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We investigate double-strangeness exchange reactions, K− p → K+�− and K− p → K0�0, using an effective
Lagrangian approach based on a hybrid Regge-plus-resonance model involving rescattering diagrams. We
consider the background processes that include �, �, and �(1385) Regge trajectories in the u channel and the
s-channel Born-term diagrams. The s-channel hyperon resonances account for the bump structures in the total
cross sections. The s-channel �(2100, 7/2−) and �(2030, 7/2+) resonances contribute significantly, and the
�(2250) resonance favors JP = 7/2−. The interference pattern between the �(2100, 7/2−) and �(2030, 7/2+)
amplitudes is essential for describing forward differential cross sections in the resonance region 2.07 <

√
s <

2.15 GeV. The absence of the S = −2 meson leads to the inclusion of the meson-baryon rescattering diagrams to
describe the K− p → K� reaction data, proving the significant contribution of the (φ, ρ, ω)–(�,�) rescattering
diagrams.
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I. INTRODUCTION

Hadron spectroscopy provides essential information
regarding quantum chromodynamics (QCD) in the nonper-
turbative regime [1]. In recent years, new hadrons have been
observed owing to experimental advances, thus making the
hadron spectrum abundant. Although the excited states of
nucleons are relatively well known, only a limited amount of
hyperon resonances are available for testing the lattice QCD
calculation results. A complete set of hyperon resonances
can drastically alter our understanding of the nonperturbative
QCD and quark confinement [2,3]. Furthermore, owing to
their large widths, it is challenging to disentangle � and �

resonances overlapping near
√

s = 2.0 GeV. These high-mass
hyperon resonances may couple selectively with the K� chan-
nels [4,5].

The KN → K� reactions on the nuclear targets provide
a unique test ground for the spectroscopy of double hypernu-
clear states and introduce a new means for studying the elusive
content of multiquark hadrons, such as the H dibaryon.
Double-strangeness exchange (K−, K+) and (K−, K0) re-
actions would benefit from the absence of a single-meson
exchange in the t channel. These reactions are crucial for
imposing constraints on largely unknown vertex parameters
for the decay of � and � resonances in the KN and K�

channels.
The experimental data for the (K−, K+) and (K−, K0)

reactions are primarily available from old bubble-chamber
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experiments in the 1960s and 1970s [6–19], which placed
limitations on a rigorous and detailed theoretical treatment.
However, new insights into the double-strangeness exchange
reactions have emerged from recent advances in experimental
measurements. A long-term program for the S = −2 system
study is ongoing at the J-PARC hadron experiment facility
[20]. A pilot experiment (E05) exploring �−-hypernuclear
states reported a forward peaking in the differential cross
section for the K− p → K+�− reaction at 1.8 GeV/c [21,22].
The high-statistics of the E05 data also demonstrated that the
production cross section averaged over the forward angles
reached a maximum value at 1.8 GeV/c. Recently, the H
dibaryon search experiment (E42) collected (K−, K+) reac-
tion data, providing �− production cross-section and recoil
polarization data in the forward region at 1.8 GeV/c [23,24].
The � and � resonances are also critical for photoproduction
and the pp → �� reactions. A recent experimental highlight
is the measurement of �− and �∗ from photoproduction at
the Jefferson Laboratory with CLAS [25] and GlueX detectors
[26]. The GSI-FAIR facility intends to make advances in the
pp → �� reactions with the PANDA detector [27]. However,
the γ N and pp reactions require two steps to produce �/�,
making it challenging to study s-channel hyperon resonances.

The forward K+/K0 angular distributions are not strong
when double-charge or double-strangeness exchange is re-
quired in the t channel. However, early experimental data
demonstrated a sizable strength at forward angles for the
double-strangeness exchange reactions. Therefore, several
early theoretical efforts were made to elucidate forward
peaking in the differential cross sections with single-
particle exchange diagrams in the s and u channels and
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rescattering diagrams involving vector mesons and hyper-
ons; however, these need to be more satisfactory when
describing the data. Previous theoretical efforts include the
effective Lagrangian approach [28,29], a unitarized chiral
perturbation approach [30], and coupled-channel approaches
from global multichannel analyses by Argonne-Osaka [31],
Julish-Bonn-Washington [32], and Bonn-Gatchina [33]. A
phenomenological contact-term amplitude for the rescattering
contribution was included in the model-independent [34,35]
and model-dependent [36] analyses by using an effective La-
grangian approach.

This study investigates the double-strangeness exchange
(K−, K+) and (K−, K0) reactions in the tree-level effective
Lagrangian approach based on a hybrid Regge-plus-resonance
(RPR) model. Because the tree-level isobar models focus on
selecting a relevant set of s-channel resonance diagrams and
Born terms involving nonresonant contributions [28,29,36],
there are several parameters to fit the data. In contrast, our
model focuses on Reggeizing the Feynman diagrams involv-
ing the exchange of S = −1 hyperon trajectories in the u
channel [37]. The Regge formalism is well suited for pro-
cesses at high s and small |t | or |u|. We consider the �, �,
and �(1385) Regge trajectories in the u-channel diagram. The
background of this model includes the s-channel Born-term
and Reggeized u-channel contributions. For the s-channel res-
onances, we consider the decay-branching fractions for the
K̄N and K� channels from the Particle Data Group (PDG)
[38]. The inclusion of the s-channel � and � resonances pro-
vides critical information regarding the vertex parameters of
the (K−, K+) and (K−, K0) reactions. The absence of S = −2
mesons leads to a lack of the t-channel Born-term contribu-
tion. Instead, we consider rescattering diagrams mediated by
pseudoscalar and vector mesons with � and � ground states,
leading to an extension of the RPR model, named the hybrid
RPR model.

In the next section, we outline the theoretical frame-
work of the hybrid RPR model. Section II A focuses on the
procedure for u-channel Reggeization of the high-energy am-
plitude. Section II B presents our choice of s-channel hyperon
resonances with deduced coupling constants. Section II C
demonstrates the formalism of meson-baryon rescattering am-
plitudes. The numerical results are presented in Sec. III.
Finally, the results are summarized in the last section.

II. THEORETICAL FRAMEWORK

In this section, we introduce the theoretical framework for
investigating the K− + p → K + � reactions using an effec-
tive Lagrangian approach. We consider the K− p → K+�−
and K− p → K0�0 reactions. The Feynman diagrams of the
reactions are shown in Fig. 1, where the four-momenta of the
particles are denoted by k1, p1, k2, and p2. Diagram (a) indi-
cates an exchange of Reggeized �, �, and �(1385) hyperons
in the u channel and diagram (b) denotes an s-channel process
involving � and � ground states and their resonances with
spin-parities up to JP = 7/2± in the s channel. The other dia-
grams represent the K− p → MiBi → K� processes involving
Mi = (φ, ρ, ω) and Bi = (�,�) by exchanging K and K∗ in

FIG. 1. Feynmann diagrams describing the K− p → K� reac-
tions. The intermediate states are (a) Reggeized �, �, and �(1385)
hyperons in the u channel; (b) ground and excited states of �

and � hyperons in the s channel. The rescattering diagrams of the
K− p → MiBi → K� processes are represented as shown in (c) Mi =
(φ, ρ, ω), Bi = (�,�) and (d) Mi = (π, η), Bi = (�, �).

(c), and Mi = (π, η) and Bi = (�,�) with a K∗ exchange
in (d).

We employ the following notation for the isodoublet fields:

N =
(

p
n

)
, � =

(
�0

�−

)
, K =

(
K+

K0

)
, K ′ =

(
K

0

−K−

)
. (1)

The effective Lagrangians for the exchanges of the spin-1/2
baryons (and their resonances) can be expressed as follows:

L1/2±
KN� =gKN��(DN�K )N + H.c.,

L1/2±
K ′�� =gK���(D� �K ′)� + H.c.,

L1/2±
KN� =gKN�� · (DN�K )τN + H.c.,

L1/2±
K ′�� =gK���τ (D� �K ′) · � + H.c., (2)

where

DBB′ ≡ �±
(

−iλ + 1 − λ

MB + MB′
/∂

)
. (3)

Here, �+ ≡ γ5 and �− ≡ 14×4. The pseudoscalar (PS) and
pseudovector (PV) couplings correspond to λ = 1 and λ = 0,
respectively.

The effective Lagrangians corresponding to the exchanges
of the JP = (3/2±, 5/2±, 7/2±) � resonances, which are
respectively defined by the following:

L3/2±
KN�∗ = gKN�∗

MK
�

∗μ
�∓(∂μK )N + H.c.,

L5/2±
KN�∗ = i

gKN�∗

M2
K

�
∗μν

�±(∂μ∂νK )N + H.c.,

L7/2±
KN�∗ = −gKN�∗

M3
K

�
∗μνα

�∓(∂μ∂ν∂αK )N + H.c., (4)
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FIG. 2. Regge trajectories of (a) �, and (b) � and �(1385), where the spin and parity of certain hyperon resonances are not confirmed
thus far [37].

for the KN�∗ vertex;

L3/2±
K ′��∗ = gK��∗

MK
� �∓(∂μK ′)�∗μ + H.c.,

L5/2±
K ′��∗ = i

gK��∗

M2
K

� �±(∂μ∂νK ′)�∗μν + H.c.,

L7/2±
K ′��∗ = −gK��∗

M3
K

� �∓(∂μ∂ν∂αK ′)�∗μνα + H.c., (5)

for the K ′��∗ vertex. The exchange of � resonances is con-
sidered in the same manner as that in Eq. (2).

A. Reggeized hyperon exchange in the u channel

We consider S = −1 hyperon Regge trajectories in the u
channel that exhibit backward peaks. The linear Regge trajec-
tories of �, �, and �(1385) are provided in [37] with

α�(u) = −0.65 + 0.94u,

α� (u) = −0.79 + 0.87u,

α�(1385)(u) = −0.27 + 0.9u,

as shown in Fig. 2.
Note, the spin-parities of �(2585), �(2250), �(2455),

and �(2620) are not experimentally confirmed thus far and
are assumed to be JP = 11/2−, 7/2−, 9/2+, and 11/2− in
this study, respectively. The Reggeized � exchange in the u
channel is present only in the K− p → K+�− reaction owing
to charge conservation.

The u-channel Reggeized amplitudes corresponding to the
exchanges of Y (= �,�) and �∗(= �(1385)) are obtained as
follows:

TY (s, u) = CY (u)Mu
Y

(
s

sY

)αY (u)− 1
2

�

(
1

2
− αY (u)

)
α′

Y ,

T�∗ (s, u) = C�∗ (u)Mu
�∗

(
s

s�∗

)α�∗ (u)− 3
2

�

(
3

2
− α�∗ (u)

)
α′

�∗ ,

(6)

by substituting the Regge propagators for the Feynman prop-
agators [37]. The energy-scale parameters were obtained as
conventional values of sY,�∗ = 1 GeV2. The scale factors were
defined as follows [39]:

CH (u) =
(

ηH
�2

H

�2
H − u

)2

, (7)

where H = (�,�,�(1385)). Given �H = 1 GeV, the values
of η� = 2.6 and η�,�∗ = 0.66 were deduced from the fit of
the experimental data in the high-energy region.

The amplitudes Mu
Y,�∗ in Eq. (6) are derived from the

effective Lagrangians as follows:

Mu
Y = Iu

Y

gKNY

mN + mY

gK�Y

m� + mY
ū�/k1γ5(/qu + mY )/k2γ5uN ,

Mu
�∗ = Iu

�∗
gKN�∗gK��∗

m2
K

ū�(/qu + m�∗ )

× kμ
1 �μν (qu, m�∗ )kν

2 uN , (8)

where uN and u� denote the spinors of the incoming nu-
cleon and outgoing � hyperon, respectively. The baryon Dirac
spinors are normalized to ūBuB = 1. Iu

Y,�∗ denotes the isospin
factor, and the momentum transfer is given by qu = p2 − k1.

The PS (λ = 1) and PV (λ = 0) couplings exhibit different
behaviors in the total cross section near the threshold. The PS
coupling exhibits a sharp increase, whereas the PV coupling
exhibits a slow rise in the cross section. Because the PV
coupling fits the experimental data better, we adopted the PV
coupling for Mu

Y in Eq. (2). The element �μν in the propa-
gator of the spin-3/2 Rarita-Schwinger field is expressed as
follows:

�μν (q, m) = −gμν + 1

3
γμγν + 1

3m
(γμqν − qμγν )

+ 2

3m2
qμqν . (9)
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TABLE I. � and � resonances listed in the PDG [38] with the
decay widths and branching ratios for the KN and K� channels. The
resonances with a mark � are selected in the s-channel diagram.

� state Width Rating B(�∗→KN ) B(�∗→K�) This
(JP ) [MeV] [%] [%] work

�(1820)5/2+ 80 **** 55 − 65 −
�(1830)5/2− 90 **** 4 − 8 −
�(1890)3/2+ 120 **** 24 − 36 ∼1 [41] �
�(2000)1/2− 190 * 27 ± 6 −
�(2050)3/2− 493 * 19 ± 4 −
�(2070)3/2+ 370 * 12 ± 5 7 ± 3
�(2080)5/2− 181 * 11 ± 3 4 ± 1
�(2085)7/2+ 200 ** − −
�(2100)7/2− 200 **** 25 − 35 <3 �
�(2110)5/2+ 250 *** 5 − 25 −
�(2325)3/2− 168 * − −
�(2350)9/2+ 150 *** ∼12 −
�(2585) ?? ** − −
� state Width Rating B(�∗ → KN ) B(�∗ → K�) This
(JP ) [MeV] [%] [%] work

�(1880)1/2+ 200 ** 10 − 30 −
�(1900)1/2− 165 ** 40 − 70 3 ± 2
�(1910)3/2− 220 *** 1 − 5 −
�(1915)5/2+ 120 **** 5 − 15 −
�(1940)3/2+ 250 * 13 ± 2 −
�(2010)3/2− 178 * 7 ± 3 3 ± 2
�(2030)7/2+ 180 **** 17 − 23 <2 �
�(2070)5/2+ 200 * − −
�(2080)3/2+ 170 * − −
�(2100)7/2− 260 * 8 ± 2 −
�(2110)1/2− 313 * 29 ± 7 −
�(2230)3/2+ 345 * 6 ± 2 2 ± 1 �
�(2250) ?? 100 ** <10 − �
�(2455) ?? 120 * − −
�(2620) ?? 200 * − −

The coupling constants in Eq. (8) can be obtained by using the
SU(3) flavor symmetry relations as follows:

gKN� = −13.24, gK�� = 3.52,

gKN� = 3.58, gK�� = −13.26,

gKN�(1385) = −3.22, gK��(1385) = −3.22 (10)

with f /d = 0.575, gπNN = 13.26, and gπN� = 2.23 [40].
The differential cross section dσ/du satisfies the following

asymptotic behavior:

dσ

du
(s → ∞, u → 0) ∝ s2α(u)−2. (11)

B. Hyperon resonance exchange in the s channel

We consider the ground and excited states of � and � in
the s channel, as shown in Fig. 1(b). Table I lists the proper-
ties of the (a) � and (b) � resonances, including the decay
widths and branching ratios (B) for the KN and K� channels
from the PDG [38] and Ref. [41]. The branching ratios for
Y ∗ → K� are not well known relative to those for Y ∗ → KN ,

where Y ∗ denotes � or � resonances. In this study, we in-
clude hyperon resonances with known branching ratios and
well-established four-star resonances, such as �(1890)3/2+,
�(2100)7/2−, and �(2030)7/2+. Additionally, we added
�(2230)3/2+ and �(2250) states to explain the bump struc-
ture in the total cross sections near

√
s ≈ 2.3 GeV. Moreover,

the spin-parity parameters of �(2250) with J p = 7/2− favor
the � Regge trajectory [37,42].

The scattering amplitude for the exchange of � and � in
the s channel can be expressed as follows:

Ms
Y (s) = Is

Y

s − m2
Y

gKNY

mN + mY

gK�Y

m� + mY

× ū�/k2γ5(/qs + mY )/k1γ5uN (12)

with PV coupling in Eq. (2). The sum of the initial-state mo-
menta is qs = k1 + p1. We consider the hadronic form factor
at each vertex in the following form:

FY (s) =
(

n�4
Y

n�4
Y + (

s − m2
Y

)2

)n

, (13)

where the model parameters are fixed at n = 2 and ��,� =
0.85 GeV.

The scattering amplitudes for the exchange of the � and �

resonances with JP = 1/2±, 3/2±, 5/2±, and 7/2± in the s
channel is given by

M1/2±

Y ∗ = −�±(/qs + mY ∗ )�±,

M3/2±

Y ∗ = 1

m2
K

�∓(/qs + mY ∗ )kμ
2 �μνkν

1�∓,

M5/2±

Y ∗ = −1

m4
K

�±(/qs + mY ∗ )kμ
2 kν

2�αβ
μνk1αk1β�±,

M7/2±

Y ∗ = 1

m6
K

�∓(/qs + mY ∗ )kμ
2 kν

2 kρ
2 �αβδ

μνρk1αk1βk1δ�
∓ (14)

with the notation

MJP

Y ∗ (s) = IY ∗
gKNY ∗gK�Y ∗

s − M2
Y ∗ + imY ∗�Y ∗

ū�MJP

Y ∗uN , (15)

where �+ ≡ γ5 and �− ≡ 14×4. We refer to Refs. [43–46]
for the elements �

αβ(δ)
μν(ρ) involved in the propagators of the

spin-5/2 and -7/2 baryon fields. The decay widths �Y ∗ were
obtained from the PDG [38] shown in Table I. The mass
of �(2250) is assumed to be 2290 MeV in this study to fit
the bump structure near

√
s ≈ 2.3 GeV. The Gaussian form

factor is considered at each vertex such that the resonance
amplitudes vanish at high energies:

FY ∗ (s) = exp

(
− s − m2

Y ∗

�2
Y ∗

)
, (16)

where the cutoff energy is chosen to be �Y ∗ = 0.73 GeV.
The coupling constants gKNY ∗ are determined from the

branching ratios of Y ∗ → KN . We adopt the central values
for B(Y ∗ → KN ). For the �(2250) → KN decay, only the
upper limit of the branching ratio is available, thus we obtain
the upper-limit value [38]. We then obtained the values of
gK�Y ∗ and B(Y ∗ → K�) by fitting the experimental data. All
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TABLE II. The coupling constants gKNY ∗ were determined from
the central values of B(Y ∗ → KN) [38]. The other values of gK�Y ∗

and B(Y ∗ → K�) were extracted by fitting the experimental data for
the K− p → K� reactions.

�(1890) �(2100) �(2030) �(2230) �(2250)

gKNY ∗ 0.84 2.41 0.82 0.41 0.59
gK�Y ∗ −0.26 2.95 −0.93 0.34 0.88
B(Y ∗ → K�)[%] 0.23 0.73 0.88 2.0 1.0

relevant values are listed in Table II. The extracted values
of B(Y ∗ → K�) sufficiently agreed with those quoted in the
PDG [38]. The branching ratio of the �(2250) → K� decay
was 1.0%.

C. Rescattering diagram

The meson-baryon rescattering amplitude can be expressed
as

TMB(p, p′) =
∑

i

∫
d3q

(2π )3

mBi

EBi

TK− p→MiBi (p, q)

× 1

s − (
EMi + EBi

)2 + iε
TMiBi→K�(q, p′), (17)

which is derived from the three-dimensional reduction of the
Bethe-Salpeter equation. The off-shell energies of the inter-
mediate meson and baryon are denoted by EMi = (m2

Mi
+

|q|2)1/2 and EBi = (m2
Bi

+ |q|2)1/2, respectively. For the in-
termediate states, we consider Mi = (ρ, ω, φ, π, η) and Bi =
(�,�), as shown in Figs. 1(c) and 1(d). The summation over
the polarization and spin indices of the intermediate states is
indicated. For both the production TK− p→MiBi and absorption
TMiBi→K� processes, the K∗ exchange is considered. In the
case of Mi = (ρ, ω, φ), we also include the K exchange.

The integral runs over the three-momentum q of the inter-
mediate Mi meson and can be decomposed into singular and
principal (P ) parts:

TMB(p, p′) = −i
∑

i

qc.m.

16π2

mBi√
s

∫
d�

[
TK− p→MiBi (p, qc.m.)

× TMiBi→K�(qc.m., p′)
] + P, (18)

where the former is strictly required by unitarity. In this
study, we numerically consider both parts by using a well-
established method. qc.m. = [(s − (mMi − mBi )

2)(s − (mMi +
mBi )

2)/4s]1/2 denotes the magnitude of the on-shell three-
momentum of the intermediate hadrons.

The transition amplitude TK− p→MB can be constructed by
using the following effective Lagrangians:

LV KK = −igV KK (∂μKVμK − KVμ∂μK ),

LV K∗K = gV K∗Kεμναβ∂μK
∗
ν∂αVβK + H.c.,

LK∗KP = −igK∗KP(K∂μPK∗
μ − K

∗
μ∂μPK ),

LK∗NB = −gK∗NB

[
K

∗
μBγ μ − κK∗NB

2MN
∂νK

∗
μBσμν

]
N + H.c.,

(19)

where V = (φ, ρ, ω), P = (π, η), and B = (�,�). The cou-
pling constant gφKK = 4.48 was calculated from the partial
decay width as, �φ→K+K− = 2.09 MeV [38],

�φ→K+K− = g2
φKK q3

K

6πm2
φ

, (20)

where qK = (m2
φ − 4m2

K )1/2/2. The SU(3) flavor symmetry
leads to [47]

gρKK = gωKK = gρππ/2,

gφK∗K = gρωπ/
√

2, gρK∗K = gωK∗K = gρωπ/2,

gK∗Kη =
√

3gK∗Kπ , (21)

where gρππ = 5.94 was calculated from the branching ratio
B(ρ → ππ ) ∼ 1. The gρωπ coupling constant was derived
from the hidden gauge approach [48]

gρωπ = Ncg2
ρππ

8π2 fπ
= 14.4 GeV−1, (22)

where Nc = 3 and fπ = 93 MeV. We obtained gK∗Kπ = 6.56
from the branching ratio B(K∗ → Kπ ) ∼ 1 with the relation

�K∗→Kπ = g2
K∗Kπq3

π

8πm2
K∗

, (23)

where qπ = [(M2
K∗ − (mK − mπ )2)(M2

K∗ − (mK + mπ )2)]1/2/

2MK∗ . The K∗NB coupling constants were obtained from the
Nijmegen potential (NSC97a) [49,50]

gK∗N� = 4.26, kK∗N� = 2.66,

gK∗N� = −2.46, kK∗N� = −0.467. (24)

The K∗�B interactions were determined in a similar manner:

gK∗�� = 4.26, kK∗�� = 1.10,

gK∗�� = −2.46, kK∗�� = 4.22, (25)

which are needed for the transition amplitude TMB→K�.
For the process of K−(k1) + p(p1) → M(q′) + B(q′′), the

transition amplitudes in Fig. 1(c) can be expressed as

T K
K− p→V B = i

gKNB

mN + mB

gV KK

q2
t − m2

K

(k1 + qt )
με∗

μū�/qtγ5uN ,

T K∗
K− p→V B = gV K∗K gK∗NB

q2
t − m2

K∗
εμναβ ū�

×
[
γμ + i

κK∗NB

2mN
σμλqλ

t

]
uN qtνq′

αε∗
β, (26)

for the K and K∗ exchanges, respectively. Here, qt = k1 −
q′ = [EK− (k1) − EM (q′), pK− − q] and εμ is the polarization
vector of the V meson. The transition amplitude correspond-
ing to Fig. 1(d) has the following form:

T K∗
K− p→PB = gK∗KPgK∗NB

q2
t − m2

K∗
q′

α

[
−gμα + qμ

t qα
t

m2
K∗

]
ū�

×
[
γμ + i

κK∗NB

2mN
σμνqν

t

]
uN , (27)

for the K∗ exchange.
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FIG. 3. Total cross section from the φ� rescattering diagram
versus

√
s for K− p → K+�−. The dashed blue and dotted red lines

indicate the contributions of the principal and singular parts, respec-
tively. The solid black line indicates the sum of both contributions.

We considered the following form factor at each vertex:

FMB(qt ) =
(

�2
MB

�2
MB + q2

t

)2

, (28)

where q2
t = (p − q)2. The cut-off energies were fixed at

�V B = 0.85 GeV and �PB = 0.50 GeV.
The contribution of the φ� rescattering diagram for

K− p → K+�− is shown in Fig. 3. It was found that the
principal part plays an essential role in the low-energy region,
whereas the singular part governs the high-energy region.
Note, the singular part requires only the on-shell amplitudes
for TK− p→φ� and Tφ�→K+�− , such that it contributes from the
φ� threshold. For the early theoretical attempts to consider
the rescattering diagrams for the meson-induced reactions in
Refs. [51–53], the angular distributions were explained only
by the rescattering diagrams with certain assumptions.

III. NUMERICAL RESULTS

We first present our numerical results for the total and dif-
ferential cross sections, and recoil polarization asymmetries
using only the u- and s-channel diagrams. We then discuss
how the rescattering diagrams became important when they
were included.

A. Regge-plus-resonance model

The result of the total cross section is shown in Fig. 4
as a function of the c.m. energy

√
s with individual contri-

butions for (a) K− p → K+�− and (b) K− p → K0�0, and
compared with the available experimental data [6–19]. For
a u-channel isospin-1 exchange mechanism, we obtain the
relation σ (K− p → K0�0)/σ (K− p → K+�−) = 4. The �

exchange in the u channel is only possible in the K+�− chan-
nel. Thus, the Reggeized � and �(1385) exchanges are fitted
to describe the high energy data (

√
s > 2.4 GeV) of K− p →

K0�0, and the background contribution of K− p → K+�−
originates mostly from the u-channel � Regge trajectory. The

(a)

(b)

FIG. 4. Total cross sections as a function of the c.m. energy√
s for the (a) K− p → K+�− and (b) K− p → K0�0 reactions.

Contributions from the s-channel hyperon resonances involving
�(1890)3/2+, �(2100)7/2−, �(2030)7/2+, �(2230)3/2+, and
�(2250)7/2− are shown separately. The dashed red line indicates the
u-channel contributions of the �, �, and �(1385) Regge trajectories.
The dotted brown line indicates the contributions of the s-channel �

and � ground states, and is only observed in the K0�0 channel. The
solid black line indicates the full contribution of Figs. 1(a) and 1(b).
The data are taken from (a) Refs. [6–15,17–19] and (b) Refs. [9,13–
16,19].

coherent sum of the s-channel amplitudes involving the �

and � ground states makes a significant contribution only to
the K0�0 channel because the � and � channels interfere
constructively only in the K0�0 channel, and not in the K+�−
channel.

The bump structures at 1.9 <
√

s < 2.4 GeV were ac-
counted for by the additional inclusion of the s-channel
� and � resonances in the background contribution. The
most significant contributions are from �(2100)7/2− and
�(2030)7/2+. Near the threshold, �(1890)3/2+, which is
the lowest state among the s-channel resonances in this
study, contributes to the description of the experimental data.
However, an apparent discrepancy was observed in the in-
creasing pattern of the total cross section for K− p → K+�−
near the threshold, indicating significant contributions from
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(a)

(b)

FIG. 5. Differential cross sections versus cos θ for (a) K− p →
K+�− and (b) K− p → K0�0 for different c.m. energies

√
s =

(1.95–3.00) GeV. The dashed red lines are the contributions of the u-
channel �, �, and �(1385) Regge trajectories. The dotted blue lines
represent the contributions of the s-channel � and � resonances. The
solid black lines indicate the full contribution of Figs. 1(a) and 1(b).
The data are from (a) Refs. [7,8,10–13] and (b) Refs. [9,11,13,16].

subthreshold resonances [54,55]. The �(2230)3/2+ and
�(2250) resonances contribute moderately. As previously in-
dicated, we assumed �(2250) to have JP = 7/2−, lying on
the Regge trajectory of � in Fig. 2. The magnitudes of the
individual s-channel resonance contributions are the same for
both channels.

Figure 5 presents differential cross sections as a function of
cos θ for (a) K− p → K+�− and (b) K− p → K0�0 reactions,
where θ is the scattering angle of the outgoing kaon in the
c.m. frame. In both channels, the backward-angle scatter-
ing is attributed to the exchange of the �, �, and �(1385)
Regge trajectories in all the energy regions. However, the two
channels exhibited different shapes at the forward angles in
the resonance region 2.07 <

√
s < 2.15 GeV. The differential

cross sections drastically decrease at significantly forward
angles (cos θ > 0.9) in the K+�− channel; however, sharply

(a)

(b)

FIG. 6. The same as in (a) Fig. 4 and (b) Fig. 5 but for K−n →
K0�−. The data are obtained from Refs. [9,14].

increase in the K0�0 channel. The two distinct behaviors at
the significantly forward angles are due to the varying interfer-
ence between the �(2100)7/2− and �(2030)7/2+ amplitudes
based on their isospins. They interfere destructively in the
K+�− channel, but interfere constructively in the K0�0 chan-
nel at forward angles.

Note, the K− p → K�∗(1530) reactions exhibit the oppo-
site behavior at forward angles [56]. Sharp forward peaking
was observed only in the K− p → K+�∗− reaction at

√
s =

2.27 and 2.43 GeV, but not in the K− p → K0�∗0 reaction.
The lack of information regarding the Y ∗ → K�∗ decays
[38] limits detailed theoretical analysis of the K− p → K�∗
reaction; therefore, further studies are warranted.

Our model predictions are extended to the K−n → K0�−
reaction as shown in Fig. 6. This provides a good test ground
for studying hyperon resonances because the s-channel I = 0
exchange is forbidden. The Reggeized hyperon exchange in
the u channel is slightly enhanced compared to the K− p →
K+�− reaction shown in Fig. 4(a) because the interference
between the Reggeized I = 0 � and I = 1 � exchanges
change. The �(2030)7/2+ and �(2250) contribute most
strongly to the s-channel resonances in the

√
s ≈ 2.1 and√

s ≈ 2.3 GeV regions, respectively. The differential cross
sections at

√
s = 2.02 GeV decrease monotonically as cos θ

increases from −1.0 to 0.8. The forward peak at
√

s =
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FIG. 7. Recoil asymmetries multiplied by differential cross sec-
tions, Py

dσ

d�
, versus cos θ for (a) K− p → K+�− and (b) K− p →

K0�0 for different c.m. energies
√

s = (2.11 − 2.48) GeV. The
curve notations are the same as those shown in Fig. 5. The data are
obtained from Refs. [10,13].

2.15 GeV disappears at 2.28 GeV in Fig. 6(b) owing to the
different resonances involved. The calculated results were
reconciled with the experimental data.

Figure 7 presents the results of the recoil asymmetries mul-
tiplied by the differential cross sections, Py

dσ
d�

, as a function
of cos θ for (a) K− p → K+�− and (b) K− p → K0�0. In this
study, the reaction plane is defined as x̂ × ẑ and the z axis is
parallel to the direction of the K− beam. The backward angles
are significantly affected by the inclusion of the s-channel
� and � resonances for K− p → K+�−, whereas changes
in the forward angles were relatively mild in both channels.
The results of the recoil (Py) and target (Ty) asymmetries are
identical, that is, Py = Ty. The other components vanish, that
is, Pi = Ti = 0 for i = x, z by definition [35].

B. Hybrid RPR model: Regge-plus-resonance model
with rescattering diagram

We examined the laboratory cross sections averaged over
the forward region for the K− p → K+�− reaction as a func-
tion of the K− beam momentum, pK− , as shown in Fig. 8.
To combine the old bubble-chamber data with the recent data
sets, we considered the angle average of the differential cross
sections in the laboratory frame (L) [57],〈

dσ

d�L

〉
av

=
∫ θmax

θmin

dσ

d�L
d (cos θL )

/∫ θmax

θmin
d (cos θL ) . (29)

The open squares, triangles, and circles shown in Fig. 8
correspond to the differential cross sections averaged over

(a)

(b)

FIG. 8. Differential cross sections averaged over the forward re-
gion θL < 20◦ as a function of the beam momentum for the K− p →
K+�− reaction (a) without and (b) with the rescattering diagram
contribution. (a) Curve notations are the same as those indicated
in Fig. 4. (b) The dashed blue line corresponds to the solid black
line in the figure above. The dot-dashed green line indicates the
rescattering diagram contribution. The solid black line indicates the
full contribution including the rescattering diagrams. The data are
obtained from Refs. [9,11,13,21,58].

the laboratory angular region θL < 18◦. These data points
were deduced from the Legendre polynomial expansion of
the differential cross sections in Refs. [9], [11], and [13],
respectively. The errors were scaled to the uncertainties of
the total cross section. The closed squares and circles denote
the cross section averaged over the laboratory angular regions
1.7◦ < θL < 13.6◦ [58] and θL < 20◦[21], respectively.

We transformed the differential cross sections from the
c.m. frame to the laboratory frame by using the following
kinematic relations:

dσ/d�L

dσ/d�
= mp

∣∣pL
K−

∣∣∣∣pL
K+

∣∣
|pK−||pK+|

1

EL
K− + mp − |pL

K− |
|pL

K+ |E
L
K+ cos θL

,

(30)
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FIG. 9. Total cross sections as a function of the c.m. energy
√

s
for the K− p → K+�− reaction. Curve notations are the same as
those in Fig. 8(b). The dashed blue line indicates the contribution
of the u- and s-channel diagrams, and the dotted-dashed green line
indicates the rescattering diagram contribution. The solid black line
indicates the full contribution including the rescattering diagrams.

cos θL = EL
K−EL

K+ − EK−EK+ + |pK−||pK+| cos θ

|pL
K−||pL

K+| , (31)

where (EL, pL ) and (E , p) denote the energy and three-
momentum vector in the laboratory and c.m. frames, respec-
tively.

The role of the rescattering diagrams is discussed in
detail herein. The individual contributions of the u- and s-
channel diagrams are shown in Fig. 8(a). The two resonances,
�(2100)7/2− and �(2030)7/2+, are primarily responsible
for the peak near pL

K− = 1.8 GeV/c, but are insufficient
to reproduce the recent J-PARC data [21]. The rescatter-
ing diagrams are additionally included in Fig. 8(b). A close
inspection of our results using the J-PARC data verifies
that the rescattering diagrams are an essential ingredient for
the K− p → K+�− reaction. The total coherent sum of the
amplitudes significantly changes with the inclusion of the
rescattering diagrams. This is because the resonance contri-
bution constructively interferes with the rescattering diagrams
at the laboratory scattering angles θL < 20◦. Certain discrep-
ancies in the region 1.8 < pL

K− < 1.9 GeV/c can be filled by
the inclusion of high-mass meson-baryon channels, such as
V �(1405) and V �(1385), which is beyond the scope of this
study.

We also observe that the V B rescattering diagram
[Fig. 1(c)] plays a major role, whereas the PB rescatter-
ing diagram [Fig. 1(d)] has a limited contribution to the
K− p → K+�− reaction. Here, only the T K

K− p→V BT K∗
V B→K+�−

and T K∗
K− p→V BT K

V B→K+�− processes were considered among the
V B rescattering diagrams. In contrast, the T K

K− p→V BT K
V B→K+�−

and T K∗
K− p→V BT K∗

V B→K+�− processes are highly suppressed.
Figure 9 depicts the calculated total cross sections as

a function of
√

s for the K− p → K+�− reaction when
the rescattering diagrams are added. The contribution of

-1 -0.5 0 0.5 1
cos θ

0

20

40

dσ
/ d
Ω

 [μ
b/

sr
]

without rescattering
rescattering
full

s1/2=2.07 GeV

-1 -0.5 0 0.5 1
cosθ

0

20

40

2.14

0 50 100 150
θL [deg]

0

20

40

60

80

dσ
/d
Ω

L 
[μ

b/
sr

]

without rescattering
rescattering
full

s1/2=2.07 GeV

0 50 100 150
θL [deg]

0

20

40

60

802.14

(a) (b)

(c) (d)

FIG. 10. Differential cross sections for K− p → K+�− in the
c.m. (a,b) and laboratory (c,d) frames at

√
s = 2.07 (a,c) and

√
s =

2.14 (b,d) GeV. Curve notations are the same as those in Fig. 8(b).

the u- and s-channel diagrams destructively interferes with
the rescattering diagram contribution in the region

√
s <

2.15 GeV. In Fig. 10, we present the calculated differential
cross sections for the K− p → K+�− reaction in the c.m. (a,b)
and laboratory (c,d) frames at

√
s = 2.07 (a,c) and

√
s = 2.14

(b,d) GeV when the rescattering diagram is added. A sharp
decrease in the forward angle region was clearly observed at√

s = 2.14 GeV. The more �(2100)7/2− and �(2030)7/2+
overlap, the steeper the contribution of the s-channel diagram
decreases at forward angles.

Finally, the rescattering diagrams have a limited effect on
the K− p → K0�0 reaction. They constructively interfere with
the contributions of the u- and s-channel diagrams and their
inclusion worsens the results.

IV. SUMMARY

We investigated the double-charge and double-strangeness
exchange reactions KN → K� in the hybrid Regge-plus-
resonance model involving the rescattering diagrams. For
the background contributions, we considered the �, �, and
�(1385) Regge trajectories in the u channel; � and � ground
states in the s channel, which are responsible for explaining
the backward peaks. In addition, various � and � hyperon
resonances were considered in the s-channel diagram to ac-
count for the bump structures of the total cross sections in
the low energy region,

√
s < 2.5 GeV. Based on the known

branching ratios for the Y ∗ → KN decays, we extracted the
branching ratios for the Y ∗ → K� decays by fitting with the
data, where Y ∗ denotes � or � resonances.

We found that the � and �(1385) Regge trajectories
are crucial in the K− p → K0�0 reaction, and the � Regge
trajectory is predominant in the K− p → K+�− reaction. Fur-
thermore, the �(2100)7/2− and �(2030)7/2+ resonances
were the most significant in the s channel. The �(1890)3/2+,
�(2230)3/2+, and �(2250) resonances exhibited sizable ef-
fects, assuming that the latter are JP = 7/2−.
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The roles of �(2100)7/2− and �(2030)7/2+ in the s
channel are clarified more accurately when we examine the
differential cross sections. The results for the resonance re-
gion 2.07 <

√
s < 2.15 GeV at forward angles were entirely

different when both channels were compared. The differential
cross sections drastically decrease at significantly forward an-
gles (cos θ > 0.9) in the K+�− channel, but sharply increase
in the K0�0 channel. The different isospin combinations of
the �(2100)7/2− and �(2030)7/2+ amplitudes cause the two
distinct behaviors.

We present the results of the recoil asymmetries multiplied
by the differential cross sections, Pydσ/d�, for both channels.
The results for K− p → K+�− at backward angles are sensi-
tive to the inclusion of the s-channel � and � resonances. Our
model predictions were also applied to the K−n → K0�− re-
action, and the total and differential cross sections sufficiently
agreed with the available experimental data.

We considered the meson-baryon rescattering diagrams
for the K− p → K+�− reaction. The (φ, ρ, ω)-(�,�) rescat-
tering diagram presents dominant contribution, whereas the
contribution of the (π, η)-(�,�) rescattering diagram is
nearly negligible. The rescattering diagram contribution
destructively interfere with the contribution of the u- and s-

channel diagrams in the region
√

s < 2.15 GeV. Our results
were improved by including the rescattering diagrams for
reproducing the recent J-PARC data of the forward differential
cross sections. Future experiments at the J-PARC facility can
verify our model predictions.

This study is the first step toward developing reasonable
reaction theories of meson-induced reactions. The extension
of our hybrid model to other π - or K-induced reactions is
essential for understanding the relevant reaction mechanisms
more systematically, and will significantly contribute to the
development of baryon spectroscopy; relevant research is cur-
rently in progress.
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