditions at colliders
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have driven substantial efforts for numerical simulation of
device performance and signal prediction [68–74]. Extensive
work has been performed to unlock position sensitivity in
large germanium detectors using pulse shape discrimination
[75–82] while the KATRIN Collaboration developed custom
simulation software to model low-energy electrons incident
on Si detectors [83,84]. Additionally, the advent of (cryo-
genic) semiconductor technology for dark matter searches
[85,86] points to an increased need for precise descriptions of
low-energy nuclear radiation interactions [87,88]. Even so, the
operational regime for proton detection in the Nab experiment
is virtually unexplored due to the low proton energy and strin-
gent timing constraints. In this work, we describe a detailed
model for pulse shape simulation of incoming protons, with
results directly applicable to electrons as well.

The paper is organized as follows: Section II describes an
overview of the experiment, requirements on detector timing
performance and accurate decay event reconstruction. Sec-
tion III describes a number of general semiconductor inputs
to the model and a critical literature study, which is used
in the following sections. In Sec. IV we describe detailed
electric and weighting field simulations for our experimental
configuration, which are used in Sec. V to perform Monte
Carlo simulations of quasiparticle transport and investigate
collective effects. Section VI takes the preceding ingredients
to perform detailed pulse shape simulation through Monte
Carlo charged particle transport and electronics simulations.
By varying internal parameters of the models and results
from the preceding chapters, Sec. VII studies Nab’s sensitivity
to a variety of observables and proposals of measurement
schemes. Finally, Sec. VIII provides a summary and outlook.

Features of note in this analysis of pulse shapes include
(i) the explicit incorporation of diffusion, plasma effects, and
Coulomb repulsion into pulse shape evolution, (ii) an en-
ergy per quasiparticle tuned to reproduce empirical energy
dependence data, (iii) the capability to model undepleted ma-
terial using Gunn’s theorem, (iv) dead layer models based on
manufacturer’s impurity density profiles near the rectifying
junction, and (v) detailed models of pixel isolation using p-
stop and combined p-spray and p-spray geometries.

II. EXPERIMENT OVERVIEW

The goal of the Nab experiment is to measure the β-ν
angular correlation following neutron β decay. The standard
model differential decay rate for neutron decay rate is known
to high precision and can be written as [89–91]
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where ellipses represent higher-order terms that vanish in the
measurement scheme in Nab, Ee(pe) is the electron energy
(momentum), F is the traditional Fermi function, σn is the
initial neutron polarization, and we omitted a number of mul-

tiplicative small corrections for notational clarity [90]. For an
unpolarized neutron beam, terms proportional to σn average to
zero and one is left with the β-ν angular correlation, denoted
a, and the Fierz interference term, bF . The former can be
written in terms of the vector and axial coupling constants as

a
LO= 1 − λ2

1 + 3λ2
, (2)

where λ ≡ gA/gV is the ratio of coupling constants. The Par-
ticle Data Group (PDG) reports the value of the correlation
parameter a already corrected for higher order effects, making
Eq. (2) rigorously correct to first order in recoil correc-
tions. Using the current PDG [92] average, λ = 1.2754(13),
Eq. (2) resolves to aPDG = −0.10657(38) implying a sub-
stantial cancellation in Eq. (2). As a result, while such a
cancellation precipitates increased sensitivity to λ it obtains
larger fractional changes originating from higher-order cor-
rections. These were recently reevaluated [91], however, and
are adequately understood. The Fierz interference term, on
the other hand, is sensitive only to beyond standard model
currents (assuming left-handed neutrinos),

bF = 2
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where α is the fine-structure constant and εX ≈
(246 GeV/	X ) are exotic couplings appearing due to loop
effects from new physics at a scale 	X [35,50,93]. Similar
exotic currents appear in a but appear only at quadratic
order. Sensitivity therefore originates predominantly from
an (effective) Fierz measurement, or CKM unitarity tests
through the joint determination of λ and the neutron
lifetime [22].

A. Measurement principle

Neglecting radiative decay (i.e., n → peν̄γ ), conservation
of three-momentum implies

p2
p = p2

e + 2pe pν cos θeν + p2
ν (4)

where θeν is the angle between electron and antineutrino three-
momentum. The latter is the same as that of Eq. (1) and is
the main quantity of interest. The large proton mass means its
kinetic energy contribution can be neglected when compared
to that of the antineutrino, so that one can set pν = (E0 − Ee).
Determining both proton and electron momentum then allows
one to determine θeν on an event-by-event basis. The term
proportional to a in the differential decay rate of Eq. (1)
becomes a linear function of p2

p,

d�

dEed p2
p

∝ 1 + aβ
p2

p − p2
e − (E0 − Ee)2

2Ee(E0 − Ee)
(5)

when (p2
p − p2

e − p2
ν )/2pe pν � 1 and zero otherwise. Here,

β = pe/Ee = v/c is the electron velocity. For a constant elec-
tron energy, the slope of the decay distribution is proportional
to a. Performing this procedure at various different electron
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FIG. 1. Overview of the Nab apparatus and electromagnetic
fields in the “a” configuration. Cold neutrons from the Fundamental
Neutron Physics beam line at Oak Ridge National Laboratory decay
in flight. Emitted charged particles can only overcome the rapid in-
crease in magnetic field (denoted Magnetic Filter) if their momentum
is sufficiently longitudinal. The upper detector is floated at −30 kV
to accelerate protons above the detection threshold.

energies allows one to disentangle systematic effects related
to electron spectroscopy and particle transport dynamics.

Figure 1 shows an overview of the Nab apparatus and elec-
tromagnetic field arrangement for optimal sensitivity to an aβν

measurement. A cold neutron beam passes through a decay
volume inside a magnetic spectrometer with segmented sili-
con detectors placed on either end in an asymmetric fashion
(see Refs. [53,61] for a more complete discussion). Electrons
and protons emerging from the decay volume can move either
to a detector located about 1 m below beam height or move
through a 6 m low-field region into an upper detector.

The Nab experiment requires a coincidence signal of both
particles, with the electron detected in either detector and the
proton in the upper detector. The proton momentum is recon-
structed through the time difference between the relativistic
electron trigger and the proton time of flight in the low-field
region. In order to narrow the proton momentum reconstruc-
tion function, the Nab experiment implements an angular filter
for particles to reach the upper detector. Particles with an
upwards velocity component encounter a substantial mag-
netic field increase that acts as an angular cut, such that only

particles with angles larger than θmin = cos−1 √
1 − B0/Bmax

will make it to the top detector. A substantial magnetic field
decrease after the angular selection serves to (nearly) adiabati-
cally longitudinalize the momentum along the flight direction.
For protons, with a maximum of 751 eV of kinetic energy,
transport to the upper detector takes at least about 10 µs
(compared to tens of nanoseconds for electrons) so that to first
order the time difference between electron and proton hits is
simply the proton travel time. In the ideal (but unphysical)
scenario, this would result in the trivial relationship

pp = mpL

tp
, (6)

where L is the path length and tp the proton time of flight. In
reality, the random initial emission angle smears the transport
time from the decay volume to the magnetic field maximum,
resulting in a broadening of the proton momentum extrac-
tion. Taking into account several additional complications, the
time-of-flight distribution can instead be written as
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where φ is the spectrometer response function and � encodes
further broadening effects. In the idealized case of Eq. (6)
we may simply write φ(t−2

p , p2
p) = δ(t−2

p − p2
p/(mpL)2). A

realistic assessment of φ is one of the main targets of the Nab
experiment and can be addressed in a number of complemen-
tary ways. There are a number of effects, however, that are not
easily accessible without dedicated study and requiring input
from simulation.

B. Timing requirement

A major concern is the appearance of a timing mismatch
between what is predicted from spectrometer transport and
what is extracted from the detector response. The latter
is a three-step process, as it comprises physical transport
from the decay volume to the detector, the transport time of
quasiparticles and induced charge on the electrodes, and a re-
construction of the impact time from the saved waveform after
analog and digital filtering. In this work we will be concerned
mainly with the latter two mechanisms, as we explore how
different processes introduce timing offsets and wave form
variability depending on internal detector parameters.

We may estimate the relevant scale for these offsets
through a dimensional analysis, as a change in a resulting
from an offset � will be proportional to �/tp. Using tp ≈
10 µs for a proton’s 5 m transport time, a 1 ns unaccounted
offset results in a false offset in a at the 10−4 level. Relative
to the standard model prediction, aSM

βν ≈ −0.1, such an effect
would constitute a relative O(0.1%) systematic bias. A more
elaborate way of performing an analytical estimate of the
introduced timing bias results in a false a, afalse, as

afalse ≈ 2pe pν

βp2
p,max

tp

t2
p,min

�, (8)
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where pp,max is the maximal proton momentum and tp,min the
minimal proton time of flight, in agreement with the dimen-
sional analysis estimate. As Nab aims for a determination of
aβν to 0.1%, systematic timing offsets in the reconstruction
must be controlled at the nanosecond level or below. This
stringent requirement will be a common thread throughout
this work as we study various effects of timing bias and pulse
shape changes.

C. Event reconstruction

In order to achieve the physics goals of the Nab ex-
periment, decays must be accurately reconstructed, i.e. a
determination of proton and electron hit locations, the point
in time when they are incident on a detector face, and the
electron energy. As discussed, electrons generate a prompt
“start” for an extraction of the proton time of flight (TOF),
with any bias in this measurement being a critical parameter
for the Nab experiment. The extracted TOF is potentially
very strongly influenced by detector pulse-shape effects, mo-
tivating the development of an accurate model for detector
response. The accurate binning of detected coincidences with
respect to the electron energy is also important. Dominant
effects for the electron energy binning are expected at roughly
the percent level from bremsstrahlung losses. The interpre-
tation of electron events can be complicated because they
have a relatively high probability of scattering in the detector
material, potentially resulting in one or more “backscattering”
events. When electrons backscatter, they do not deposit their
full energy in one interaction with the detector, but instead
reverse their longitudinal momentum and reemerge from the
detector. They can subsequently either reflect from the mag-
netic “pinch” (located at z = 0 in Fig. 1) or hit the opposite
detector face. While, to zeroth order, all of the electron energy
is deposited in either one detector or another, meaning the
resultant energy errors are expected to be much smaller than
those from bremsstrahlung, “missed” backscatters can result
in a shifted “start” time and strong variations in pulse shape.
A detailed treatment of these event topologies lies beyond the
scope of the current manuscript and will be discussed in a
followup work.

From the point of view of the detector response, several
complicating factors occur that can potentially introduce bias
in TOF and energy measurements: (i) the backscattering prob-
ability off the detector is slightly energy dependent, and its
threshold detection depends on the semiconductor junction
structure; (ii) the quasiparticle transport time can have strong
local dependencies due to local impurity density variations
affecting the electric field; (iii) the time dependence of the
induced charge on an electrode will be strongly deformed
near pixel boundaries due to geometrical effects; (iv) nonion-
izing energy losses (NIEL) depend on the proton momentum,
which translates into an energy-dependent subthreshold event
fraction; (v) quasiparticle creation and transport are strongly
temperature dependent. While several of these can be ad-
dressed in part through calibration, high quality model input is
required to disentangle experimental results and train analysis
extraction scripts and apply “benchmark” calibration data to
the global beta decay data set (over all possible particle energy
combinations and initial emission angles).

Finally, to avoid events where decay particles interact
with the spectrometer boundary surfaces and to ensure each
proton event is paired with a physically reasonable electron
coincidence, the fiducial volume for allowed decays must
be unambiguously defined. The segmentation of the detector
provides this capability, but also introduces charge sharing
effects near pixel boundaries and rather large pulse shape
effects as a function of the position for a given event incident
on a given pixel. Defining the fiducial volume also plays a
role in measuring backgrounds produced when the neutron
beam is present (making a neutron “beam off” measurement
not possible). These backgrounds will be determined using
the events detected in pixels where particles originating in
the neutron beam (entrained in the spectrometer fields) can
not reach, and are outside the fiducial volume for neutron
decay events. An accurate detector model can use the ex-
pected pulse shapes and event histories to strongly constrain
events near pixel boundaries and account for charge sharing
effects.

III. MODEL INPUT

In this section we summarize the model input and discuss
consequences of its individual components. Some compo-
nents are specific to the Nab apparatus, such as the detector
geometry (Sec. III A) and doping (Sec. III B), whereas the
carrier transport (Sec. III D), charge collection efficiency
(Sec. III E), and pair creation energy (Sec. III C) are more
generally applicable. The combination of these ingredients
will combine with detailed simulation results discussed in
the following sections to provide the most precise description
of pulse shapes in ultrapure silicon detectors, discussed in
Sec. VI.

A. Detector geometry

The choice of detector technology for the Nab experiment
was guided by a number of constraints: (i) due to the sensi-
tivity to the electron energy, detectors should be highly linear;
(ii) for accelerated protons to be detected with high efficiency,
incomplete charge collection in the entrance window should
be minimal; and (iii) to reduce backgrounds and force topo-
logically consistent coincidence events, the detector should
be highly segmented. The result is a 127-pixel, 1.5 or 2 mm
thick ultrapure silicon detector with an implanted, sub-100 nm
p-type entrance window. A schematic overview is shown in
Fig. 2.

The Nab detectors are made from high-purity Si with slab
thicknesses of 1.5 and 2.0 mm and outer diameter of 13.5 cm.
The front face is a rectifying contact made through Boron
implantation with an estimated thickness of 100 nm, overlaid
with a square Al grid for biasing and charge restoration.
The latter covers about 0.4% of the surface and is effec-
tively opaque to protons. The back side is highly segmented
via 127 individual Ohmic contacts through aluminum coat-
ing to form individual hexagonal pixels with a surface of
about A = 70 mm2 and separated from neighboring pixels
by a 100 µm gap. The Si bulk and Al coating are separated
by an oxide passivation layer of a few nanometers thick.
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FIG. 2. Overview of the Nab silicon detector geometry [94]. Top:
The Ohmic side is segmented into 127 individual pixels each with a
total area of 70 mm2. The junction side is featureless by design with
the exception of an aluminum biasing grid with 4 mm separation.
Bottom: Cross section showing schematic impurity density profiles
and inter-pixel isolation.

The choice of hexagonal pixels has a number of benefits:
(i) a planar surface can be efficiently filled; (ii) each corner
connects only three pixels, thereby limiting charge sharing
effects; and (iii) most of the inner surface is quasicylindrically
symmetric.

B. Doping profile

1. Bulk

The Nab detectors are constructed using ultrapure silicon
grown along the 〈100〉 crystal axis. The detectors should be
capable of fully stopping 782 keV (the neutron decay Qβ

value) electrons. The minimal thickness must therefore be at
least 1.5 mm, which implies that the required crystal purity ap-
proaches that of intrinsic silicon. As such, crystals are grown
using the float-zone technique, where a polycrystalline feed
rod is made molten using high-power radiofrequency coils to
create a liquid interface with the seed crystal [95]. Because of
the large diameter of the crystal required, the needle-eye tech-
nique was used, where the induction coils have a much smaller
diameter than the boule to ensure homogeneous heating. The
subsequent widening of the melt means the connection to the
target rod and its crystallization process are a complex inter-
play between a variety of local and environmental conditions
such as temperature, pressure and impurity concentration. On
average, the bulk resistivity for the Nab detectors is estimated
to be at least 25 k� cm, with depletion studies pointing to-
wards an effective impurity density of (3–6) × 1010 cm−3.
Local deviations introduce a position dependence on the pulse
shapes for physics events, however, and require additional
scrutiny.

As impurities (i.e., metals, but also oxygen, carbon, and
others) have a higher diffusivity in the silicon liquid phase,
the monocrystal can be made substantially more pure than
the polycrystalline feed rod [96–98]. On the other hand,
float-zone silicon is susceptible to variations in the impurity
concentration. The dopant concentration along the length of
the boule, for example, varies due to the buildup of impurities
in the melt as the process proceeds up the feed rod. Depending
on the type of impurity, however, axial concentration gradients
can be minimized through one or more passes [99]. Radial
gradients, on the other hand, present a much more substantial
issue for larger crystals (>100 mm diameter) [100]. Unlike
the impurities present in the polycrystalline feed rod, dopants
such as phosphorus for n-type silicon are typically introduced
through a vapor inside the chamber and therefore follow the
flow of the silicon melt. Due to the large diameter difference
between the needle-eye feed rod-melt interface and the melt-
target rod interface, the dynamics of the melt is determined by
substantial temperature gradients along with gravity following
the Navier-Stokes equation [101].

In a simplified picture, the flow of the liquid silicon is de-
termined by the Marangoni force, electromagnetic forces from
the induction coils, and buoyancy forces inside the melt due to
temperature and density gradients [101]. Whereas the former
two (partially) cancel, buoyancy forces create convection cells
inside the melt. Detailed simulations of the float-zone process
[101–104] show crystals with diameters larger than 100 mm
having two or more convection cells along the radial direction.
The consequence is that, as impurities and dopants will follow
the flow inside the melt before crystallizing, an accumulation
of dopants occurs at the confluence of these convection cells.
These result in a reduced resistivity band concentric with the
boule axis, and more generally a complex radial impurity
density profile. Relative differences in impurity concentration
can exceed 50–100%, in agreement with experimental obser-
vations [95,105].

The presence of radial gradients in the bulk impurity den-
sity profile will have profound effects on the electronic pulse
shape of physical events and their timing reconstruction, and
will be studied in detail in Secs. IV and VII A 1.

2. Junction and contact implantation

Following the schematic representation of Fig. 2, the bulk
material as described above undergoes a number of implanta-
tion steps to create the diode junction and pixel contacts. The
former is a p+ junction created via Boron implantation with
a penetration depth of O(100) nm. As this junction results
in poor charge collection (see Sec. V C) and crystal damage,
it is imperative that this be layer be as thin as possible and
remain so even after annealing. Results from secondary ion
mass spectroscopy (SIMS) [106–108] using a primary oxy-
gen beam are shown in Fig. 3 before and after annealing.
The latter results in a general loss of boron by 28% and
thermal diffusion increases the depth by which the concen-
tration reaches 1 × 1016 cm−3 by 40%. Similar changes occur
for the thermally grown oxide layer at the front face, where
the concentration decreases by an order of magnitude over
the space of a nanometer. The concentration bottoms out at
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FIG. 3. Secondary ion mass spectroscopy results using an oxy-
gen beam for the boron and oxygen concentration on the front face
of the detector before and after annealing.

1 × 1016 cm−3 due to implantation of the primary oxygen
beam. The crystal structure after annealing should resolve
many of the defects introduced after implantation. Even so, we
neglect effects due to channeling in this work when discussing
charge transport in Sec. VI B.

The readout geometry, on the other hand, is defined via
n+ implantation on the back side of the crystal, creating
an n+-on-n ohmic pixel. Together with the aluminum metal
contact, a thin (several nm) thermally grown SiO2 layer,
and monocrystalline silicon, these form a metal-oxide semi-
conductor (MOS) junction. Due to ultrathin insulating oxide
layer, the tunneling process is exponentially enhanced even
though multiple phenomena contribute at different temper-
atures [66,99]. The oxide layer experiences strain at the
interface with the bulk silicon, however, and additional static
positive charges are always present in the oxide layer even
after annealing [109–111]. The latter causes an accumulation
layer of electrons, effectively creating a conductive channel
between n+ implants.

One way of interrupting this channel is by introducing a
large p-type doping in between pixels, using either p-stop
or p-spray technologies [68,70,73,112–115]. In the case of
p-spray, the full surface is implanted with Boron which is then
overcompensated through Phosphorus implantation to create
the n+ regions. For p-stop, meanwhile, the p-type doping is
introduced via implantation using an additional mask. Due to
the sharp features of the implant on the edges (see Fig. 4),
however, high electric fields that may cause breakdown are
sometimes observed. As a remedy, moderated p-spray [114]
is sometimes preferred, where the center of the interpixel gap
contains a higher dopant concentration, as shown in Fig. 4.
The Nab detectors come in two varieties, with some pro-
duced using p-stop implants and the others using moderated
p-spray.

In Sec. IV C, we perform detailed simulations of the elec-
tric and weighting fields close to the p-type implantation for
both types of pixel isolation technology. These results are
used in Sec. VII C to study charge sharing effects for events
occurring close to pixel boundaries.

FIG. 4. Overview of pixel isolation strategies: (A) No isolation,
(B) p-spray, (C) p-stop, (D) p-stop and p-spray. The two Nab config-
urations consist of pure p-spray (B) and a combination of p-stop and
p-spray (D).

C. Pair creation energy

Charged particles entering the detector lose energy through
a variety of channels, some of which cause the creation of
particle-hole pairs. In a typical ionization event, a bound elec-
tron inside the valence band is promoted to the conduction
band leaving behind a hole. As such, the minimal energy
required is the size of the band gap, which for silicon is Eg =
1.12 eV at 300 K. Experimentally, however, the mean energy
required for the creation of a particle-hole pair is substantially
higher than Egap, a feature that is observed in all semicon-
ductors. Additionally, the variation in the number of created
particle-hole pairs is nonzero, but substantially lower than ex-
pected from independent Poisson processes. One defines the
following semiconductor-specific pair-creation energy (PCE)
and Fano factor,

εph = E

〈N (E )〉 , (9a)

F = 〈N2(E )〉 − 〈N (E )〉2

〈N (E )〉 , (9b)

where E is the incoming particle energy, N the number of
particle-hole pairs, and 〈· · · 〉 denotes the average value. The
Fano factor, F , reduces the variance through σ 2 = FN and
is experimentally found to be close to 0.11, while for the
average particle-hole creation energy one finds εph ≈ 3.6 eV.
The threefold increase of the latter over the band-gap energy
is typically understood via the creation of optical phonons and
population of final state energies below Eg [116]. As the pri-
mary electron slows down, its conversion into optical phonons
becomes more efficient and the average energy needed for
a particle-hole pair increases. Both the band-gap energy and
phonon population depend on the detector temperature, so that
thermal changes in εph set a constraint for the required thermal
stability of the Nab detectors.
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FIG. 5. Behavior of the pair-creation energy as a function of tem-
perature for electrons and γ rays. Here, Canali refers to Eq. (11), the
data are by Pehl et al. [117], and the simulation results are discussed
in a followup work. A vertical line is shown at room temperature,
whereas the typical Nab detector operating temperature lies around
110 K.

Temperature effects on εph have been studied by a number
of authors in the past, although results do not unequivo-
cally agree [117–120]. Early theoretical arguments pointed
towards a linear relationship between εph and Eg, where all
temperature dependence is assumed to come from that of the
band-gap energy [88,121–123]. The latter is typically written
as

Eg(T ) = Eg(0) − aT 2

T + b
, (10)

where Eg(0) = 1.1692 eV, a = (4.9 ± 0.2) × 10−4 eV, and
b = 655 ± 40 K. This results in Eg(300 K ) = 1.12 eV and
Eg(120 K ) = 1.16 eV. Following earlier partitions of εph into
phonon and ionization contributions, Canali et al. [120] find

εph(T ) = 2.15Eg(T ) + 1.2 eV, (11)

but it is generally in poor agreement with the precise data of
Pehl et al. [117]. While several theoretical descriptions have
been performed in a variety of semiconductor compounds at
room temperature, little focus has been dedicated to study
its temperature dependence. For this work we take the ex-
perimentally determined pair production energy as empirical
input for our detector model. By taking into account a more
sophisticated treatment of phonon creation and absorption,
discussed in more detail in a followup work, we are able to
recover the behavior found by Pehl et al., shown in Fig. 5.

D. Charge carrier transport

Once liberated, the movement of free charge carriers is
determined completely by a set of coupled equations, the first
being the drift-diffusion equation

J
−q

= −D∇n − nμnE, (12a)

∂n

∂t
= −∇ · J + R, (12b)

where q = e is the absolute electron charge, n is the free
electron concentration, μn is the mobility, D is the diffusion
coefficient, J is the particle current and R is a generation-
recombination coefficient. The electric field E is determined
as the solution to the Poisson equation ∇ · E = q(p − n).
While the sudden liberation of charge carriers due to a travers-
ing charged particle can be interpreted as a nonzero R, the
effect of the additional charge is typically sufficiently small
for it not to disturb the externally applied fields. An exception
occurs when the density is sufficiently high, leading to plas-
malike effects discussed in Sec. V B, and when the detector
is not fully depleted (see Sec. IV D). We additionally note
that, in thermal equilibrium (i.e., J = 0), Eq. (12a) implies
that a nonzero gradient in carrier density results in a similarly
nonzero electric field even outside of the traditional deple-
tion zone. This fact will become essential when discussing
entrance window effects in Sec. V C.

In the assumption that the charge injection is sufficiently
small with respect to the doping concentration, the charge
carrier motion is determined completely by drift and diffusion.
The diffusion coefficient can be obtained from the Einstein
relation

D = kBT

q
μn, (13)

where kB is Boltzmann’s constant. Before we discuss the ef-
fects of diffusion in greater detail in Sec. V A, it is worthwhile
to provide an order-of-magnitude estimate of the relative ef-
fects of drift and diffusion as a function of time. The latter
proceeds according to classical expectations, where the charge
cloud expands over time to a Gaussian shape with a standard
deviation set by σD = √

2Dt after an elapsed time t . After the
same amount of time, drift along the electric field has propa-
gated charges along a distance x = 〈μE〉t . As a consequence,
the effects of diffusion are relevant predominantly at short
timescales whereas drift determines the long-term motion.
The turnover time can be simply estimated as t = 2D/(μE )2,
which for typical conditions in the Nab experiment results in
a few picoseconds (discussed in more detail below). Diffusion
at this timescale results in a charge cloud with a width on the
order of a few hundred nanometers. The latter is negligible
with respect to the thickness of the detector, so that transport
through the detector occurs predominantly through drift. It is
comparable, however, to the size of the junction entrance and
will significantly influence the charge collection efficiency
(see Sec. V C).

1. Mobility

Following the drift-diffusion equation [Eq. (12)], charge
carriers propagate along the local electric field through the
mobiliy, a proportionality constant defined as

vd = μE, (14)

where vd is the drift velocity. For low electric fields and high
temperatures, the drift velocity behavior is purely ohmic and
μ reduces to a constant μ0. At high fields, saturation occurs
due to interaction with the lattice as the phonon production
rate vastly outpaces the absorption cross section as the car-
rier energy increases [124–126]. In these circumstances, the

065503-7



LEENDERT HAYEN et al. PHYSICAL REVIEW C 107, 065503 (2023)

effective temperature of the charge carriers exceeds that of the
lattice so that these are typically referred to as “hot electrons”
[127].

While ab initio treatments of electron-phonon interactions
are evolving rapidly [128–132], similar treatments of the
mobility reach good qualitative agreement at room temper-
ature [133–136] but are underexplored at low temperatures.
In these cases, one must fall back on semi-classical Monte
Carlo treatments [137,138] using phenomenological models
of phonon scattering [139,140]. There is a vast library of
experimental work available, however, including high quality
data sets for ultrapure silicon at cryogenic temperatures by
Canali and collaborators [124,141–145]. Drift velocity mea-
surements are performed along different crystalline axis, and
can generally be described well using an empirical function
[63,146],

vd = μ0E
[1 + (μ0E/vs)1/β]β

, (15)

where vs is a saturation velocity and β a fit coefficient. In
the case of germanium, an additional term is often added to
account for the Gunn effect [147], but this is not applicable to
silicon.

The Nab detectors contain both extremes in impurity den-
sity, since the implanted junction region has extremely high
dopant concentrations (see Fig. 3), whereas the bulk is very
pure. Traditionally, Klaassen’s model [148,149] describes the
Ohmic mobility, μ0, as a combination of different mobilities
through Matthiesen’s rule, i.e., μ−1

0 = ∑
i μ

−1
i where each μi

corresponds to a scattering mechanism

μ−1
0 = μ−1

L +
[
μi,N

(
Nref,1

NI

)α1

+ μi,c

]−1

, (16)

where NI is the impurity density and parameters are defined in
Ref. [148]. Since then, a number of modifications have been
proposed [150,151] to extend or improve the agreement with
data but they do not change our conclusions.

For bulk transport, the mobility is limited only by electron-
phonon interactions and the saturation velocity can be
described by a phenomenological fit function [124]

vs = v∗

1 + C exp(T/�)
, (17)

where v∗ = 2.4 × 107 cm/s, C = 0.8, and � = 600 K. The
ohmic mobility, on the other hand, was measured by a
number of different authors in the limit of ultrapure sam-
ples. The precise measurements along the 〈100〉 axis by
Refs. [141,152,153] can be summarized by a power-law fit,

μ
〈100〉
L = 1521(216)

(
300 K

T

)2.01(12)

, (18)

where the uncertainty is due to the spread in literature values.
At cryogenic temperatures, however, features show up in

experimental mobility measurements which are not covered
by Klaassen’s model and which require extra attention. In
particular, at medium strength electric fields (10–103 V/cm)
below 77 K one observes experimentally a negative differen-

tial mobility [142,154–156] where the drift velocity saturates
before increasing again at high electric fields. This is qualita-
tively understood as a consequence of intervalley scattering,
but theoretical efforts never obtained a better than 10%
level agreement with experimental data. As such, in order to
describe the mobility in this region we use empirical fits to the
data by Canali [141].

E. Charge collection efficiency

As free charge carriers are created after ionizing energy
losses throughout the material, propagation along electric field
lines towards electrodes can be interrupted through (tempo-
rary) capture via a number of different mechanisms. For most
high-speed applications, even brief interruptions in charge
transport will result in net loss of signal strength as typical
holding times are significantly longer than those of the shap-
ing electronics. For high-purity silicon detectors such as those
used in the Nab experiment, there are two different regimes of
charge loss throughout the detector: (i) continuous bulk losses
via residual impurities with energy levels close to the middle
of the band gap; (ii) inside the front face p+ implantation
region, also known as the “dead layer.”

In the bulk, dopant concentrations are exceedingly low and
loss of charge carriers occurs predominantly via trapping in
deep trapping centers close to the middle of the band gap
described by Shockley-Reed-Hall (SRH) statistics [99]. Typ-
ical contaminants such as oxygen and gold trap charges with
an average release time longer than the integration time of
the current pulse, leading to effectively lost charges. If their
concentration is constant throughout the bulk, one can instead
define a mean carrier lifetime, τc, to obtain Hecht’s equation in
a constant electric field [157]. This equation simply states
that the signal size is proportional to exp(−t/τc) where t is
the transport time. We instead use a trivial generalization to
linearly dependent electric fields [see Eq. (23)] [158],

|Q(t )| = q

L

|μτca|(x0 + b/a)

μτc|a| − 1
H (d − x0)

×
[

1 − exp

(
−1 − μτ |a|

τc

)]
, (19)

where x0 is the starting location, the electric field can be writ-
ten as E (x) = ax + b, d is the depletion thickness discussed
below, and t is understood to be less than the signal collection
time.

The highly doped, implanted part of the p+-n junction,
on the other hand, contains a variety of loss mechanisms for
charge carriers. Often, charge collection is considered negli-
gible in this region and it is commonly referred to as a “dead
layer.” Obtaining a minimal thickness for this layer is crucial,
and is alluded to in Sec. III B. In the nuclear physics com-
munity, its thickness is typically studied using α spectroscopy
under varying incidence angles and assuming

CCE(x) =
{

0, x < tdead,

1, x > tdead,
(20)

where CCE(x) is the charge collection efficiency, with the
aim of extracting tdead. Work by the KATRIN Collaboration
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[159] noted that effects from diffusive processes originating
in this layer can be transported into the active volume before
loss. Several phenomenological parametrizations have been
proposed in the literature [31,160], such as that in recent
work [161]:

CCE(x) =
⎧⎨
⎩

p0, x < tox,

1 + (p1 − 1) exp

(
−x − tox

λ

)
, x > tox,

(21)
where tox, p0, p1, and λ are free fit parameters representing
an initial oxide layer thickness tox, with constant efficiency
p0, and a region beyond with maximal efficiency p1 achieved
over a length scale λ. In Sec. V C we perform a novel, detailed
Monte Carlo simulation of the Nab entrance window collec-
tion efficiency, where we will compare both descriptions to
simulation results.

IV. FIELD SIMULATIONS

The components of the model discussed in the previous
section often depend on the electric field inside the material,
particularly for the drift motion of the free charge carriers. The
latter move according to the electric field through Eq. (14),
and therefore determine the transit time throughout the ac-
tive detector volume. In turn, the electric field depends on
the local impurity density and geometry. In this section, we
report on detailed simulations of electric fields and weighting
potentials, defined below. In particular, we study the effects of
radial gradients in the impurity density profile and edge effects
near pixel boundaries.

The detailed simulations are to be compared to the stan-
dard description in textbooks on particle and nuclear physics
[63,162]. There, the induced current in the physical electrodes
is written in terms of a weighting potential in conjunction with
the Shockley-Ramo theorem [163,164]. The latter states that
the induced current on electrode k due to the movement of a
single charge carrier is

ISR
k = qvd · ∇Wk (x), (22)

where Wk is the weighting potential obtained by solving the
Laplace equation after setting electrode k to unit potential and
grounding all others. The gradient of the weighting potential
is typically referred to as the weighting field, which will be
discussed in greater detail below.

For a simple parallel plate detector one finds ∇W (x) =
(1/L)ẑ, where L is the spacing between the plates and ẑ a unit
vector perpendicular to the plates. The induced current then
simply depends on the electric field and mobility as the charge
carriers move through the geometry. The electric field for a
simple planar p+-n geometry with a homogeneous impurity
density is

|E(z)| =

⎧⎪⎪⎨
⎪⎪⎩

√
2V Nq

ε
− Nq

ε
z, undepleted,

V

L
+ NqL

2ε
− Nq

ε
z, depleted,

(23)

where V is the potential difference between the plates (called
the bias voltage below), N is the impurity density in the n

region, and ε is the dielectric strength of the material. We
included in Eq. (23) also the case of an undepleted material,
i.e., where V < Vd with Vd the depletion voltage

Vd = L2Nq

2ε
. (24)

In this case, the electric field is nonzero only for a thickness
d < L as given by Eq. (23). The undepleted region behaves
like a high-resistivity conductor which gives rise to inter-
esting time-dependent behavior during charge transport (see
Sec. IV D), but can otherwise be considered an extension of
the electrode. More importantly, however, the weighting field
is not |∇W | = 1/L as the full bias potential drop occurs over
a smaller thickness. Specifically, Eq. (22) is valid only for a
fully depleted detector, i.e., when the material between the
electrodes is linear. The generalization is usually written as
Gunn’s theorem, which states that [165–167]

IGunn
k = qvd · ∂E

∂V

∣∣∣∣
V k

op

, (25)

where V k
op is the actual operating voltage of electrode k. The

partial derivative of the electric field with respect to the oper-
ating voltage takes the place of the weighting field and is valid
even for nonlinear media.

While detectors are typically run overdepleted (i.e., V >

Vd ), the electric fields inside the junction window and in
p-stop and p-spray regions can be treated correctly only us-
ing Eq. (25). For a partially depleted parallel plate detector,
Gunn’s theorem can be applied analytically, and correctly
reproduces the weighting field ∂E/∂V = (1/d )ẑ, where d �
L is the depletion thickness. For more complex geometries,
weighting fields must be calculated numerically as discussed
below.

A. Pixel weighting potential

For pixels of finite spatial extent, the weighting potential
will deviate from the parallel plate result, W (z) = z/L, even
in the case of full depletion. In particular, edge effects will
strongly distort the weighting potential as it must accommo-
date the sudden change in boundary conditions at the detector
back face from the main pixel (Wk = 1) to an adjacent one
(Wk = 0). Throughout the detector, the weighting potential for
a pixel will be nonzero even outside of its canonical volume
so that an induced current appears across all adjacent pixels.
In order to study this effect, we present an analytical result
for circular pixels and afterwards discuss numerical results for
hexagons.

1. Analytical approximation

The behavior of the weighting potential close to the
edge of a pixel changes dramatically for small changes in
displacement. As such, numerical methods are typically em-
ployed to perform the standard Shockley-Ramo procedure
[see Eq. (22)]. These are typically computationally costly,
however, and here we present a closed-form analytical result
that is able to capture most of the behavior.
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For this scenario, we use a simplified geometry and con-
sider only a circular pixel of radius R situated a distance L
away from a grounded electrode. We assume the circular pixel
is surrounded completely by other electrodes on the back face,
which for the purpose of the weighting potential calculation
are set to ground together with the front face electrode. In
other words, we impose Dirichlet boundary conditions on the
weighting potential W (ρ, z) so that W (ρ, 0) = 0, W (S, z) =
0, and W (ρ, L) = V (ρ), where S is the radius of the cylindri-
cal shroud and V (ρ) = 1 when ρ < R and 0 otherwise. Due
to the cylindrical symmetry, the weighting potential may be
expanded using only a lowest-order Bessel function [168]

W (ρ, z) =
∫ ∞

0
J0(kρ) sinh kzB0(k), (26)

where we let S → ∞ to remove effects from the finite shroud
radius. Using the orthogonality of the Bessel functions we can
determine the form of B0(k),

B0(k) = k

sinh kL

∫ ∞

0
dρ J0(kρ)V (ρ)ρ

= R

sinh kL
J1(kR). (27)

The weighting potential for a circular pixel is then

W (ρ, z) =
∫ ∞

0
dk R

sinh kz

sinh kL
J0(kρ)J1(kR). (28)

While there exists no analytical solution for this integral equa-
tion, it is straightforwardly to numerically integrate. When
kL � 1, the integrand is proportional to (R2/L) so that the
result will depend strongly on the pixel aspect ratio, R/L, as
intuitively expected. Similarly, for high k the ratio of hyper-
bolic sine functions approaches exp[k(z − L)], implying the
potential depends strongly on ρ/R as anticipated close to the
edge. Using J1(x) = −dJ0(x)/dx and performing integration
by parts we can write Eq. (28) as

W (ρ, z) = z

L
+

∫ ∞

0
dk J0(kR)

∂

∂k

[
sinh kz

sinh kL
J0(kρ)

]
. (29)

Taking either ρ = 0 or R → ∞ it is then trivial to see that it
reduces to the infinite parallel plate result.

Results of the numerical integration of Eq. (28) for R =
5.15 mm and L = 2 mm are shown in Fig. 6. Close to the
pixel boundary, the weighting potential differs significantly
from the infinite parallel plate result, W (z) = z/L. Charge
moving close to the pixel boundary will be collected more
slowly during the first part of its transit and will increase to its
total value more swiftly as it approaches the contact. Outside
the pixel, the weighting potential is nonzero throughout the
volume but vanishes for z = L in accordance with the bound-
ary condition. Note that the analytical result is valid also for
underdepleted detector geometries, as one may consider the
undepleted region to be simply an extension of the conductive
contact. The correct result is then obtained simply by chang-
ing L to correspond to the depletion thickness, d < L.

Following Eq. (22), charge transport outside the canoni-
cal volume of the pixel will induce a bipolar current pulse
typically denoted as differential crosstalk. In an idealized

FIG. 6. Analytical results for the static weighting potential close
to the pixel boundary. The legend refers to radial distance relative
to edge distance. The black line shows a perfectly linear relation-
ship which applies near the center of the pixel. Inside the pixel,
the weighting potential always reaches unity, implying full charge
collection, whereas it goes to zero outside of the pixel resulting in
bipolar current pulses.

situation, the total charge collected on neighboring pixels
will resolve to zero, however, as it ends up on a neighbor-
ing electrode. Finite pixel-to-pixel capacitances and charge
sharing due to carrier diffusion will give rise to finite amounts
of charge collected, however, and are known as integral
crosstalk and charge sharing, respectively, and are discussed
later (Sec. VII C).

2. Hexagonal simulation

In the Nab experiment, hexagonal pixels are employed due
to a variety of benefits, as mentioned in the Introduction.
While the analytical results of the previous section can be
expected to work well for the flat edge of the hexagon, differ-
ences due to the sharp corners result in substantial changes.
The latter requires the use of numerical solvers, for which
we initially use the open-source SolidStateDetectors.jl
package [169]. This Julia package solves the Poisson equa-
tion on a rectangular grid with a user-specified grid size.
Results in this section are obtained using a grid spacing of
0.05 mm, which is small enough to accurately probe the
hexagonal geometry, but large enough to maintain good per-
formance. Strong local potential changes due to pixel isolation
(p-stop/p-spray) are not observable with this technique and
instead we treat these in more detail in Sec. IV C.

We define a simplified detector geometry in
SolidStateDetectors.jl with six hexagonal contacts
arranged in a ring around a central contact, shown in Fig. 7.
The hexagonal contacts are positioned 2 mm away from a
single circular contact with a radius of 16.26 mm (see Fig. 2)
and are spaced 0.1 µm from each other. This geometry is an
accurate model for contacts with six neighboring contacts,
representing all but the outer contacts in the Nab detectors.

Figure 8 shows the weighting potential as a function of
distance from the circular front face contact at different
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FIG. 7. Drawing of contacts of a 7 pixel detector simulation. A
500 keV electron event is shown with electron and hole drift paths in
red and green, respectively.

starting radii relative to the hexagonal geometry. As an exam-
ple, for a hexagonal contact with a corner at (x, y) = (5.15, 0),
80% refers to the weighting potential at (4.12,0) along the
z axis. The dashed and solid lines represent weighting po-
tentials measured along the line extending from the center to
the corner (θ = 0) and to the edge (θ = 30) of the contact
respectively. The dotted line represents the analytical results
from Eq. (28) for L = 2 mm and R = 5.15 mm, where L and
R are defined in Sec. IV A 1. At the center of the pixel the
weighting potential changes linearly with z analogously to the
infinite parallel plate capacitor result. Away from the center

FIG. 8. Simulation results for the weighting potential of a central
hexagonal contact at the edge and corner compared to theoretical
results from a circular contact, represented by solid, dashed, and
dotted lines respectively. The solid line represents a perfectly linear
weighting potential. Different colors show the relative distance from
the contact boundary.

the weighting potential is slightly nonlinear, as seen with the
65% and 80% lines in blue and orange. As we cross the
edge the potential becomes increasingly nonlinear, until we
are under the grounded contact and the potential now returns
to zero for z = 2 mm.

The analytical solution to the weighting potential for a
circular pixel [Eq. (28)] is in good agreement with that of a
hexagon along its flat edge. Along a path towards a corner,
however, differences appear when extending beyond 80%.
Therefore, about 70% of the detector can be modeled well by
a circular contact with appropriate parameter choices, whereas
one must instead rely on numerical potentials near pixel
edges. As the weighting potential determines the induced
current on the contact from moving charges [see Eq. (22)],
differences in the weighting potential will have a direct effect
on the predicted pulse shape. We will investigate this in great
detail in Sec. VII A 1, but first consider the bulk and pixel
isolation behavior in the following sections.

B. Bulk electric field

The electric field in the detector causes the electrons
and holes to drift to their respective contacts as discussed
in Sec. IV, which in turn induce a current in the elec-
trodes according to Eq. (25). The electric field is generally
a combination of the applied bias voltage, the bulk impurity
concentration, and detector geometry as in Eq. (23). As de-
tailed in Sec. III B, the Nab detectors are made of high purity
Si with impurity densities of O(1010 cm−3). Both radial and
longitudinal gradients affect the overall shape of the electric
field throughout the entire crystal, however, and are not easily
analytically tractable.

As in the previous section, we performed the
numerical evaluation of electric fields with the
SolidStateDetectors.jl package using the same contact
design. We define radial gradients in the impurity density
such that its value at any point in the bulk is n = n0 + gn × r,
where n0 is the base concentration and gn is the gradient.1

While we are not sensitive to small-scale features below the
grid size, we also define the p+ window, the n+ hexagonal
pixels, and a p-spray layer as described in Sec. III B.

We simulate seven pixels with radial impurity con-
centration gradients of gn = ±(0, 1, 2, 3) × 1010 cm−4. We
simulate all these gradients for base concentrations of n0 =
±(1, 2, 3, 4, 5) × 1010 cm−3. This combination covers a
range of reasonable concentrations for large high-purity sili-
con detectors, as discussed in Sec. III B. The depletion voltage
for a 2 mm detector is approximately Vd ≈ −30n/(1 ×
1010 cm−3) V, and we simulate with bias voltages of −30,
−60, −90, −120, and −150 V to check for depletion and
simulate signals for overdepleted detectors. The Nab detectors

1The electric field results from the center pixel can be used to model
any other interior pixel in the detector by stitching together the appro-
priate combination of gradients. For example, if n = n0 + gn × |r|
we can use n0 − gn × r for r = x < 0 and n0 + gn × r for r = x > 0.
In the same way we recreate any impurity density profile made of
approximately linear segments.
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FIG. 9. z component of electric field (V/m) vs z position (mm)
at various radial positions. The 4 × 1010 cm−3 detector with 3 ×
1010 cm−4 gradient at 150 V is shown with solid lines. The dotted
line shows the results for an undepleted detector at 30 V measured at
the center of the pixel.

will typically be operated above depletion voltage, but im-
purity density gradients can cause regions of the detector
to be undepleted. Depletion can be directly checked with
SolidStateDetectors.jl by looking at the fields versus
the z direction. Undepleted sections of the detector still have
mobile charges and so the material acts as a poor conductor.
The electric field will therefore be zero in the undepleted
region, as seen in Fig 9. The field for an undepleted detector
is shown by a black dotted line and depleted detector fields
are shown in solid colored lines. We see in this figure that the
undepleted detector field reaches 0 V/m at about 0.5 mm, so
three quarters of the detector is undepleted.

When a radial impurity density gradient is present in the
detector the electric field will have a radial dependence. The
z component of the electric field, for gn = 3 × 1010 cm−4, at
different radii is shown in Fig. 9. If there were no gradient
there would be just the blue line, which is the center of the
pixel. As the impurity concentration increases radially so does
the maximum field strength and the slope of the fields. Near
the junction contact all fields have a positive second deriva-
tive, but near the grounded contact the second derivative is
more positive for smaller r (the more overdepleted regions)
and is slightly negative at r = 4.6 mm indicating that a small
portion of the detector is undepleted. All the fields are zero at
2 mm, as that is inside the grounded contact in our simulation.

The total strength of the electric field and equipotential
lines are shown in Figure 10 for a detector with no impurity
density gradient and for a positive and negative gradient. We
see that the potential expands and contracts as the impurity
concentration changes in the detector. Some edge effect are
visible in the bulk of the detector for the negative gradient
results, but not for the positive and no gradient fields; we
will see those features more clearly in the next section. The
differences in the fields seen in Figure 10 have two effects:
(i) the field magnitude is radially dependent which directly
affects the magnitude of the electron drift velocity; (ii) the

FIG. 10. Electric field magnitude and equipotential lines for a
n0 = 4 × 1010 cm−3 concentration detector with gn = −3 × 1010, 0,
and 3 × 1010 cm−4 radial gradients from top to bottom. Color scale
is in units of V/m.

field lines curve towards or away from the center for negative
and positive gradients, respectively. Both the varying field
strengths and the field anisotropy will affect the drift velocity .
The bulk effects along with the weighting potentials found in
the previous section will be used to investigate pulse shapes
in Sec. VII A 1. Small-scale features of the electric field and
weighting potential will be discussed in Sec. IV C.

C. Pixel isolation simulation

While the previous section discussed large-scale behavior
of electric fields, substantial changes are expected to occur
near pixel boundaries. Here, individual pixels are electrically
isolated by manufacturing small depletion zones on pixel
boundaries (see Sec. III B). These local impurity depositions
create significant distortions to the local electric field while
keeping the bulk largely unchanged, and as such leave most
of the charge carrier transport stable. Properties such as charge
sharing (Sec. VII C) and pulse shape close to the pixel sepa-
ration (Sec. IV A), on the other hand, depend critically on the
local properties and feed into event reconstruction efficiency
and timing extraction.

1. Geometry

We simulate a small cross section of the experimental ge-
ometry to focus on the pixel isolation features. Simulations are
performed in COMSOL v5.2 using the semiconductor module
as a two-dimensional (2D) geometry, with the third dimension
along the interpixel separation. The bulk doping, p+ junction
implant and n+ Ohmic contacts are implemented as described
in Sec. III A, with a concentration of 1 × 1016 cm−3 and
extending 1 µm into the bulk using an error function falloff.
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FIG. 11. Overview of the local properties around a pixel boundary with a p-spray isolation. Shown, from left to right, are the local electric
field in logarithmic scale, the weighting field for the pixel to the right of the boundary, and free quasiparticle electron and hole densities close
to the depletion voltage in logarithmic color scale. For the last, red areas indicate high density compared to blue areas for a density deficiency.

We implement an oxide charge layer of 10 nm thickness as
observed in the SIMS data of Sec. III B with a a static charge
distribution of 1011 cm−2 [68]. For the pixel isolation technol-
ogy, we consider both p-stop and p-spray geometries. For the
former, we assume a surface implantation with a 50 µm width
(i.e., covering half of the inter-pixel gap surface), 1 × 1017

cm−3 impurity concentration, and an error function depth pro-
file determined by a 100 nm falloff.2 For p-spray, the deposit
spans the entire width of the pixel separation and we assume
an order of magnitude lower impurity density with similar
depth profiles. In all cases, the Poisson and drift-diffusion
equations [see Eqs. (12)] are solved at the same time, such that
local carrier densities can be extracted. Due to the smallness of
the region in the plane of the detector, we neglect any impurity
density gradients in the bulk.

Boundary conditions (BC) are split up between metal con-
tacts and other physical boundaries. All contacts are defined
using Dirichlet BC, with both pixel contacts set to ground
potential and the front face using a negative bias voltage.
All other physical boundaries are set using von Neumann
BC. Whereas the latter is evident for the boundaries of the
bulk silicon on the sides, the choice is less trivial for the
region between the metal contacts on the back. Specifically,
significant differences between von Neumann and Dirichlet
BC on the interface region were observed [68]. For a clean,
unirradiated surface a von Neumann BC, i.e., dφ/dx = 0 for
an electrostatic potential φ, should hold, whereas any form
of moisture or contamination can form a conductive channel
between the metal contacts or build up a static potential dif-
ference. As the Nab detectors will not experience significant
irradiation over their lifetime compared to running at, e.g., the
Large Hadron Collider [68,114], we apply von Neumann BC
on the insulating boundary.

The grid is a finite element mesh constructed using COM-
SOL and set to be very fine near the contacts where large

2These values are approximate and based on common literature
values. Sensitivity due to deviations is discussed in the text.

differences in doping are present and less dense in the interme-
diate regions. The bias voltage is swept from zero to twice the
depletion voltage, where the result of the previous calculation
is used as a starting point for faster convergence. For each
applied bias voltage on the bottom contact, the calculation
is run several times with small differences to the voltage
applied to individual contacts. Taking the bottom contact as
an example, calculations at a bias voltage Vbias are performed
twice with a small difference �V between them. The two data
sets are used to calculate the weighting field numerically via
Gunn’s theorem [Eq. (25)], using the extracted electric fields
at both voltages [170]. The procedure is repeated for one of
the two contacts at the back, as both are symmetrically placed
in the geometry.

2. Results

An example of the electric and weighting fields with the
corresponding electron and hole densities can be found in
Fig. 11 for a p-spray configuration. The electric field at
the physical boundaries of the electrodes is larger than that
of the bulk by several orders of magnitude, as expected from
the sudden change in impurity density. In the region around
the pixel isolation, however, the electric field magnitude drops
significantly over the full width of the pixel separation and
extending several tens of µm into the crystal. This is the
result of the large impurity deposition and free charge carriers
diffusing into the bulk material. As a consequence, the simu-
lation results for the p-stop configuration is very similar and
has analogous consequences for the electric field shape and
corresponding charge carrier movement.

The profile of the electric field is such that the local min-
imum in electric field strength is surrounded by what can
be described as a “protective breakwater.” This can be un-
derstood by analyzing the electric field lines, which in this
configuration are pushed away from the pixel isolation and
channel charge carriers to either pixel rather than the low
field region in the isthmus. This will be a critical component
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of the waveform simulation and charge sharing analysis in
Sec. VII C.

The weighting field [see Eq. (25)] shows the large-scale
anticipated behavior. The change in direction when moving
along a straight path for the left pixel implies the expected
bipolar current structure, while the weighting field well in-
side the right pixel is a constant according to the analytical
results of Eq. (23). Following a path along the geometrical
pixel isolation, however, reveals complicated dynamics as the
weighting field becomes progressively more perpendicular to
the electric field, implying that little charge is collected on
either electrode despite moving closer to the pixels. As the
total line integral must evaluate to unity for a charge carrier
collected on a pixel, this implies large, sudden changes to the
pulse shape close to the collecting electrode. This can throw
off the timing reconstruction and will be discussed in greater
depth in Sec. VII C.

The sensitivity of this behavior to the impurity density and
geometrical shape has been studied qualitatively and is found
to be of little significance for proton and electron detection in
the Nab experiment. This can be understood intuitively in a
similar fashion to the simple p-n junction, where the spatial
extent of the depletion zone into the heavily doped volume
depends more upon its implantation profile than its density so
long as the latter is significantly larger than for its junction
partner. Whereas the “dead layer” profile is important for the
Nab experiment due to the extremely local energy deposition
of incident protons, the isolation structures at the back of the
detector are irradiated only for background events due to low
energy gamma or x rays and Compton scatters from nearby
materials.

Finally, we comment on the introduction of additional
capacitance due to the pixel isolation structures. By adding ad-
ditional depletion zones across all pixel boundaries, pixels are
now explicitly capacitively coupled to all of their neighbors.
As such, when signals are generated through charge collection
on any one pixel, the total charge collection on any of its
neighbors will not resolve to zero but instead be proportional
to the mutual capacitance. This additional capacitance appears
on top of the usual capacitive coupling when putting two
conductors in close proximity, and contributes to so-called
integral crosstalk [171]. Using the available 2D geometry, we
then obtain a mutual capacitance along the pixel boundary
of 0.5 pF/mm. For hexagonal pixels with 10 mm outer di-
ameter, a naive estimate results in a mutual capacitance of
2.5 pF with each of a pixel’s six neighbors. When compared
to the simplified geometrical capacitance of a planar pixel
(Cp0 = 3.8 pF for a 2 mm thick detector), this represents a
substantial increase in the total capacitance before connection
the amplifier system.

D. Time-dependent effects in underdepleted geometries

We used Gunn’s theorem Eq. (25)] to derive the correct
weighting potential for an undepleted detector and, more in-
terestingly, the behavior near the pixel isolation technology in
the previous section. We can go one step further by taking into
account the time-dependent response of the undepleted layer.
Specifically, as this layer has some finite conductivity, it will

FIG. 12. Integrated charge (solid) and current (dashed) for a sin-
gle electron moving in a silicon device with thickness 2 mm, impurity
density of 4 × 1010 cm−3, and applied bias voltage V = 50 V.

respond to changes in the electric field due to moving charges
in a time-dependent fashion. The movement of charges in the
undepleted layer will equally affect the induced charges in the
electrode, resulting in a delayed enhancement of the induced
charge. Riegler [170,172,173] has treated this in some detail
and introduces a time-dependent weighting field so that

Ik = q
∫ t

0
vd (t ) · W (x, t ′)dt ′. (30)

where W (x, t ) now depends explicitly on time. For a simple
parallel plate geometry of thickness L and depletion thickness
d < L, the weighting field can be derived as [170]

W (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

d

(
δ(t ) + L − d

d

1

τ
e−t/τ

)
, x < d,

1

d

(
δ(t ) − 1

τ
e−t/τ

)
, d < x < L,

(31)

where τ is a characteristic response time of the undepleted
medium,

τ = εL

dσ
, (32)

where σ = qµn. The delta function in Eq. (31) represents the
instantaneous induced current due to the charge movement in-
side the active region, whereas the second term is the reaction
of the undepleted medium. The latter is positive for charges
moving in the depleted volume, so that the charge movement
in the undepleted material can be likened to an inertial effect.

The characteristic timescale of Eq. (32) is not negligible
relative to the transit time in the Nab detectors due to the
increased mobility at low temperatures. Specifically, taking an
operating temperature of T = 120 K and an impurity density
concentration of 1 × 1010 cm−3, one finds ε/σ ≈ 50 ns. The
latter is comparable to the transit time of electrons starting at
the front face of the detector and as such presents a significant
difference in the predicted induced charge. Figure 12 shows
the effect on the induced charge as a function of time for
different approximations of τ . The static behavior of Gunn’s
theorem with Eq. (23) corresponds to τ = 0, i.e., the un-
depleted region is a conductor with infinite conductivity. In
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cases where τ 
 τe, on the other hand, the response of the
undepleted medium is extremely slow and finite integration
times in the (pre)amplifying system will introduce a ballistic
deficit and the pulse saturates at (d/L)q. Note that the time for
the integrated charge to go from 10% to 90% of its maximal
value is always longer when underdepleted medium effects
are taken into account.

The parallel plate capacitor result of Eq. (31) can be ex-
pected to hold throughout most of the detector volume, with
the exception of the pixel isolation structures discussed in
the previous section. As such, radial gradients in the impu-
rity density concentration (see Sec. III B) can potentially be
studied by looking at the time response for individual pixels.
We investigate this in greater detail in Sec. VI A.

V. CARRIER TRANSPORT SIMULATION

As carriers are created from ionization events along the
track of an incident particle, their close proximity to neighbors
will cause the charge cloud to expand due to electrostatic
repulsion. Whereas the latter matters only when densities are
high, additional broadening of the charge cloud occurs due
to random thermal diffusion. Both effects will cause time-
dependent perturbations to the charge transport process and
the observed pulse shapes. Using the machinery developed for
these effects, we additionally perform a study of the quasipar-
ticle transport and charge collection efficiency in the entrance
window.

A. Thermal diffusion

1. Analytical results

In the assumption of isotropic diffusion, we may approxi-
mate the charge cloud as a Gaussian distribution rather than a
point charge, where the charge distribution is then

ρ(r, t ) = Q

(4πDt )3/2
exp

(
− (r − r0(t ))2

4Dt

)
(33)

centered at a position r0(t ) with the previously defined diffu-
sion constant, D [Eq. (13)]. In this case, we must modify the
induced current relationship Eqs. (22) and (25)] to integrate
over the full charge carrier volume,

I (t ) =
∫

drρ(r, t )v(r, t ) · W (r). (34)

Upon some simplifying assumptions one may derive ana-
lytical results for the expected induced current and integrated
charge [174]. Specifically, if one considers only the average
motion of the charge cloud the results becomes insensitive to
velocity variations from individual charge carriers but retains
the effects of broadening. In this case, the current will de-
crease gradually as the charge cloud reaches the far electrode
rather than stopping abruptly. In the case of a constant electric
field, Ref. [174] derived an expressions for the time it takes
for the current to drop from 95% to 5% of its maximal value,

τdiff = 2.32

√
4D(x0 + L)

v3/2
(35)

where x0 is the initial starting position of the charge cloud.
Setting E = 1 kV/cm at T = 120 K, Eq. (35) results in τdiff =
2 ns. While the results of Ref. [174] were valid only for a
constant electric field, we may generalize the result by solving

〈I〉(t ) = Qv(t )√
4πDtL

∫ L

0
dr exp

(
− (r − r0(t ))2

4Dt

)
(36)

for a detector thickness L, to find

〈I〉(t ) = Qv(t )

2L

[
erf

(
L − r0(t )√

2Dt

)
+ erf

(
r0(t )√

2Dt

)]
, (37)

where erf is the error function. The average velocity and
position can now be solutions to arbitrary field configura-
tions, such as those for a linearly decreasing electric field [see
Eq. (50)].

Whereas the average behavior of the charge cloud gives
rise to broadening features in the induced current, velocity
fluctuations due to the thermal diffusion of individual charge
carriers cause additional noise. The latter has been treated
in depth in several works [127], but analytical results are
available only when assuming a white spectrum. In that case,
the noise current spectral density is found to be

SI (0) = 4e2N

L2
D, (38)

where N is the number of charge carriers. Similarly, one
can define an equivalent noise temperature for quasiparticles
[175],

Tn = eD

kBμ
, (39)

that is dependent on the applied electric field and equilibrium
temperature through both the mobility and diffusion constant.
For fields larger than about 1 V/cm the noise temperature
increases significantly (hence the name hot electrons com-
monly used for charge carrier transport), and measurements
performed at 77 K show good agreement with a parametriza-
tion [176]

Tn = T0(1 + βE2), (40)

where T0 is the lattice temperature, and one find good agree-
ment with data for β = 2.5 × 10−7 cm2V−2 for fields up to 10
kV/cm.

2. Monte Carlo simulation

The discussion above was valid only for the average charge
cloud behavior and simple electric fields. In order to more
generally describe the charge transport process, we create a
standalone simulation using custom electric and weighting
fields and perform a step-by-step simulation of charge carriers
following the procedure of Ref. [69]. The equation of motion
is integrated using the Runge-Kutta method, where the user
specifies the simulation granularity using a parameter ε used
to control the time step, δt , using

δt = ε

|v[r(t )]| , (41)

where v[r(t )] = μE[r(t )] is the velocity of the charge carrier
at position r(t ). A step, δr, then consists of a drift component
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FIG. 13. Induced current and integrated charge following charge
carrier transport inside a linearly varying electric field with explicit
diffusion as in Eq. (42). The electric field decreases towards the
end of the track, resulting in reduced average current and parabolic
behavior in the integrated charge. Large variations near the end of
the collection time arise due to the small number of remaining charge
carriers.

due to the electric field, δrE = δtv, and a diffusion component

δrD =
⎛
⎝cϕcθ −sϕ −cϕsθ

sϕcθ cϕ −sϕsθ

sθ 0 cθ

⎞
⎠

⎛
⎝σ1

σ2

σ3

⎞
⎠, (42)

where s (c) denotes the sine (cosine) and σi is a random
value chosen from a Gaussian distribution centered around 0
and standard deviation σ = √

2Dδt , with D the diffusion con-
stant.3 The induced current for charge carrier k is evaluated
using Gunn’s theorem [Eq. (25)] using custom electric and
weighting fields.

As a simple example, we first consider transport inside
a linearly varying field. Parameters are set to similar condi-
tions as the Nab experiment, using a parallel plate geometry.
The weighting field is simply taken to be a constant (see
Sec. IV A), resulting in Fig. 13.

Figure 13 shows an example of the induced current and
integrated charge for a large number of individual charge
carriers moving in a linearly varying electric field. The ran-
dom walk process introduces an additional noise source in
the induced current and total transit time, similar to Eq. (35).
The transit time distribution was studied for both a linearly
varying and constant electric field. No significant difference
is observed in the width of the distribution. Additionally, even
though the width of the individual carrier arrival time distribu-
tion can exceed the nanosecond level, the total signal timing
uncertainty (being the sum of the all individual carriers) is
reduced by a factor

√
N , where N is the total number of

charge carriers for a single event. In the case of a 30 keV
proton impinging upon a silicon detector, the resulting timing
uncertainty due to carrier diffusion is reduced by almost a
factor 100 and is rendered negligible.

3While this simulation is performed in two dimensions, the general-
ization of Eq. (42) to three dimensions is trivial but does not influence
our results.

FIG. 14. Comparison of the analytical results of Eq. (37) of the
induced current when including diffusion with Monte Carlo simula-
tions for a linearly varying electric field.

While Eq. (37) is a general result, the nonlinear behavior of
the mobility as a function of electric field means that a correct
implementation becomes convoluted when the charge carriers
approach saturation velocities. Figure 14 shows a comparison
of explicit simulation with the analytical results of Eq. (37) for
a constant and linearly varying electric field corresponding to
the simulation condition. Whereas the former behaves poorly
both in amplitude and timing, the latter obtains very good
agreement throughout the entire charge collection time. Minor
differences arise due to velocity saturation at early times and
an overestimation of the ramp-down time near the end of the
pulse.

Regardless, it is clear that charge carrier thermal diffusion
gives rise to significant differences in the time profile of
induced currents. While newly derived analytical results can
give good descriptions of the average diffusive charge cloud
behavior in simplified geometries, explicit numerical simula-
tion is required for more advanced geometries. We will use the
machinery developed here to discuss more complicated field
configurations (Sec. VII C) and charge trapping phenomena
(Sec. V C). Diffusion is not the only process determining the
charge cloud evolution, however, and we first treat plasma and
self-repulsion effects.

B. Self-repulsion and plasma effects

The electron-hole pairs liberated by an incident charged
particle creates a large local difference in charge density.
When this difference is sufficiently high, the charge cloud
becomes effectively a plasma that shields external fields
[177–181]. The result is a delay in charge collection until
the field is large enough for drift to dominate quasiparticle
movement, denoted a plasma delay time. Previous analytical
methods in the literature [182–186] rely on phenomenolog-
ical factors calibrated to MeV/u fission fragment data far
outside the operational window for Nab, however, meaning
extrapolation is unlikely to yield satisfactory results. Even
so, performing such an extrapolation results in systematic
plasma delay times in the window between 0.1 and 1 ns,
which exceeds the Nab uncertainty budget (see Sec. II B).
Numerical efforts [187,188] were performed only for heavy

065503-16



PRECISION PULSE SHAPE SIMULATION FOR PROTON … PHYSICAL REVIEW C 107, 065503 (2023)

fission fragment ions using dielectric theory and can similarly
not be extrapolated to low proton energies. As such, below we
describe an explicit simulation effort to quantify this effect as
a function of field strength for 30 keV protons.

We construct an N-body simulation by explicitly taking
into account individual Coulomb interactions between all
electron and hole pairs, and take into account the dielectric,
three-dimensional diffusion and drift response. The calcula-
tion proceeds as follows:

(i) At the site of energy deposition, a number of electron-
hole pairs, n, is generated such that each charge
carrier contains an effective fractional charge qeff =
Np/n, where Np = 30 keV/εph(T ) is the total num-
ber of charge carriers created by a 30 keV proton at
temperature T .

(ii) Newly created electrons and holes are distributed in
space according to a Gaussian distribution with width
σ0 = √

2De/h(T )δt , where δt is the time step of the
simulation and centered on the creation site. The ini-
tial velocity distribution is generated according to a
Maxwell-Boltzmann distribution at the lattice temper-
ature T .

(iii) The effective electric field is calculated according
to all individual Coulomb interactions between all
charge carriers together with the external electric
field. The Coulomb interaction is reduced by the
dielectric strength of silicon to take into account po-
larization effects, but is bounded in r2 � 10−16 m2

to avoid numerical instability. The length is physi-
cally motivated to correspond to the thermal average
de Broglie wavelength, below which quantum me-
chanical effects are expected to become important.
Following the discussion in Ref. [62], however, we
may neglect plasma recombination effects for typical
conditions associated with neutron β decay events.

(iv) The effective electric field is used to calculate elec-
tron and hole velocities following Eq. (14), and the
transport step occurs as described in the diffusion case
above, i.e., δr = μEeffδt + δrD.

Using the above procedure, we may calculate the posi-
tion distribution of both charge carriers and derive effective
electric fields as a function of time. Positions and velocities
may finally be translated into induced currents and integrated
charges on electrodes. For all results discussed below we use
δt = 30 ps and n = 300 unless otherwise mentioned.

Figure 15 shows the effect of self-repulsion on an electron
cloud under the effect of an externally applied electric field
after one nanosecond of simulation time. The charge cloud
expands rapidly due to the Coulomb interaction and reaches
a 7 µm radius after t = 1 ns, compared to σ ≈ 2.6 µm from
diffusion at T = 300 K. Figure 16 shows the charge clouds
of electrons and holes when interacting together including
effects due to thermal diffusion after the same time. The
extent of the charge cloud is similar to that without diffusion,
corroborating the estimate above.

Looking at the time dependence of the charge cloud in
Fig. 17, it is clear that at t = 0.15 ns parts of the charge

FIG. 15. Effects of charge carrier self-repulsion through explicit
simulation without diffusion with an external electric field applied
along the Z axis of 750 V/cm. The charge cloud undergoes rapid
expansion which then slows significantly due to the 1/r2 behavior of
the Coulomb interaction.

distributions overlap significantly where the external electric
field is largely canceled. Aided by diffusion, the outer layers
are swept away and thereby decrease the shielding felt in the
center of the charge cloud. After t = 0.75 ns both charge dis-
tributions are sufficiently separated, with the electrons moving
out of the window due to their larger mobility relative to holes.

FIG. 16. Charge cloud evolution of 300 electron-hole pairs inter-
acting continuously while undergoing drift and diffusion. The final
positions are obtained after 1 ns of simulation time. Electrons can
be observed to drift and diffuse faster than holes as anticipated,
whereas the charge cloud extension at this timescale is determined
by self-repulsion, as shown in Fig. 15.
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FIG. 17. Carrier position distribution as a function of time inside
an externally applied field of 750 V/cm at T = 120 K. The strong
asymmetry in position distribution in the middle panel is due to the
screening of the external field due to the charge cloud, keeping charge
carriers stationary for longer.

The reduced electric field inside the charge cloud results
in a portion of the charge carriers staying stationary for longer
than they would in the absence of Coulomb interactions. Once
the distributions have separated sufficiently, each group’s ve-
locity moves with an average velocity equal to vd = μE and
the induced charge integrated on a contact increases linearly
for constant electric fields. In the Nab experiment, the low
signal-to-noise of 30 keV protons does not allow one to re-
solve the start time of the event, denoted t0. While several
strategies are being investigated to enable optimal t0 extrac-
tion, we may quantify the effect of the plasma delay time at
very early times using a linear extrapolation. As such, we may
define the plasma delay time as the difference in zero-point
crossings of a linear extrapolation and the actual start time
of the interaction. Figure 18 shows the determination of the
plasma delay time, tp, for an electric field set to 750 V/cm
(corresponding to a bias voltage of ≈150 V) and tempera-
ture T = 120 K. These conditions correspond to an estimated

FIG. 18. Comparison of the integrated charge when performing a
full N-body simulation versus a linear extrapolation to t0 in the later
region of the pulse. The difference between the true start time and
the extrapolated t0 corresponds to a plasma delay time, tp. Results
are shown for E = 750 V/cm and T = 120 K.

lower bound in bias voltage and temperature for the Nab
running conditions. Following the procedure outlined above,
we find tp = 0.18 ns. Imposing higher bias voltages, however,
serve to break up the charge clouds sooner. Invoking instead
an average electric field of 1.5 kV/cm, an anticipated upper
bound for Nab, reduces the plasma delay time to tp = 0.09 ns
following the same analysis. More generally, the plasma delay
time follows a 1/E behavior, consistent with other approaches
[179,183]. The procedure described here is not fully self-
consistent, however, as the size of the delay depends on
the square root of the time step through the initialization
of the charge cloud density. Using a time step of δt = 3 ps,
the plasma time is increased by a factor three. While other ap-
proaches of estimating the initial density have been explored
[183,188], no consistent scheme has emerged. Our approach
provides a result consistent with other literature estimates
and performs well in a regime where no other simulation
data exists. While results are not fully model independent,
the observed range appears to be sufficiently small for the
timing requirements of the Nab experiment. Further research
is needed, however, to perform a fully self-consistent calcula-
tion.

C. Transport inside the entrance window

As discussed in Sec. III E, the charge collection (defined
as the fraction of quasiparticles that can escape the entrance
window and get collected at an electrode) in the entrance
window of the detector is poor due to the high doping con-
centration in the junction. Two models for this “dead layer”
were put forward from the literature, Eqs. (20) and (21), but
neither has been compared against explicit simulation. With
the SIMS data as presented in Sec. III B, we may construct
a detailed model using the Monte Carlo transport approach
as discussed above. At these short length- and timescales, the
charge collection is determined by the quasiparticle lifetime
and local electric fields, discussed below.

1. Carrier lifetime

We first consider charge loss and trapping mechanisms. In
the highly doped layer of the entrance window, quasiparti-
cle losses occur through radiative and Auger recombination
[99]. In indirect band-gap semiconductors such as silicon,
the former is suppressed by a factor 104 relative to a direct
band-gap semiconductor such as GaAs and can be neglected
[189]. Auger recombination, on the other hand, is expected
to be contribute significantly. In this process, a particle-hole
pair recombines to give its excess energy to a third car-
rier which then thermalizes in the crystal through phonon
emission. In the boron-implanted entrance window, liberated
electron quasiparticles are a low-level injection into a hole-
dominated regime, causing the ehh process to dominate. As a
consequence, the carrier lifetime depends quadratically on the
p-type doping concentration, NA, as

τ LLI
Auger = 1

CpN2
A

, Cp(T ) = C0
p

(
T

300 K

)1.18

(43)
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where C0
p = 9.9 × 10−32 cm6s−1 [190] with the temperature

dependence by Klaassen [149]. The results are valid for ex-
tremely high doping (NA > 1 × 1018 cm−3), whereas at lower
doping concentrations the minority lifetime is experimentally
seen to be larger than anticipated [189]. This is explained via
the Coulomb-enhanced Auger recombination process, which
modifies Cp → gehh(NA)Cp, where

gehh(NA) =
(

1 + 44

{
1 − tanh

[
NA

5 × 1016 cm−3

]0.29
})

(44)

is a multiplicative factor [191] to the ehh Auger recombination
cross section.

The other dominant effective charge loss mechanism is
through capture at so-called trapping centers or defects. It is
described using Shockley-Reed-Hall (SRH) statistics, and is
most effective for defects with energies close to the middle of
the band gap [99]. Depending on the type of defect, electrons
or holes can become temporarily trapped at one of these sites,
and if the detrapping time is longer than the signal integration
time it counts effectively as a lost charge. The specific carrier
lifetime depends linearly on the trap density, Nt , as

1

τSRH
= CSRHNt , CSRH(T ) = C0

SRH

(
300 K

T

)1.77

, (45)

where C0
SRH = 3 × 10−13 cm3s−1 [149]. The latter was de-

rived in the assumption of a single trapping energy level and
without explicit specification of the contribution of different
contaminants [192,193]. Finally, the bulk has a characteristic
carrier lifetime, τ0, that is assumed to be independent of tem-
perature so that the total carrier lifetime is

1

τc(NA, T )
= 1

τ0
+ gehhCpN2

A + CSRHNt . (46)

Typical values of τ0 for extremely pure silicon are in the
millisecond range, which is what we will adopt here. At such
carrier lifetimes, the charge collection efficiency is very close
to 100%. Effective carrier lifetimes for the Nab detectors
using the SIMS data of Fig. 3 are shown in Fig. 19.

2. Local electric field

Before capture, the transport of the particle is determined
by the local electric field environment, its mobility and dif-
fusion constant. The latter two were described already in
Sec. III D 1 and are related via the Einstein diffusion rela-
tion [Eq. (13)]. As a consequence, both depend strongly on
temperature and impurity concentration (for NA,D > 1 × 1015

cm−3). The electric field in the presence of strong doping gra-
dients is less straightforward to calculate, and in fact several
standard methods suffer from conceptual issues [194,195]. In
the usual depletion approximation, the electric potential is
considered constant except for regions of depleted charge. For
strongly asymmetric junctions typical in particle detectors,
however, this assumption is not valid when looking at the elec-
tric potential at the scale of the entrance window. Specifically,
the electric field must be nonzero when any doping gradient
is present, even when that region is not considered depleted.

FIG. 19. Effective carrier lifetime (blue, left axis) and electric
field (orange, right axis) as a function of depth inside the entrance
window. The electric field in the high doping regime (�50 nm) is set
to zero due to degeneracy and band-gap narrowing [197]. The SRH
carrier lifetime is evaluated in a worst-case scenario where we set
Nt = NA.

This can easily be understood from the drift-diffusion equa-
tions [Eq. (12)], where the net carrier current can be set to
zero in thermal equilibrium so that

E = − D

μn

1

n
∇n, (47)

where D/μn evaluates to kBT/q via Eq. (13). For an expo-
nentially graded implantation region [196], ∇n/n reduces to a
simple constant but, more generally, one writes [195,197]

E (x) = −kBT

q

∂[ln{N (x)}]
∂x

, (48)

where N (x) is the impurity density. Using the SIMS data
presented in Sec. III B we might be tempted to evaluate
Eq. (48) directly. At very high doping concentrations (N >

1 × 1019 cm−3), however, degeneracy and band-gap narrow-
ing effects modify this relation substantially [197,198]. For
electron quasiparticles, which are our main concern in this
work for incoming protons, the effective electric field for
doping concentrations above N = 1 × 1019 cm−3 is strongly
suppressed. Below this concentration, we use the SIMS data
to get an effective electric field using Eq. (48). To reduce the
effect of statistical scatter at lower concentrations (see Fig. 3),
we find that the boron concentration from the SIMS data can
be fit well using a double-exponential function beyond 10 nm:

NB(x) = 3.7 × 1020 cm−3 × exp(−x/1.0 × 106 cm)

+ 1.5 × 1019 cm−3 × exp(−x/3.5 × 105 cm).
(49)

To represent the transition regime between zero electric field
where NB > 1 × 1019 cm−3 (x � 50 nm) and below, we add
an additional Gaussian function of 5 nm width to provide a
smooth connection between the two regimes.

Figure 19 shows the effective carrier lifetime and electric
field as a function of depth from the front surface using all
available information. Since we do not have prior information
on the trapping density in the entrance window, the SRH

065503-19



LEENDERT HAYEN et al. PHYSICAL REVIEW C 107, 065503 (2023)

FIG. 20. Simulated charge collection efficiency for electron
quasiparticles inside the entrance window to the detector using the
three carrier lifetime models shown in Fig. 19. Shown also are the
“hard” dead layer and an exponential parametrization of Eqs. (20)
and (21).

lifetime was evaluated in a worst-case scenario where we set
Nt = NA. Contrary to the usual analysis, the electric field in
the region beyond 50 nm is substantially larger than that inside
the bulk for typical bias voltages due to the strong gradients in
impurity density [compare Eqs. (47) and (23)]. Both mobility
and drift coefficients are strongly suppressed in this regime,
however, due to the high impurity concentration, so that the
increased field effect is largely mitigated.

3. Monte Carlo charge collection simulation

We perform a Monte Carlo simulation of individual quasi-
particle transport in the entrance window using the carrier
lifetime and electric fields discussed above using the proce-
dure of Sec. V A 2. The latter is modified to take into account
the finite carrier lifetime, where at each step the local lifetime
is calculated and the time step is forced to be smaller than
1% of the lifetime. The probability for loss is then simply
δt/τc. If the quasiparticle survives, its transport is performed
using local effective diffusion constants and electric field drift
to its next location. This process continues until either the
quasiparticle is lost through recombination or capture, it is
collected at the front electrode, or it reaches an arbitrary
distance of 500 nm away from the front face, in which case
it is considered “safe” to move towards the back electrode
and contribute to signal formation. We repeat the process
N = 10 000 times as a function of initial starting position, and
define the charge collection efficiency as the fraction of N that
reach the 500 nm threshold.

The transport of quasiparticles is purely diffusive within
the first 50 nm due to the absence of an effective electric
field and swiftly proceeds via drift beyond this point. Since
both drift and diffusion are regulated by the mobility, the
drift-diffusion crossover point is determined solely by the
effective electric field caused by the impurity gradient rather
than the absolute value of the mobility. Since diffusion de-
pends linearly on temperature [see Eq. (13)], the cross-over
point moves closer to 50 nm as the temperature decreases.

Figure 20 shows the results of the Monte Carlo simulation
using the three different carrier lifetime models shown in
Fig. 19, together with the phenomenological models discussed
in Sec. III E. The simulated data show strong local differences
at x ≈ 50 nm, where the electric field is suddenly turned on,
and around x ≈ 125 nm, where the SRH carrier lifetime is
large enough for substantial losses to occur in the decreased
electric field regime. Given that τSRH was evaluated in a worst-
case scenario where Nt = NA, it is unlikely that such strong
local effects will be experimentally observed. Outside of these
local changes, all three models show remarkable convergence
over the full range.

When comparing to the phenomenological models, we find
that the “hard” dead layer model of Eq. (20) is too crude
an approximation to capture the simulated data, and indeed
charge collection is finite inside the traditional “dead layer.”
The exponential model of Eq. (21) captures the general trend
of the simulated data reasonably well but shows discrepan-
cies due to local effects discussed above. Overall, however,
through appropriate parameter choices it is able to satisfacto-
rily capture the behavior.

Charge collection inside the SiO2 layer (see Sec. III A) is
assumed to be absent. While effects have been studied in the
literature [199,200], the thermally grown oxide layer for the
Nab geometry is much smaller than typically the case and we
do not treat it in detail. Instead, we may simply shift the results
of the CCE presented here by the estimated oxide thickness
similar to the parametrization of Eq. (21).

In summary, we have treated in detail several microscopic
phenomena of quasiparticle transport. Depending on the local
impurity and field environment, the first nanosecond of their
movement is a complex interplay of different mechanisms.
For several of these, we have derived new analytical and
numerical results and found deviations relevant to the timing
restrictions of the Nab experiment as outlined in Sec. II B. We
now move on to the final part of the pulse shape simulation
process, which connects the quasiparticle transport processes
to a model pulse shape to be compared to experimental obser-
vation.

VI. PULSE SHAPE SIMULATION

The ingredients described above form parts of a simula-
tion chain that come together into a realistic description of
wave forms which allow for the extraction of detector pa-
rameters and for performing sensitivity studies on a variety
of scenarios. Specifically, for detectors as large as those of
the Nab experiments, significant variations can occur in the
doping uniformity along its radial directions whereas the high
segmentation implies strong geometrical effects. As discussed
above, a detailed simulation pipeline is able to differentiate
aforementioned effects and disentangle experimental data.
In this section, we present an overview of the individual
components of the pulse shape simulation procedure after
introducing analytical results to compare against.

A. Analytical baseline

In order to provide a reference for the effect of the sim-
ulations we will describe an analytical baseline using some
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ingredients from the previous sections. Starting from an elec-
tric field linearly varying with position (i.e. for constant
impurity density) as in Eq. (23), we may write the electron
position and velocity as

x(t ) = b

a

[
E0

b
exp(aμt ) − 1

]
, (50a)

v(t ) = μE0 exp(aμt ), (50b)

where E = ax + b and E0 = ax0 + b is the electric field at
the starting position x0. The electron takes a time tmax =
ln(Ed/E0)/aμ to reach the end of the depletion zone at a
distance d , so that the current is simply qv(t )/d and induced
charge is

Q(t ) = qE0

ad
[exp(aμt ) − 1] (51)

for a uniform weighting field ∇W = 1/d . The generalization
to an inhomogeneous weighting potential such as the ana-
lytical result of Eq. (28) can be done in a straightforward
fashion by replacing d−1 with ∇W (ρ, x(t )). For a uniform
weighting field the time taken for the integrated charge to
go from rLQmax to rH Qmax, where Qmax = q(d − x0)/d and
0 < rL,H < 1 is simply

tL−H = 1

aμ
ln

(
1 + rH A

1 + rLA

)
, (52)

where A = a(d − x0)/E0 or A = ad/b when setting x0 = 0.
Using the results from Eq. (23) the behavior of tL−H changes
when the detector reaches full depletion, as b ∝ √

V for V <

Vd and b ∝ V otherwise.
The electronic response may be treated similarly to

Refs. [69,75] by numerically integrating the time signal using
expressions in the Laplace domain.4 More specifically, if the
transfer function may be written as a rational function where
both numerator and denominator are polynomials of at most
second degree, H (s) = (a0 + a1s + a2s2)/(b0 + b1s + b2s2),
the time domain equations may be written as

b0y(t )+b1
dy(t )

dt
+b2

d2y(t )

dt2
= a0x(t ) + a1

dx(t )

dt
+ a2

d2x(t )

dt2

(53)

for input signal x(t ) and output signal y(t ). If the latter are
written as functions of discretized time, {ti}, derivatives may
be replaced by differences and one obtains a recursion relation
for y(tn) in terms of {x, y}(tn−1,n−2).

In its simplest iteration, the preamplifier may be reduced to
the impedance of a feedback resistor and capacitor in parallel
[75], i.e., Hp(s) = R f b/(1 + sCf bR f b), whereas the shaping
amplifier can be written as an RC-CR shaper with gain G:

Hsh(s) = G
sC1R2

(1 + sC1R1)(1 + sC2R2)
. (54)

4While closed expressions for the inverse Laplace transform with
the current as above can be obtained, they are not particularly in-
sightful nor do they allow for easy noise insertion in the input signal.

FIG. 21. Elapsed time for the signal to reach 10% to 90% of the
integrated charge normalized to its value at the depletion voltage
according to Eq. (52) (solid line), taking into account time-dependent
effects from Eq. (31) (dashed line), and time-dependent effects after
passing through the electronic filter of Eq. (54) (dotted line) for
different base impurity concentrations at T = 120 K.

For the circuit of interest we set R f b = 1 M�, Cf b = 1 pF,
G = 20, C1 = 10 pF, C2 = 1 pF, R1 = 150 k�, and R2 = 5
k�.

Figure 21 shows the 10% to 90% rise time for differ-
ent impurity concentrations assuming the static response of
Eq. (52), taking into account the time dependence of the
undepleted layer as discussed in Sec. IV D, and including
the electronic response function. Even though closed expres-
sions for induced currents including the electronic response
and undepleted effects are available, the crossing points must
be determined numerically. In all three cases, the behavior
below the depletion voltage is a sensitive function of the
impurity concentration, and could be used as a way to obtain
an accurate assessment. The behavior is completely opposite,
however, when considering static versus time-dependent re-
sults. Including the shaping electronics suppresses the rise
time variation as long transit times will lead to ballistic deficit.
Even so, while increased voltage noise due to the higher
capacitance of an underdepleted detector might complicate
precision measurements, the presence of time-dependent ef-
fects could be straightforward to observe.

B. Monte Carlo transport

A necessary input in constructing simulated pulse shapes
produced in our detectors is the simulation of proton interac-
tions with the detector material. In order to construct detector
signals, it is imperative to know the the location and magni-
tude of ionizing interactions. We used two different software
packages to achieve this. The first was SRIM [201] that was
designed to calculate the stopping and range of ions in matter.
The second was GEANT4 [202] which is designed to simulate
the passage of particles through matter.

1. SRIM, GEANT4 inter- and intracomparison

Both SRIM and GEANT4 were used to simulate 30 keV
protons normally incident on silicon and the results were
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FIG. 22. Comparison of extracted dE/dl versus track length for
30 keV protons impinging on pure silicon using different GEANT4
electromagnetic physics lists and SRIM. For the latter, “Steps” refers
to the procedure in the text, compared to standard output by SRIM.

compared. The stopping power of silicon was compared in
SRIM and GEANT4 with several different low energy electro-
magnetic physics lists. The GEANT4 physics lists used in the
comparisons included the standard option 3, option 4, and
single scattering, which differ in their condensed history
scattering algorithm. The stopping power was extracted by
taking the ratio of the energy loss to step length for steps in
the silicon and then plotted versus the total length of the track
at the step. This generates a 2D histogram which is then aver-
aged along the x axis. The results are shown in Fig. 22. Other
than a maximal step length of 5 nm, all physics constructors
used default parameters. All GEANT4 models shown here use
the Bragg model for ionization losses along the proton path
length but differ in the way (multiple) Coulomb scattering is
treated. In the case of option 4, GEANT4 uses the WentzelVI
multiple scattering algorithm instead of the Urban model for
option 3. Single Coulomb scatters are treated only for large
angular deviations, except for the single scattering algorithm
where each is treated individually. The Bragg model used
for the ionization stopping power is based on the Lindhard
theory [203,204] and is very similar to what is used in SRIM

[201,205]. Even so, substantial changes are observed between
the different options and SRIM, particularly with the single
scattering result overemphasizing backscattered protons and
losses early in the track. The standard option 3 physics list
was found to give the best agreement with SRIM, and was used
for the remainder of this work.

A comparison of the distribution of the proton range in
silicon was made betweeen SRIM and GEANT4. The results are
shown in Fig. 23. The mean of the distributions in z agree
to within 0.3%. The lateral range for the GEANT4 simulation
using the standard option 3 physics list was 10% wider than
that found from SRIM. As both packages use very similar
electronic stopping power models to describe the proton’s
ionization losses, both simulations generate distributions of
track lengths that are in good agreement. In the case of nor-
mally incident source particles, the z component of the final

FIG. 23. Comparison of the range distributions of 30 keV pro-
tons normally incident on silicon using GEANT4 and SRIM using the
coordinates of the final track step. Here, ρ = √

x2 + y2 is the lateral
displacement.

step is closely correlated with the overall track length. The
discrepancy in the radial component of the range distribution
is attributed to differences in the treatment of small angle
scattering in the two simulations.

Additionally, we compared the overall rate and energy
spectrum of partially deposited energy from proton backscat-
tering. We define a backscatter as any proton that leaves the
silicon and therefore deposits less than its full energy. The
results are shown in Fig. 24. The backscattering probability
was found to be higher in GEANT4 with a softer spectrum. The
latter is consistent with the lateral displacement difference as
coming from the treatment of (multiple) Coulomb scattering.
A higher average angular deflection from multiple Coulomb
scattering results both in a widened lateral displacement and
softer backscatter spectrum.

FIG. 24. Comparison of backscattering rate and deposited en-
ergy spectrum of 30 keV protons normally incident on silicon using
GEANT4 with the standard option 3 electromagnetic physics list
and SRIM. Here, a backscattered particle is defined as leaving the
silicon detector and therefore depositing less than its full kinetic en-
ergy. Note that the spectrum shows the deposited rather than detected
energy, i.e., before charge collection losses and thresholds.
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FIG. 25. Simulated nonionizing energy loss and its breakdown
into different processes, obtained using SRIM for 30 keV protons
impinging upon pure silicon.

2. Simulated NIEL

Since only the movement of quasiparticles through an
electric and weighting field contribute to a signal induced in
electrodes of the detector (see Sec. IV B), any process that
involves a particle losing energy without creating particle-
hole pairs will not contribute. The collective effect of these
processes is denoted nonionizing energy loss (NIEL), and
has received substantial interest from both collider and space
exploration research programs [206–211]. Previously [62],
predictions for NIEL within the Nab experiment were studied
using analytical methods. Here, we use SRIM simulation to
find the stopping power of the different processes for 30 keV
protons incident on silicon. The predominant NIEL processes
occur via phonon emission and dislocation of silicon atoms.
In the binary collision approximation [212], phonon emission
can be understood as a Coulomb interaction with an energy
transfer which is smaller than the energy required for a silicon
atom to create a vacancy, i.e., the displacement energy Edisp ≈
21 eV. Large-angle Coulomb scatters, on the other hand, eject
a silicon atom that can itself go on and create particle-hole
pairs or dissipate energy through phonon emission. We used
SRIM to obtain a distribution of the proportion of total energy
lost to nonionizing processes, shown in Fig. 25. On average
the nonionizing loss is less than 2% of the total energy, con-
sistent with earlier results [62]. As expected, the proportion
of NIEL attributable to phonon losses is substantially higher
than dislocations. Relative energy losses due to NIEL are
substantially higher towards the end of the track, however.
Combined with the poor charge collection in the entrance
window (see Sec. V C), it is feasible for events to fall below a
detection threshold due to large NIEL effect near the end of a
track.

C. Electronic response function: SPICE simulation

The charges induced on individual electrodes are read
out in a standard charge-sensitive configuration, meaning a
negative feedback field-effect transistor (FET) + integrating
capacitor scheme with a number of shaping networks follow-
ing the initial amplification. The FET capacitance is chosen

such that it corresponds closely to the total pixel capaci-
tance for a fully depleted detector. As discussed above, the
anticipated total capacitance is on the order of 10 pF after ac-
counting for additional parasitic capacitance before reaching
the FET amplification stage.

A SPICE model of the Nab detector preamplifier was con-
structed based on the components used in their design as built.
The circuit schematic is shown in Fig. 26. The first stage of
the preamplifier circuit is composed of a FET amplifier in the
common source configuration. The FET used in the circuit is a
BF862 n-channel junction FET. It has an internal capacitance
of 8.3 pF between the source and gate. It was chosen in part
because this capacitance is comparable to the capacitance of
the detector when depleted. This FET and the feedback resis-
tor (R3) and capacitor (C3) are housed near the detector and
kept at cryogenic temperatures. The first stage is connected
to the subsequent stages through so-called transition boards
represented in the circuit as transmission lines with nominal
impedances of 50 � in the signal path (T1) and 100 � in the
feedback path (T2) with 1 ns of delay for both. The “transition
boards” create a thermal break between the cold FET and
the rest of the circuit which is kept at room temperature.
Immediately following the transition board in the signal path
is an operational amplifier (U1) used as a unity gain buffer
with low output impedance to drive the shaping network. The
shaping network consists of a high pass filter with an RC time
constant of 5 µs followed by an active low pass filter with
an RC time constant of 7 ns. The frequency response of the
preamplifier circuit was simulated in SPICE and the results are
shown in Fig. 27. The 3 dB corner frequencies are found at
31 kHz and 20 MHz.

In order to take into account potential distortions, we add
a number of parasitic elements to the circuit. One such modi-
fication is the coupling between the ground at the FET source
and at the feedback resistor and capacitor, represented by a
connection between R12 and the FET source. Additionally,
a small resistance (R13), inductance (L1), and a parasitic
capacitance (C9) were introduced to model a realistic ground
connection. Finally, a capacitance (C4) and inductance (L2)
were added in front of the transmission line. The capacitance
and inductance were allowed to vary up the point that strong
oscillations occurred. The impulse response for each set of
values was generated in SPICE and convolved with a detector
signal generated in SSD to create simulated pulses. The result-
ing pulses are shown in Fig. 28. A comparison with data and
bench testing of the electronics boards will determine the final
simulation parameters of these parasitic elements.

D. Precision pulse shapes

Combining the Monte Carlo simulation of interactions be-
tween the impinging proton and pure silicon, propagation of
created e-h pairs in the electric fields of a hexagonal pixel
detector, explicit charge collection losses, calculation of the
induced current on the central pixel contact, and finally convo-
lution of the induced current with the impulse current response
of the preamplifier shaping electronics, we now present the re-
sulting simulation of the precision pulse shape for the 30 keV
proton interacting with the Nab Detector System. As further
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FIG. 26. Overview of the amplification stage in the Nab experiment as modeled using the SPICE simulation. The FET has an internal
capacitance of 8.3 pF between the source and gate for the frequency range of expected detector signals. The ground coupling denotes an
imperfect connection to ground through resistive and inductive loads, as well as feedback effects due to shared grounds. Parasitic parameters
were tuned to reproduce experimentally observed responses.

discussed in Sec. VII, the details of the simulation model
impacts the simulated pulse shape. However, to highlight the
impact of high precision pulse shape simulation, nominally
expected parameters have been used to assess the effect of
pulse shape on the systematic bias in the proton impact timing
extraction. For this end, the impurity concentration of the
silicon bulk was set to n0 = 4 × 1010 cm−3, resulting in the
depletion voltage of Vd ≈ −120 V. These settings correspond
to the discussion in Sec. IV B and the electric fields shown in
Fig. 9. The silicon detector temperature is set to 110 K and we
simulate protons impacting at 18 different locations within a
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FIG. 27. Frequency response of the preamplifier circuit from the
SPICE simulation (orange), and the analytical CR-(RC)2 approxima-
tion (blue). Both filters contain the same corner frequencies, but
the Nab system’s behavior at the time scale of charge collection
(tcoll ≈ 50 ns) is designed to have a steeper roll-off.

pixel moving both towards the flat edge of the hexagon as well
as one of the corners. These locations correspond to 11 differ-
ent radii, and induced current and the integrated charge on the
pixel contact for 4 different impact radii is shown in Fig. 29.
Close to the edge of the hexagon, strong deviations occur due
to weighting potential effects as discussed in Secs. IV A and
IV C. After convolving the induced current with the impulse
current response of the preamplifier electronics, we obtain the
resulting pulse shapes shown in Fig. 30.

As described in the Introduction, an accurate determina-
tion of the proton time of flight lies at the heart of the Nab
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FIG. 28. Pulse shapes created by taking simulated preamplifier
response from SPICE varying the transmission line impedance and
capacitance convoluted with the current pulse from drifting charge as
simulated in SSD. The top and bottom figure are the same but shown
at different y-axis scales.
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FIG. 29. Induced current and integrated charge on the central
pixel from the transit of the quasiparticles within the silicon detector
at four different proton impact radii using the electric fields of Fig. 9.
Solid line represents the impact position moving towards edge of the
hexagon, and the dashed line represents the impact position moving
towards corner of the hexagon (see Fig. 8).

experiment. The variation in pulse shapes in Fig. 30, however,
would lead to a systematic timing bias of several nanosec-
onds when using standard techniques such as leading edge
or constant fraction triggering. Instead, one might opt to use
pulse shape information. Using the results from the detailed
simulations presented here, we may quantify an introduced
timing bias when instead using only a single pulse shape as
a fitting template for each hit location inside the pixel. We
determine the timing bias by overlaying Gaussian noise, with

FIG. 30. Pulse shape created by convolving the induced current
of protons impacting four different radii of the pixel with the pream-
plifier impulse current response from SPICE. The solid line represents
the impact position moving towards edge of the hexagon, and the
dashed line represents the impact position moving towards corner of
the hexagon.

FIG. 31. Mean timing bias arising from utilizing only the pulse
shape of central impact position in extraction of the impact timing.
The error bars show the width of the distribution rather than the
uncertainty on the average shift, and as such are highly correlated.

a signal-to-noise ratio of 36, on each of the simulated pulse
shapes and performing a two-parameter curve fit (amplitude
and t0) using the pulse shape with an impact position at the
center of the pixel.

Results for a homogeneous electric field are shown in
Fig. 31. Within the first 3 mm of the pixel center, the pulse
shape does not vary significantly. As a consequence, the mean
timing bias from utilizing “incorrect” pulse shapes does not
result in any substantial mean timing bias. Near the outer
perimeter of the pixel, however, effects due to the weighting
potential (see Sec. IV A) change the pulse shape significantly
and one obtains a mean bias between 6.5 and 6.8 ns de-
pending on the direction. As shown in Fig. 32, weighting
by the surface area ratio of the different impact positions,
the mean timing bias across the entire pixel is 1.9 ns. While
this may be corrected for a posteriori, the scale of the lat-
ter significantly exceeds the required precision for the Nab
experiment as discussed in Sec. II B. Depending on the signal-
to-noise ratio of the experimental data, however, pulse shape
fitting may discriminate between the different hit positions
on an event-by-event basis. Should this not be feasible, an
average correction may be applied on a pixel-by-pixel basis
after appropriate determinations of the model parameters as
mentioned above.

If it were possible to consistently identify which pulse
shape a detected signal most closely matched, then the timing
bias could be corrected using the known biases from Fig. 31.
One effective way to perform this identification is through fit-
ting each measured waveform to a series of template functions
representative of the expected waveform shape at different hit
positions in the pixel, as seen in Fig. 30. Through comparison
of the χ2 values returned from these fits, the most closely
matching template shape can be identified and the bias cor-
rected for [213]. Figure 33 shows the results of this method on
the overall timing bias and Fig. 34 shows the per-waveform
bias and uncertainty before and after corrections. The
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FIG. 32. Cumulative histogram of extracted t0 bias on an indi-
vidual waveform when fitting every hit event with a central hit pulse
shape. Individual histograms at every radial position—see Fig. 31—
were weighted with their geometrical surface contribution to form
the cumulative distribution shown here. Using this procedure, a mean
bias of 1.9 ns is obtained.

performance of this method varies highly with the signal to
noise ratio of the measured data. Below a ratio of around
36:1 this method shows no improvements over the default
performance as the uncertainty in the identification of the
waveform shape is simply too large making the cleanliness
of the measured data critically important for the application
of a method such as this.

FIG. 33. Cumulative histogram of extracted t0 bias on an in-
dividual waveform before and after corrections from pulse shape
discrimination. Similarly to Fig. 32, the hit positions were weighted
geometrically. At a signal to noise ratio of 100:1 (where SNR is taken
as the square of the ratio of signal and noise amplitudes, respectively)
a reduction in the mean bias from 1.9 to −0.3 ns was achieved.

FIG. 34. Comparison of the timing extraction on a per-waveform
basis before and after corrections from pulse shape discrimination.
Note that this test was performed on the detector positions along the
axis towards the hexagonal pixel corner, or corresponding to the blue
dataset in Fig. 31. The increase in timing uncertainty for each hit
position arises from under/overcorrecting the timing bias when the
hit position is misidentified.

VII. PROBING MODEL PARAMETERS

The previous sections treated several aspects of the pulse
shape formation using models either extracted from the litera-
ture or constructed in this work. While many of the parameters
in these models can be well motivated and have been verified
experimentally, the behavior of the Nab detectors will depend
on several macroscopic observables that are specific to their
production.

First among these is the bulk impurity density profile and
potential radial gradients. As discussed in Sec. III B, the large
diameter of the Nab detectors makes substantial radial vari-
ation likely. We investigate the effects of radial gradients
on the signal rise time and discuss potential measurement
schemes of extracting the local impurity density. Additionally,
we show how capacitance-voltage curves can be instructive in
determining large-scale impurity density variations as a way
of obtaining complementary information.

Charge collection losses in the entrance window, discussed
in Sec. V C, determine the fraction of sub-threshold proton
events. An energy dependence in the latter—as protons arrive
with kinetic energies between 30 and 30.8 keV—causes a
disturbance in the reconstructed spectrum akin to a false aβν .
As such, an accurate reconstruction of the charge collection is
required, and we show how the energy spectrum of backscat-
tered protons can provide useful information.

Finally, the pixel isolation structure and its simulation in
Sec. IV C determines the fraction and occurrence of physi-
cal charge sharing, where carriers get collected on different
electrodes on either side of the pixel isolation structure. The
latter is similarly important for subthreshold proton detection
efficiency effects.
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FIG. 35. Average 10–90% rise times normalized to center-of-
pixel rise time for the 4 × 1010 cm−3 detector at various impurity
radial gradients. Results for 150 V are represented by solid lines and
the range of 180 V results is shown by the shaded cyan region. The
dashed line is the zero gradient result.

A. Bulk doping profile

1. Rise time distributions

As discussed in Sec. II A, the proton time of flight (tp) must
be determined precisely in the Nab experiment using digitized
pulse shapes. The signal rise time for protons is determined
primarily by the time it takes for the electron quasiparticles
to travel from the front of the detector to the back electrode,
which depends on the local impurity density. Following the
electric field calculations of Sec. IV B for different radial
gradients, we characterize the radial dependence of signal
rise times using SolidStateDetectors.jl for quasiparticle
transport.

As a starting point we take individually simulated events
from GEANT4, as discussed in Sec. VI B 1. Using the same
seven-pixel geometry and impurity density profiles described
in Secs. IV A and IV B, we then simulated pulse shapes at a
range of radial positions within a single pixel. We define a rise
time, t10–90, as the time it takes a signal to reach 10% and 90%
of its maximal value, respectively, and analogously for 0% to
10%. The former can be similarly extracted from experimental
data whereas the limited signal-to-noise ratio renders the latter
inaccessible.

In Fig. 35 we show the results for a single pixel with base
impurity concentration n0 = 4 × 1010 cm−3 at 150 and 180 V
(i.e., V > Vd ≈ 120 V). The detector needs to be significantly
overdepleted so that the edge of the detector is still depleted
for positive impurity concentration gradients. Near the pixel
edge differences in impurity concentrations have a significant
affect on rise times due to the combination of the radial depen-
dence of the electric field slope and the weighting potential
[see Figs. 8 and 9 and Eq. (22)]. For negative impurity density
gradients, both effects largely cancel and the rise time stays
constant within a few percent over the entire pixel surface.
Positive gradients, on the other hand, have a large impact
on rise times as both lower field strengths and later rise in

FIG. 36. Average 0-10% rise times normalized to center-of-pixel
rise time for a detector with n0 = 4 × 1010 cm−3 at various impurity
radial gradients. The dashed line is the zero gradient result.

weighting potential contribute to differences of up to 20%
in the signal rise time. Differences are obviously more pro-
nounced for bias voltages close to the depletion voltage.

Similarly, Fig. 36 shows the average normalized 0–10%
rise times for a single pixel with n0 = 4 × 1010 cm−3 impurity
density at 150 V. Within a 2 mm radius, no effect on the
0–10% rise time can be observed, consistent with expectation.
Unlike the behavior discussed above, however, positive radial
gradients leave the 0% to 10% rise time largely unaffected
while negative gradients show substantial changes. The latter
can be understood through field differences close to the front
contact where higher impurity concentrations have larger field
strengths (see Fig. 9). Note that the Nab experiment will
utilize pixels with much larger radial offsets than those pre-
sented here, producing systematic variation in the pulse shape
response which depends on the pixel “ring” in which the
signal originates. These effects are the subject of a separate
experimental program based at the University of Manitoba
[214].

Radial impurity density gradients might be determined
using a collimated proton beam that is swept radially across
the detector and analyzing the 10–90% rise times. In Fig. 37
we show the results of simulating such an experiment with
beams of radius 1, 2, and 3 mm. While a smaller beam size
is obviously more sensitive, even with a 3 mm beam radius
differences of up to 10% can be observed towards the pixel
edge. As observed in Fig. 35, maximal sensitivity occurs
for bias voltages just above depletion voltage. This points
both towards running conditions substantially above depletion
voltage for regular data taking and diagnostic studies near
depletion.

We briefly comment on the possible existence of longitudi-
nal gradients in the impurity density. From the manufacturer,
impurity density gradients along the boule symmetry axis can
range from vanishingly small to as large as about 3 × 1010

cm−4. From the Poisson equation, such a linear longitudinal
impurity density gradient creates a quadratic electric field
which diverges from the standard result by at most 10%.
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FIG. 37. Average 10–90% rise times normalized to center-of-
pixel rise time for 4 × 1010 cm−3 detector at 150 V various impurity
radial gradients. Solid, dashed, and dotted lines are used to represent
1, 2, and 3 mm beam sizes.

This difference in electric field was numerically found to
give differences in the average 10–90% rise time of <1%,
i.e., substantially smaller than shifts from radial gradients and
edge effects (up to 20%), and we do not further consider its
effects.

2. C-V curves

Often, measurements of the capacitance-voltage curve of
the entire detector at once are performed during the manu-
facturing phase and can be repeated afterwards by chaining
all pixels together. Besides the plateau in a typical C-V curve
showing full depletion, the shape as it approaches the latter
can be sensitive to bulk properties such as radial gradients. As
discussed in Sec. III B, radial gradients in the impurity density
profile can be significant in geometries as large as those used
in Nab. As a consequence, inner regions may be depleting
faster or slower than outer regions depending on the sign of
the gradient.

A simple analytical approximation to investigate potential
effects can be constructed when restricting to purely radial
gradients. In this case one may, in a first approximation,
consider the total detector capacitance as a construction of
concentric rings where each is a parallel plate capacitor with
depletion thickness d (r). The total detector capacitance is then
simply

Cdet =
∫ R

0
dr 2πr

ε

d (r)
, (55)

where d (r) is approximated as

d (r) ≈
√

2εrε0V

qN (r)
(56)

when less than the detector thickness t , and t otherwise. These
simple approximations neglect transverse fields, among other
effects, but can shed some light on anticipated changes in C-V
curves. Taking the impurity density to depend linearly on the

FIG. 38. Comparison of C-V curves with differing radial gradi-
ents in the impurity density profile using Eq. (56). The label denotes
the relative change in impurity density at the outer edge compared to
the center.

radius, i.e., N (r) = N0 + gr, results in C-V curves shown in
Fig. 38 for a number of different values of g.

Besides the pure C-V result, often-quoted variables such as
1/C2 ∝ d2 ∝ V/N and d (1/C2)/dV ∝ 1/N are also shown in
the figure. In the absence of any radial gradients, the former
shows a discrete kink indicating full depletion. As anticipated,
the presence of radial gradients serve to smooth out this kink.
The sign of the gradient, however, changes the second deriva-
tive as can be observed in the bottom panel of Fig. 38. This
is a feature that persists in the more detailed simulation as
discussed below, and can be a useful diagnostic tool for the
bulk behavior.

B. Charge collection in the entrance window

Following the discussion of Sec. V C, we perform a com-
parison of different dead layer models using the GEANT4
simulation as described in Sec. VI B 1. We study both phe-
nomenological models discussed in Sec. III E, i.e., the “hard”
and “soft” models of Eqs. (20) and (21), respectively. In the
Nab experiment, protons are accelerated by a 30 kV potential
before striking the silicon detector (see Fig. 1). As such, pro-
tons emerging from neutron β decay range between 30.0 keV
and 30.8 keV by the time they reach the upper detector. The
“hard” dead layer was implemented with a depth of 70 nm
and similarly the “soft” dead layer was implemented with
a characteristic length l of 70 nm. The spectra for detected
energy of 30.0 and 30.8 keV protons that scatter out of the
silicon with each dead layer model applied are shown in
Fig. 39. Substantial differences are observed in the rate and
shape for each charge collection model, meaning the study of
the backscattered proton spectrum can be a valuable tool for
distinguishing between them.
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FIG. 39. Spectra of deposited energy for 30 (solid) and 30.8
keV (dots) protons scattering out of silicon using different dead
layer models. The black vertical lines represent the range of detector
thresholds.

A simple diagnostic tool can be simply the number of over-
threshold backscattered events. For this purpose, we define
thresholds of 10 and 15 keV assuming a detector resolution
that is Gaussian with a width of 2 keV. The fraction of
backscattered events that cross the threshold out of the total
number of events is shown in Table I for both 30 and 30.8 keV
protons. As anticipated from Fig. 39, the expected difference
between fractional missed backscatter rates for hard and soft
charge collection models is substantial, such that discrimina-
tion between the two models using the same characteristic
difference should be straightforward.

C. Charge sharing

Section IV C discussed the local electric field environment
near pixel boundaries in great detail. Here, we will use those
results to investigate the effects of physical charge sharing.
The latter occurs when energy is deposited close to a pixel
boundary, and freed charge carriers get collected on either
side of the pixel boundary due to a combination of drift and
diffusion.

An example of charge carrier motion in this configuration
is shown in Fig. 40, where a cloud of ten electrons are released
at the geometrical center of a pixel boundary and are free to
drift and diffuse. As discussed above, the p-spray and p-stop
configurations serve to repel charges from the pixel boundary
so that they are collected in either electrode. In this region,

TABLE I. Fraction of backscattered proton events above thresh-
old out of total number of events for different thresholds, energies,
and dead layer models.

Threshold

Energy 10 keV 15 keV

Soft 30.0 keV 13.33(5)×10−4 4.52(3)×10−4

30.8 keV 13.72(5)×10−4 5.24(3)×10−4

Hard 30.0 keV 8.10(4) × 10−4 3.02(2)×10−4

30.8 keV 8.49(4) × 10−4 3.53(2)×10−4

FIG. 40. Example of explicit free carrier drift including diffusion
close to the pixel isolation structure.

however, the electric field magnitude drops significantly, so
that their motion is dominated by diffusion.

In order to quantify the effects of charge sharing, we define
a charge asymmetry according to

A = QR − QL

QL + QR
, (57)

where QL(R) is the total collected charge on the contact left
(right) of the boundary. By varying the initial position of
charge carriers relative to the boundary, we may map the
behavior of A. The relevant scale in this problem is the relative
distance traversed by diffusion and drift, i.e., S ∝ √

Dt/〈t〉 ∝√
T/〈E〉 with temperature T and average electric field 〈E〉, as

losses are negligible.
Figure 41 shows A as a function of distance from the pixel

boundary center for both p-stop and p-spray configurations,
with T = 150 K and biased at twice the depletion voltage.
Within statistical uncertainty, there are no systematic differ-
ences between p-stop and p-spray. Both configurations reach
full asymmetry (i.e., complete collection in just one contact)
close to the physical boundary.

The induced charge as a function of time is shown in
Fig. 42 for different starting positions relative to the pixel

FIG. 41. Charge asymmetry, defined in Eq. (57), when varying
the initial position of the energy deposition relative to the pixel
isolation structure for both p-stop and p-spray.
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FIG. 42. Average induced charge versus time in a contact for
events close to the pixel boundary using detailed electric and weight-
ing field simulations for p-stop (solid) and p-spray (dashed). Charge
sharing is explicitly taken into account resulting in lowered am-
plitude pulses in agreement with Fig. 41. Strong deviations in the
pulse shape for fully collected events arise from near-perpendicular
weighting fields on the physical boundary, as shown in Fig. 11.

boundary center. In the center of the interpixel gap, charge
collection at either electrode is halved, resulting a pulse shape
with half amplitude. Slightly off center, however, interest-
ing pulse shapes emerge as the shape of the weighting field
surrounding the pixel insulation (Fig. 4) becomes important.
Moving along a straight line from the front face, the weighting
field become progressively more perpendicular to the electric
field so that it is possible for a moving quasiparticle to induce
zero net charge [see Eq. (25)]. As the quasiparticle approaches
the p-stop or p-spray region, the electric field lines change
direction to the closest contact in a small region and diffusion
determines the fraction of charge collected on either pixel. The
last part of the transport results in a swift increase of induced
charge, similar to the edge effects discussed in Sec. IV A.

VIII. CONCLUSION

An accurate timing reconstruction of the proton time-
of-flight in the Nab experiment at the nanosecond level is
required to measure the beta-antineutrino angular correlation
at the 0.1% level. We have focused here on how detector
effects, through a variety of different mechanisms, produce
differences in the pulse shape and extracted start time. Using
detailed electric and weighting field calculations, we have
shown how the hexagonal pixel geometry gives rise to com-
plex weighting potentials and derived an analytical expression
that gives excellent agreement except for the sharp corners.
Additionally, we have studied the effect of radial gradients in

the bulk impurity density and how they cause a substantial rise
time spread even within a single pixel. Finite element analysis
was performed on a detailed simulation of interpixel isolation
technologies using p-stop and p-spray, where one must use
Gunn’s theorem rather than the standard Shockley-Ramo ap-
proach to obtain correct results.

Using Monte Carlo methods, we presented detailed studies
of collective effects in quasiparticle transport through thermal
diffusion and plasma effects. Our approach for the latter is
the first microscopic treatment of the effect for low energy
protons and shows delays in the charge collection onset be-
tween 0.1 and 0.5 ns. Additionally, we have used secondary
ion mass spectroscopy results to establish a detailed charge
collection efficiency function inside the entrance window. As
many experiments in low-energy particle and nuclear physics
are sensitive to the details of this “dead layer” but typically
consider only simplified models, our results show a potential
avenue for a more detailed understanding.

Finally, we presented ways in which the remaining free
parameters in the model description can be probed using
auxiliary experiments. These are predominantly concerned
with establishing the radial impurity variations throughout the
large crystals used for the Nab experiment. We find that using
collimated beams with a diameter on the order of one to a few
millimeters may be sufficient to establish the bulk behavior
within the required specifications for the Nab experiment.

In summary, we have provided an overview and in-depth
treatment of precise pulse shape prediction for high purity
silicon detectors used in nuclear and particle physics. The
current work represents an improvement in the state of the art
which might prove fruitful in the efforts to constrain physics
beyond the standard model using neutron and nuclear β decay,
and points to several areas of interest for further research.
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