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Quarkyonic mean field theory
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We discuss mean field theory of quarkyonic matter at zero temperature. We treat the nucleons with contact
interactions in mean field approximation, discussing both vector and scalar mean field interactions. We treat the
quarks without mean field vector interactions, but allow mass terms to be generated consistently from a scalar
mean field consistent with the additive quark model for quark masses. Quarkyonic matter is composed of a shell
of nucleons that under-occupy the total available phase space associated with the underlying quark degrees of
freedom. The fully occupied Fermi sphere beneath this shell of nucleons at high densities is thought of as quarks,
but when this fully occupied distribution of states first appears, although the phase space is filled, the matter is
at low density. For the transition between this low density and high density saturated matter, we advocate a dual
description of the fully filled Fermi sea in terms of hadrons, and make a phenomenological hypothesis for the
equation of state of this matter. We then proceed to an example where the mean field interactions are all vector
and only associated with the nucleons, ignoring the effects of mass change associated with the scalar interactions.
Except for the effects of Pauli blocking, the nucleons and quarks do not interact. To get a reasonable transition
to quarkyonic matter the interaction of the quarks among themselves are assumed to be nonperturbative, and a
simple phenomenological relation between quark Fermi energy and density is introduced.
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I. INTRODUCTION

In a recent paper, we argued that quarkyonic matter [1]
might be described by a field theory with nucleon, ghost,
and quark degrees of freedom [2]. The ghosts are introduced
to avoid double counting of states where the quarks inside
of nucleons might occupy the same physical states as those
associated with quarks. Such a picture was clearly elaborated
in the work of Kojo [3,4], and was the starting point of various
previous studies [5–9].

In the field theory with ghosts, there are three chemical
potentials that need to be determined: the nucleon chemical
potential that are μN , the ghost chemical potential μG, and
the quark chemical potential μQ. The ghost chemical poten-
tial is determined in terms of the quarks to avoid double
counting of states. The quark chemical potential is determined
by extremizing the pressure of the system, or equivalently at
zero temperature, minimizing the energy per nucleon at fixed
total baryon number. Finally, the nucleon chemical potential
is determined by the total baryon number of the system.
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It is the purpose of this paper to understand how all of
this might work in detail in a simple model. We will consider
a mean field theory of nucleon interactions interacting with
a vector potential. We show how a scalar mean field might
modify these considerations, but we explicitly consider only
the case of vector mean field interactions. The quarks are
introduced by a low energy QCD effective model. In our
simple model, they are allowed to interact among themselves
but not with the nucleons. Their interactions are strong, and
modify the free quark relation between density and chemi-
cal potential. We will introduce a simple phenomenological
parametrization of this relationship. The ghost fields enforce
the constraint that nucleons and quarks do not occupy the
same phase space. At high density, the quarks are an almost
free gas of quarks, but at low density when they first appear,
the filled Fermi sea of quarks may be thought of as a gas of
nucleons and their excited states that completely fill the quark
energy levels.

We then turn to the issue of computing the properties of
quarkyonic matter in the limit of a large number of colors
Nc [10,11]. We show that if interactions of quarks are ig-
nored, and if the constituent quark masses are MQ = MN/Nc

and the nucleons are treated in mean field, then quarkyonic
matter does not form. There are only two phases: one of
nucleonic matter at low density and the other of quarks at high
density.
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We then argue that the region where all the quark states
are filled may be thought of as the matter state composed of
the nucleon and nucleon resonances where the interdistance
between the baryons is short so that the quasibaryon proper-
ties can be approximated by the constituent quark dynamics
(quark-hadron duality). In this configuration, all the available
quark states look fully occupied because the independent con-
stituent quark wave functions from the nucleon ground state
and higher resonances interfere with each other and double
occupancy of the same quantum number is prohibited by Pauli
principle. We then show that in this circumstance, if this exotic
state is treated as a noninteracting gas of constituent quarks,
then there is a first-order phase transition to quarkyonic mat-
ter.

When the compressed state understood as the filled quark
sea first appears, the typical momentum scale is small and in-
teractions cannot be ignored. We construct a simple model of
the properties of this low density matter in a density expansion
around zero density. We argue that it is possible that the effect
of such interactions may convert the transition between nucle-
onic matter into quarkyonic matter as a continuous transition.
This continuous transition is needed to phenomenologically
explain the rapid rise of the sound velocity extracted from
equations of state of nuclear matter appropriate for neutron
stars [12–15].

We should emphasize at the outset, that our goal is not
to provide a phenomenologically viable model of quarkyonic
matter. This paper is simply an exploration of how quarkyonic
matter might appear in a field theory with both nucleon and
quark degrees of freedom present, but not allowing simulta-
neous multiple occupation of the phase space of the quarks
within the nucleon with those of the filled Fermi sea of quarks.
It is a first very small step towards constructing viable theories
at finite density and temperatures, that properly include the
effect of interactions, and the low occupation number nucleon
states at the Fermi surface.

II. REVIEW OF MEAN FIELD THEORY FOR
APPLICATIONS TO QUARKYONIC MATTER

Before proceeding to a mean field description of quarky-
onic matter, we review the basic ingredients of mean field
theory that we will use in the following. We will take all of
the nucleon interactions to be given by contact interactions.
First consider a single species of baryons at finite density. The
theory with a scalar interaction is

S =
∫

d4x

{
ψ

(
1

i
/∂ − γ 0μ∗

N + MN − gσ σ

)
ψ + M2

σ

2
σ 2

}
,

(1)
where MN and Mσ denotes the baryon and sigma masses,
respectively, and gσ is the scalar coupling of the nucleon
to the scalar meson σ . In the entire paper, μ∗

i denotes the
bare chemical potentials, without any kind of interactions.
The inclusion of the scalar field generates a nucleon-nucleon
contact interaction. Integrating out the scalar field gives

S =
∫

d4x

{
ψ

(
1

i
/∂ − γ 0μ∗

N + MN

)
ψ − g2

σ

2M2
σ

(ψψ )2

}
.

(2)

In mean field approximation, we replace

ψψ → ψψ + ns, (3)

where

ns = 〈ψψ〉. (4)

The action becomes

S =
∫

d4x

{
ψ

(
1

i
/∂ − γ 0μ∗

N + Meff

)
ψ

− g2
σ

2M2
σ

[(ψψ )2 + 〈ψψ〉2]

}
, (5)

where Meff = MN − gσ σ is the nucleon effective mass when
a scalar mean field is considered. The mean field approxima-
tion consists of including the explicit term that involves the
contribution of 〈ψψ〉2 and the contribution of the ideal gas
term with the 〈ψψ〉 computed in mean field approximation.
For the energy density, we obtain

ε = εkin − g2
σ

2M2
σ

n2
s . (6)

The kinetic energy is

εkin =
∫

d3k

(2π )3
n(k)

√
k2 + M2

eff, (7)

and

ns =
∫

d3k

(2π )3
n(k)

Meff√
k2 + M2

eff

, (8)

where n(k) is the sum of the Fermi-Dirac distributions for
particle and antiparticle,

n(k) = 1

eβ(
√

k2+M2
eff−μ∗

N ) + 1
+ 1

eβ(
√

k2+M2
eff+μ∗

N ) + 1
. (9)

For the vector field treatment, the chemical potential is the
maximum energy difference beyond the ground state energy.
The vector potential shifts the overall zero of energy by the
interactions energy with the zeroth component of the vector
field gvV 0. The vector field shifts the ground state energy
of the fermion by a constant in mean field approximation.
An overall shift by a constant does not affect the one loop
contribution to the action. The only effect is to include the
interaction energy in the mean field energy functional. So the
result is

ε = εkin + g2
v

2M2
v

n2
v − g2

σ

2M2
σ

n2
s , (10)

where, at zero temperature, which is the case that we consider
through the rest of this work,

nv =
∫ kN

0
dk

k2

2π2
, (11)

in which kN is the nucleon Fermi momentum. For purposes
of Nc counting, one should note that g2

σ and g2
v are both of

order Nc.
When we generalize this discussion to quarkyonic matter,

we add in ghost fields. The ghost fields are bosonic spinor
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fields. The Lagrangian for the nucleon, including the effect of
ghost is

S =
∫

d4x

{
ψ

(
1

i
/∂ − gv /V − γ 0μ∗

N + MN − gσ σ

)
ψ

+ G

(
1

i
/∂ − gv /V − γ 0μ∗

G + MN − gσ σ

)
G

+ M2
σ

2
σ 2 + M2

v

2
V 2

}
. (12)

In mean field theory, the energy function for nucleons is mod-
ified by the ghost by nv → nN

v − nG
v and ns → nN

s − nG
s .

For quarkyonic matter, we need the contributions of the
nucleons at chemical potential μN and ghosts at chemical
potentials μG. It is important to emphasize that, in the low
density regime, before the formation of the shell structure,
the baryon chemical potential μB equals the nucleon chemical
potential μN . The quarks, at chemical potential μQ, will be
introduced via QCD effective model. In what follows, we will
ignore the QCD interactions of quarks with ghost and nucle-
ons. They know each other only through the Fermi exclusion
principle, and this will be implemented by requiring the ghost
potential is

μG = NcμQ + gvV
0, (13)

where V 0 = (gv/M2
v )nv is the background vector potential.

This means that ghost states block the states of nucleons
where their kinetic momentum is kG = NckQ, at least in the
limit where the constituent quark mass is MQ = MN/Nc. If the
scalar mean field is included the nucleon develops an effective
mass Meff = MN − gσ σ that is a function of the baryon den-
sity. In this case, the scalar condensate σ would be obtained by
extremizing the pressure with respect to the nucleon effective
mass to obtain

σ = gσ

M2
σ

ns. (14)

In what follows, we will consider several cases. In all
we consider, we ignore the effect of a scalar mean field. A
scalar field could be implemented in more detailed models.
We first consider the case where quarks are free and have
MQ = MN/Nc. We then add 	MQ to the quark mass, and
finally we will develop a phenomenological model of the
quark interactions. The reasons for these increasing levels of
complication arise because we want to eventually obtain a
model where there is a continuous transition between nucle-
onic matter and quarkyonic matter. The motivation for these
generalizations and their consequences are the subject of the
following sections.

III. AN IDEAL GAS OF QUARKS

At very high density, the picture of quarkyonic matter in
momentum space is that of a thin shell of nucleonic matter
which surrounds a filled Fermi sea of quarks. At very high
density, the typical momentum of the Fermi sphere of quarks
is large compared to the QCD scale, and one can assume
that the gas is a quasifree gas of quarks, with interactions
controlled by a coupling which is small at the scale of interest.

When quarkyonic matter first appears, however, we must
be careful in such considerations. As we approach high den-
sity in a gas of nucleons, excited nucleon states begin to occur.
They of course fill states with minimal Fermi momenta to
minimize the energy as they first appear. Up to the interme-
diate densities, the system may have some independent Fermi
sea of baryons. As yet higher energy density is approached,
the ground state nucleons and the resonances get closer and
the constituent quark wave functions start to interfere with
each other. These excited nucleon states should not be viewed
like thermal excitations, but states with different wave func-
tions of the quark degrees of freedom so that they can fill up all
the available vacant quark energy levels in such a compressed
matter configuration. This will continue until a density is
achieved where all of the quark states at lower momentum in
the Fermi sphere are filled. In such a picture, there is indeed a
Fermi surface of nucleon states. The Fermi sphere, eventually
corresponding to all the quark states appearing, is a Fermi
sphere surrounded by nucleons. If instead of thinking about
nucleon and excited nucleon degrees of freedom, we think
of the states occupied by excited nucleon states as simply in
terms of quark degrees of freedom, we recover the quarkyonic
description. The excited nucleon states are dual to the quark
description, and thinking in terms of excited nucleon states
is probably most convenient when the nontrivial states first
appear, and the typical momentum scale is not large compared
to the QCD scale. The picture we advocate here is essentially
that from Refs. [3,4,16,17].

We can imagine various approximate descriptions of this
Fermi sphere of filled quark states. First, in the analysis below,
we consider the filled Fermi sphere to be that of constituent
quarks, with noninteracting quarks and the quark constituent
mass to be MQ = MN/Nc. The nucleons self-interact with a
vector mean field.

We will set the coupling of the scalar field for quarks to
be 1/Nc times that for the scalar field for the nucleons and
ghosts, so that the additive quark parton model is preserved at
any density, MN = NcMQ. We ignore the vector interaction for
quarks, as we expect that the scale dependent self-interaction
of nucleons will be replaced by interaction terms of the quark
with gluons. A proper treatment of the quarks for the vector in-
teraction must inevitably involve a proper treatment of quarks
and gluons. The energy density of the system of quarks, glu-
ons, and ghosts is

ε = εN
kin(μN ) −

(
1 − 1

N3
c

)
εN

kin(NcμQ)

+ g2
v

2M2
v

[nv (μN ) − nv (NcμQ)]2

− g2
σ

2M2
σ

[
ns(μN ) −

(
1 − 1

N3
c

)
ns(NcμQ)

]2

. (15)

The nucleon energy density is εN and we used the scaling
relation for the masses of quarks to relate the quark energy
density at chemical potential μQ to that of the ghosts at chemi-
cal potential NcμQ [2]. There is a constraint on the total baryon
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FIG. 1. Energy density as a function of quark density nB
Q = nQ/Nc including only vector interactions, for the free gas of quarks comparing

MQ = MN/Nc (dashed) and MQ = MN/Nc + 	M (solid), for different values of total baryon density nB. Here we have used 	M = 70 MeV.

number:

nB = nv (μN ) −
(

1 − 1

N3
c

)
nv (NcμQ). (16)

Because the matter we consider in the filled Fermi sphere
can be thought of as the compressed state of the ground
state nucleon and resonances, it is reasonable to assume that
a description in terms of constituent quarks has constituent
quarks masses MQ = MN/Nc + 	M. In this case one should
shift the ghost chemical potential by the threshold mass,

μG = Nc(μQ − 	M ) + gvV
0, (17)

so that we begin having ghost states when the quark states
appear [2]. In Fig. 1 we plot the energy density as a function
of quark density for both MQ = MN/Nc and MQ = MN/Nc +
	M and different values of nB/ρ0, where ρ0 is the normal
nuclear density. The subtracted term, ε(nB, nB

Q = 0), where nQ
B

is the baryon number associated with quarks, only shifts the
energy density to the origin when the total baryon density is
zero. When there is no deviation of quark mass from MN/Nc

one may see that the global minimum occurs at nB
Q = 0 or,

for high density, at nB
Q = nB, which means that there are only

two phases: entirely quarks and entirely nucleons, separated
by a first-order phase transition. For the case where 	M �= 0

the low density matter is nucleonic and at high density it
is quarkyonic, and they are separated by a first-order phase
transition. In this figure we have considered only vector in-
teractions, therefore the energy density is given by the first
two lines of Eq. (15), and the parameters are MN = 939 MeV,
Mv = 783 MeV, and gv = 8.

IV. QUARKYONIC MATTER IN A PHENOMENOLOGICAL
MODEL OF QUARK INTERACTIONS

While a description in terms of free constituent quarks
may be reasonable at very high density, it is certainly not at
the low densities at which the filled shell of quark degrees
of freedom first appear. Interactions are important. The final
model we consider will be to allow these quark degrees of
freedom to have a phenomenological relationship between
density and chemical potential. In particular, at low density,
we will assume that

μQ = MQ + nQ
B

�2
, (18)

where � is parameter of order of �QCD. In such a model,
we will assume that there is no mean field associated with
the quarks. Although this looks like a harmless low density
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FIG. 2. (Left) Energy density as a function of quark density nB
Q for an interacting quark model and different values of total baryon density

nB, including only vector interactions in the nucleon sector. (Right) Shell thickness, defined as the difference between the nucleon and ghost
Fermi momenta kN − kG.

expansion, it makes the assumption that there is not a free
kinetic energy term associated with quarks which would be
nonanalytic for small nB and would contribute a term pro-
portional to (nQ

B )1/3 at high density. Considering a two-flavor
model this assumption may be implemented as follows:

μB
Q = Nc

[(
MQ + a

M2
Q

nQ
B

)
�

(
r − nQ

B

)

+
(

3π2

2

)1/3(
nQ

B

)1/3
�

(
nQ

B − r
)]

, (19)

where r is the solution of the equation (MQ + a
M2

Q
r) −

( 3π2

2 )1/3r1/3 = 0, and a is a parameter to be adjusted. The
linear dependence of quark chemical potential with the den-
sity was the simplest form we could find that allowed for a
continuous transition between nuclear matter and quarkyonic
matter, and such behavior is favored by the data extracted from
neutron stars concerning the high density matter equation of
state.

Because there is no free kinetic energy associated with
the quarks, it is not possible to define directly a connection
between the quark density nB

Q and the quark Fermi momentum
kQ. We follow then the approach suggested in Ref. [2], by re-
quiring the ghost potential μG is related to the quark chemical
potential μQ as

μG = μ∗
G + gvV

0, μ∗
G = NcμQ, (20)

where V 0 = (gv/M2
v )nv is the background vector potential,

and the quark chemical potential is given by Eq. (18). If one
considers the possible larger mass scale of the constituent
quarks from the compressed mixture of the nucleon and reso-
nances, the ghost chemical potential should be shifted by the
threshold mass:

μG = μ∗
G + gvV

0, μ∗
G = Nc(μQ − 	M ), (21)

so that we begin having ghost states when the quark states
appear [2]. In this approach the ghost Fermi momentum is

defined numerically as kG =
√

(μ∗
G)2 − M2

N , and the nucleon
Fermi momentum kN is defined in terms of the total baryon
density relation nB = nN − nG + nB

Q :

kN =
[

3π2

2

(
nB + 2

3π2
k3

G − nB
Q

)]1/3

. (22)

A continuous transition from nuclear to quarkyonic matter
may be observed by choosing �2 = M2

Q/a, with a = 1.2,
	M = 70 MeV, and gv = 6. From the left panel of Fig. 2
one may observe that between 2 and 3ρ0 a global minimum
appears in the energy density as a function of the quark density
nB

Q close to the origin, which is a characteristic of smooth
transitions. As the density increases and the quarks start to
take the low phase space, the correspondent appearance of
the ghosts guarantees that quarks inside nucleons do not oc-
cupy the same states where there are quarks, leading to a
dynamical formation of a nucleon shell. This is illustrated
on the right panel of Fig. 2: For low densities, any increment
of the total baryon density corresponds to an increase of the
nucleon phase space, whose Fermi momentum is kN . Around
nB ∼ 2.2ρ0 quarks are saturated, and the shell thickness can
be defined as the difference between the nucleon and ghost
Fermi momenta, kN − kG. As the density increases, the shell
gets thin and it is expected to disappear at asymptotically large
densities when the quarks eventually deconfine.

In Ref. [18] it was shown that in the isospin symmetric
quasiparticle model of the baryon-quark mixture, a configu-
ration in which the Fermi sea is filled with confined baryons
surrounded by a shell of deconfined quarks is energetically fa-
vorable compared to quarkyonic matter. This scenario, called
baryquark matter, represents another possible realization of
the Pauli exclusion principle, where the momentum shell
structure is also generated dynamically, being particularly
preferred in transport simulations.

The mean field approach considered in this work may gen-
erate baryquark matter if one defines the ghost and the mean
field potential of the nucleons in different ways. The ghost
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field for the baryquark matter should be defined to exclude the
quarks occupying the inner part of the quark Fermi sea and
the weak interaction should be assumed for the constituent
quark sea. For the nucleon interaction side, one may have
to consider the attractive scalar mean field potential beyond
linear density to match the attractive potential considered in
baryquark matter [18]. Also, as the excluded volume approach
in the baryon sector [19,20] generates both the quarkyonic and
baryquark configurations [6,18], the strong repulsive vector
channel will be required for the nucleon potential. The details
of model construction will be pursued in the future work on
the transport modeling.

V. SUMMARY AND CONCLUSIONS

In this work, we extend the idea of a quarkyonic matter
description in terms of a field theory composed of nucleons,
ghosts, and quarks. The ghost field is introduced to prevent
the overcounting of states where the quarks inside of nucleons
might occupy the same physical states as those associated
with the states in the filled quark sea. To describe quarkyonic
matter, we reviewed the simplest ingredients in the mean field
theory framework required by the consideration of the ghost
field and subsequent modification of the interaction between
the nucleons and quarks. In the simple phenomenological
point of view, the filled quark states are approximated as the
compressed states of the quasinucleons and their higher mass
resonances, where the constituent quark wave functions start
to interfere with each other. In this point of view, it is natural
to take the nonzero threshold mass 	M in the modeling of
quarkyonic matter. The physical role of the threshold mass
becomes clear in the analysis of the free quark sea case.
If 	M = 0, there is a first-order phase transition from the
nuclear to the quark phase. If one considers 	M �= 0 from
the compressed matter states of the nucleons and resonances a
kind of first-order transition to quarkyonic matter is obtained.

On the other hand, as the interactions of the first quark
degrees of freedom appearing at low intermediate densities
are significant, we implemented a relation between the quark
chemical potential and the correspondent quark density in the
form of a low density expansion, which eventually converges
to the free gas approximation at high densities. Under this
approximation, the quarkyonic phase appears around nB ∼
2.2ρ0. As the baryon number density increases, the shell
thickness gets thinner and the thin-shell limit is expected to
appear as claimed in the large Nc limit. This assumption al-
lows a continuous transition between nuclear and quarkyonic
matter that is suitable to take into account the rapid rise of the
sound velocity required in the density evolution of the equa-
tions of state adequate to describe the observations of neutron
stars. Although it is a model-dependent result, the transition
may occur at relatively low densities (around nB 	 2.0ρ0)
which implies that the quarkyonic phase can be explored not
only in the context of the astrophysical observations but also
in the future planned heavy-ion collision experiments [21,22].
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