
PHYSICAL REVIEW C 107, 064909 (2023)

Examination of nucleon distribution with Bayesian imaging for isobar collisions

Yi-Lin Cheng ,1,2,3,4 Shuzhe Shi ,5,6,* Yu-Gang Ma,3 Horst Stöcker ,1,7,8 and Kai Zhou 1,†

1Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

3Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics,
Fudan University, Shanghai 200433, China

4University of Chinese Academy of Sciences, Beijing 100049, China
5Department of Physics, Tsinghua University, Beijing 100084, China

6Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
7Institute für Theoretische Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany

8GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

(Received 1 May 2023; accepted 16 June 2023; published 26 June 2023)

Relativistic collision of isobaric systems is found to be valuable in differentiating the nucleon distributions
for nuclei with the same mass number. In recent contrasting experiments of 96

44Ru + 96
44Ru versus 96

40Zr + 96
40Zr

collisions at
√

sNN = 200 GeV, the ratios of multiplicity distribution, elliptic flow, triangular flow, and radial flow
are precisely measured and found to be significantly different from unity, indicating the difference in the shapes
of the isobar pair. In this work, we investigate the feasibility of nuclear structure reconstruction from heavy-ion
collision observables. We perform a Bayesian inference with employing the Monte Carlo Glauber model as an
estimator of the mapping from nuclear structure to the final state observables and to provide the mock data for
reconstruction. By varying combination of observables included in the mock data, we find it plausible to infer
Woods-Saxon parameters from the observables. We also observe that the single-system multiplicity distribution
for the isobar system, rather than its ratio, is crucial to simultaneously determine the nuclear structure for the
isobar system.

DOI: 10.1103/PhysRevC.107.064909

I. INTRODUCTION

Strongly coupled quantum chromodynamics (QCD) matter
can be studied by relativistic heavy ion experiments, which
have been carried out for decades at the Relativistic Heavy
Ion Collider (RHIC) of Brookhaven National Laboratory [1]
and Large Hadron Collider (LHC) of CERN [2] facilities. An
important scientific breakthrough from both experimental and
theoretical efforts, among others, is the revealed extremely
hot quark-gluon plasma (QGP) in these collisions (see, e.g.,
[3,4]). Large-scale collective motion is formed at the partonic
level for a short period of time and converted to the final state
observables, such as elliptic, triangular, and radial flows.

The QGP initial state, which is dictated by the nuclear
structure with its intrinsic deformation characterized by spher-
ical, ellipsoidal, octuple, and hexadecapole modes [5–8], can
be featured by its size and eccentricities εn and further trans-
ferred into radial and azimuthal anisotropic flow of final state
hadrons [9–15]. Consequently, the observables measured in
the final stage of heavy-ion collisions, such as elliptic flow
v2, triangular flow v3, and charged particle multiplicity Nch,
have a strong relationship with the initial state characterized
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by second and third order anisotropy, ε2 and ε3 [16], and the
total energy, and thus also hold an imprint of nuclear structure
especially the deformation [17,18].

Recently a high statistics contrast heavy-ion collision,
which collides 96

44Ru + 96
44Ru and 96

40Zr + 96
40Zr with beam energy√

sNN = 200 GeV, is performed by the STAR Collaboration
at RHIC [19].1 It was originally designed to search for the
chiral magnetic effect (CME) [20–23], under the presumption
that the different electric numbers would induce a sizable
difference in the CME signal while the same baryon number
would lead to the same non-CME background. Unexpectedly,
significant differences are observed in the bulk properties
[19], which prevents one from making a conclusive statement
on the existence of CME in heavy-ion collisions and calls
for more efforts in a better quantification of the background
[24,25]. However, it brings a new opportunity to study the nu-
cleon distribution in relativistic heavy-ion collisions [26–39].

The nucleon distribution within a nucleus is often de-
scribed by a deformed Woods-Saxon distribution

ρ(r, θ, φ) = ρ0

1 + exp [r − R(θ, φ)]/a
, (1)

1For the rest of the paper, we will refer to the 96
44Ru and 96

40Zr nucleus
as Ru and Zr, separately.

2469-9985/2023/107(6)/064909(12) 064909-1 ©2023 American Physical Society

https://orcid.org/0009-0000-1453-5688
https://orcid.org/0000-0002-3042-3093
https://orcid.org/0000-0002-3282-3664
https://orcid.org/0000-0001-9859-1758
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.064909&domain=pdf&date_stamp=2023-06-26
https://doi.org/10.1103/PhysRevC.107.064909


CHENG, SHI, MA, STÖCKER, AND ZHOU PHYSICAL REVIEW C 107, 064909 (2023)

where

R(θ, φ) = R0
(
1 + β2Y

0
2 + β3Y

0
3 + β4Y

0
4

)
(2)

with R0 as the radius, a the skin depth, and β2, β3, and β4,
respectively, as the quadruple, octupole, and hexadecapole
momentums [29,40]. Y m

l (θ, φ) are the spherical harmonics,
describing the angular dependence of the nuclear radius. Both
a and R0 have significant impacts on the initial overlap area
in the collision systems [34,41]. In ultracentral collisions,
the ellipticity ε2 and triangularity ε3 are correlated to the
quadrupole β2 and octupole β3 deformations, respectively
[42]. Meanwhile, the mean energy density in the overlap of
the heavy ion collision, which measures the pressure gradient,
is expected to be correlated with mean pT [43]. Therefore, the
nuclear structure can be reflected in the final state observables
of heavy-ion collisions [44].

It is proposed to study the ratio of observables in the iso-
bar systems [30], in order to reduce the medium expansion’s
systematic uncertainties of, e.g., transport properties. While a
set of parameters has been conjectured which describes the
ratios data roughly, systematic/principled improvement and
the uniqueness of the parameter set remains unclear. In this
work, we aim to answer two questions:

(1) is it possible to infer the initial state nucleon distribu-
tion thus the nuclear structure information from final
state observables in a single collision system?

(2) is it possible to simultaneously reconstruct the nuclear
structures of isobar systems from a contrast isobar
collision experiment?

In order to answer these questions, we take the Monte
Carlo Glauber model as the estimator to provide initial-
to-final mapping in heavy ion collisions and also generate
mock data. Then we perform Bayesian inferences of the
Woods-Saxon parameters based on different combinations of
observables. The inference framework design will be dis-
cussed in Sec. II whereas results can be found in Sec. III.
Finally we summarize in Sec. IV.

II. BAYESIAN INFERENCE OF NUCLEAR STRUCTURE

In this work, we investigate the feasibility of constraining
nuclear structure information via Bayesian inference from the
accessible physical observables in heavy-ion collisions, e.g.,
multiplicity distribution, anisotropic flows, and radial flow
(mean-pT ) related information. Later in Sec. II A we will
detail the to-be-used observables in this analysis, which we
will denote collectively as D for the sake of clarity. About the
target, to be specific we aim at inferring the nuclear structure
parameters (collectively denoted as θ) in the Woods-Saxon
distribution for single.2 or combined isobaric collision sys-
tem analysis, including the radius R, surface diffuseness a,
deformation quadrupole β2, and octupole β3. This constructs
an inverse problem actually, which might also be tackled

2We note that such a procedure takes the ansatz that the observables
of interest depend only on the nucleon distribution, and not other
properties of the nuclear such as electric charge or spin.

alternatively by deep learning based approaches developed,
e.g., in [45–49]. We focus on the Bayesian inference for this
task in the present work and leave other methods solving it for
future work.

Bayesian inference is a statistical approach to update
knowledge about the targeted physical parameters inside a
computational physical model based upon evidence of ob-
served data. It has been applied in heavy-ion physics for
religious determination of transport parameters [50–57] and
equations of state (EoSs) [58,59]. According to the Bayes
theorem, the posterior distribution of the parameters θ given
the observed data of D can be expressed as

p(θ|D) ∝ p(D|θ)p(θ), (3)

where p(θ) is the prior distribution encoding our initial
knowledge of the parameters and p(D|θ) is the likelihood dis-
tribution representing how good any chosen parameters are in
describing the observed data. In such a way with the Bayesian
statistics perspective, the obtained posterior p(θ|D) codifies
the updated knowledge on the parameters θ after confronting
the observation of data D, from which the nuclear structure
parameters can then be sampled.

We follow state-of-the-art general procedures of Bayesian
inference for estimating parameters in computationally inten-
sive models [60,61], including briefly, model evaluation on
some representative “design points” in the parameter space,
emulator training for mimicking the model simulation in
a more efficient manner, and Markov chain Monte Carlo
(MCMC) sampling to construct and exploit the posterior dis-
tribution of the parameters. This Bayesian approach has been
applied in a number of studies for heavy-ion collisions for
constraining especially the dynamical parameters like shear
viscosity. In the rest of the section, we will explain the detailed
procedure of each step.

A. Data preparation using Monte Carlo Glauber

As an exploratory first step Bayesian study on imaging
nuclear structure from relativistic heavy-ion collision mea-
surements, the present work focuses on the possibility of
inferring the nuclear structure parameters from heavy-ion
collision initial state information with well-understood cor-
respondence to the final state observables. To this end, we
employ the Monte Carlo Glauber (MC-Glauber) as an esti-
mator for the heavy ion collision initial state observables. It is
worth noting that for isobaric collisions the ratio of many ob-
servables like anisotropic flows are argued to be insensitive to
the medium evolution and thus highlighting the sole relevance
of initial state information of the collisions.

The MC-Glauber model [62,63] is a widely used model
to generate event-wise fluctuating initial conditions for
heavy-ion collisions. It starts from sampling the nucleon
configuration according to the Woods-Saxon distribution (1),
determines the binary collision pairs according to their trans-
verse separation, and randomly assigns energy deposition,
according to a γ distribution, for each binary collision pair and
for each participant nucleons. Eventually, one obtains the en-
ergy density distribution in the transverse plane, e(x, y), which
can be treated as the initial condition of the hydrodynamic
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evolution. In this work, the parameters in the MC-Glauber
model are taken from Ref. [64].

For the purpose of the present study, we do not feed the
MC-Glauber initial conditions into hydro or transport evo-
lution and compute the final state observables. Instead, we
use the linear response approximation to estimate observables
from e(x, y) (see, e.g., [43]). In other words, we employ the
MC-Glauber to provide a mapping from the nuclear struc-
ture to final state observables and investigate the feasibility
of reconstructing the former from the latter using Bayesian
inference. Such a procedure is reliable when we aim to know
whether final state observables can be used to infer the nuclear
structure (and if possible, what observables are needed) with-
out aiming to unbiasedly extract the nuclear structure from the
current data. A study for the latter purpose requires dynamical
evolution models, such as a multiphase transport (AMPT)
model [65] or hydrodynamics [66], and will be reported in
our follow-up paper.

Final state observables can be estimated from the initial
state energy distribution through relations listed as follows
(see, e.g., [43]). First, the charged multiplicity can be esti-
mated from the total energy

Nch ∝ E ≡
∫

e(r, φ) r dr dφ, (4)

which is natural due to energy conservation. Second, the two-
particle elliptic and triangular flows can be approximated by
the initial anisotropies, vn{2} ∝ √〈ε2

n〉, where 〈·〉 refers to the
average over events within the same multiplicity bin, n = 2 or
3, and

εn ≡ | ∫ e(r, φ)rnei nφr dr dφ|∫
e(r, φ)rnr dr dφ

. (5)

Finally, one may estimate the radial flow 〈pT 〉 from a mono-
tonic function of the energy density

d⊥ ≡
√

E/S⊥, (6)

where S⊥ ≡ π

√∫
e(x,y)x2dx dy

E

∫
e(x,y)y2dx dy

E is the energy
weighted transverse area. Therefore, we respectively take
E , ε2, ε3, and d⊥ as the estimator of Nch, v2{2}, v3{2}, and
〈pT 〉, and may interchangeably use two sets of notations in
the succeeding text.

To prepare the training data, we sampled 1001 “design
points” from the four-dimension parameter space spanned
over R ∈ [4.9, 5.2] fm, a ∈ [0.3, 0.6] fm, β2 ∈ [0, 0.4], and
β3 ∈ [0, 0.4], according to Latin hypercube sampling which
ensures uniform space-filling. For each parameter set, we
simulate 106 events with unequal weights that enhance the
probability of ultracentral collision events. That is, rather
than the desired probability distribution,3 P(b) ∝ b, we sam-
ple the impact parameter (b) of an event according to
P̄(b) ∝ e−b/6 and then each event will be assigned with a
weight w = b eb/6. After the simulation, we bin all events
according to Nch with 40 intervals: 1 � Nch � 10, 11 �

3The desired probability distribution is derived from the Jacobian,
b db.

Nch � 20, . . ., 391 � Nch � 400. In each bin, we calculate
the event counts and mean values of elliptic, triangular,
and radial flows and their corresponding uncertainties, with
weights correctly considered. For later convenience, we rep-
resent the observables from simulation by an array with 160
elements, which is O ≡ {P1−10, . . . , P391−400, v2,1−10, . . . ,

v3,1−10, . . . , 〈pT 〉1−10, . . . , 〈pT 〉391−400}. We further denote
the simulation results as Oa,i, with the index i(a) labeling the
simulation parameter(observable). In other words, Oa,i repre-
sents the ath observable for simulation taking the parameter
set θi ≡ {Ri, ai, β2,i, β3,i}. We adopt d = 1001 and m = 160
to represent the number of events sampled in the parameter
space and dimensions of observables, respectively.

B. Postprocess of model outputs

With the simulation results, Oa,i = Oa(θi ), which form the
training data set, our next task is to get a fast surrogate by
decoding an approximation function Oa(θ) out of it. We note
that they are not independent functions, as one would expect
correlations exist between them. For instance, the continu-
ity of observables between neighboring multiplicity bins is
an obvious example of the correlation. Therefore, we first
transform the model outputs into a smaller number of un-
correlated variables using the principal component analysis
(PCA) method, then we treat each new principal component as
independent “observables”. The PCA method performs linear
combinations of observables and ranks them according to
their sensitivity to the parameter variation.

To find out the features that are most sensitive to the change
in parameter and avoid bias from the overall magnitude of
different observables, we standardize the training data set by
subtracting their mean and also dividing their standard devia-
tion over all parameters,

Õa,i ≡ Oa,i − μa

σa
, (7)

where

μa = d−1
d∑

i=1

Oa,i, σ 2
a = d−1

d∑
i=1

(Oa,i − μa)2. (8)

Then we compute the covariance matrix

C̃ab = d−1
d∑

i=1

Õa,i Õb,i (9)

and diagonalize it as

m∑
a,b=1

Va f C̃abVb f ′ = λ f δ f f ′ . (10)

Here, V is an orthogonal matrix, and eigenvalues are ranked
according to the importance λ1 � λ2 � λ3 � · · · , such that
the first principal component has the maximum possible vari-
ance, which can explain as much variance of C̃ as possible,
and the second component has maximal variance while being
orthogonal to the first, and so forth. Then the principal com-
ponents are constructed as the eigenvectors of the covariance
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matrix,

PC f ,i =
m∑

a=1

Va f Õa,i, (11)

which obeys the condition that

d∑
i=1

PC f ,i = 0,

d∑
i=1

PC f iPC f ′i = d λ f δ f f ′ . (12)

Therefore, when varying the parameters, different PC f ’s
are independent of each other. They will be fed into the
Gaussian process emulator to learn the function mappings
from input nuclear structure parameter to PC’s [PC f (θ)], de-
tails will be discussed in the succeeding subsection. Once the
approximation function is obtained, observables can be recon-
structed from the inverse transformation with uncertainties as
well:

Oa(θ) = μa + σa

Npc∑
f =1

Va f PC f (θ), (13)

δOa(θ) = σa

√√√√√ Npc∑
f =1

V 2
a f δPC2

f (θ). (14)

In our study, despite there being 160 original observables,
we find that the first and the second PC explain over 55% and
24% of the original variance, respectively, and the number
increases to 96% when the first four PCs are considered.
We adopt the first ten PCs (i.e., make the truncation with
Npc = 10) which cover 98% of the total variance. It shall be
worth noting that such truncation can lead to distortion of the
training data, i.e.,∣∣∣∣∣μa + σa

Npc∑
f =1

Va f PC f ,i − Oa,i

∣∣∣∣∣ � 0, (15)

with the equality taken when Npc = 160. We examine that
taking Npc = 10 would lead to differences that are comparable
to the statistical errors in the MC-Glauber simulation, and
hence the distortion is negligible. See gray curves in Fig. 1.

C. Gaussian process emulator

An empirical linear relation between observables in heavy-
ion collisions and nuclear structure parameters has been found
in Ref. [28] for a small variation of parameters,

O ≈ b0 + b1β
2
2 + b2β

2
3 + b3(R0 − R0,ref ) + b4(a − aref ),

(16)

where b0 represents the value for spherical nuclei at some
reference radius and diffuseness, and b1, b2, b3, b4 are cen-
trality dependent response coefficients that encode the final
state dynamics. While Eq. (16) provides a valuable hint to
approximate the function PC f (θ), one shall be careful in its
applicability in a wide range of parameter sets. In this work,
we adopt the Gaussian process (GP) regression to construct
one emulator to evaluate quickly the observables, where we

FIG. 1. Comparison of relative difference (24) between the
ground truth and predicted values using Gaussian processor with
linear (green), quadratic (blue), fourth-order (green), and RBF
(orange) kernels. As references, gray curves represent the differences
due to the PCA truncation. Statistical errors over the mean value in
the MC-Glauber modeling are also presented as black curves.

also try different kernels to systematically study observable
responses.

Rather than calculating the probability distribution of pa-
rameters of a specific function, GP regression calculates the
probability distribution over all admissible functions within
chosen covariance behavior to fit the data. A Gaussian pro-
cess is defined as a collection of random variables, any finite
number of which have a joint Gaussian distribution. With
the training parameter sets {θ1, θ2, . . . , θd} and their corre-
sponding PC4 of observables {PC(θ1), PC(θ2), . . . , PC(θd )},
the function value at a particular parameter point, PC(θ),
follows the Gaussian distribution,

PC(θ) ∼ N (PC(θ), σ 2(θ)), (17)

4Since this will be performed independently for each PC, we have
omitted the subscript f which labels them.
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where the mean function PC(θ) and the variance σ 2(θ) are de-
termined by the training date set and the covariance function,
also called kernel, k(θ, θ′). The kernel encodes our assump-
tions about the function PC(θ) to be learned. We introduce
a matrix K, in which the (i, j)th element is given by Ki, j =
k(θi, θ j ). Then the mean and variance are given by [67]

PC(θ) =
d∑

i, j=1

k(θ, θi )(K
−1)i, jPC(θ j ), (18)

σ 2(θ) = k(θ, θ) −
d∑

i, j=1

k(θ, θi )(K
−1)i, jk(θ j, θ). (19)

Usually, before drawing functions from a GP, we must
specify the covariance function. A standard choice for the
kernel is the radial basis function kernel (RBF), which is also
known as the squared exponential (SE) covariance function,

kRBF(θi, θ j ) = exp

(
−d (θi, θ j )2

2l2

)
, (20)

where l is the length scale of the kernel, which equals unity
in the current work, and d (θi, θ j ) = √|θi − θ j |2 is the Eu-
clidean distance. In addition, in order to study the observable’s
response to the change of Woods-Saxon parameters θ, we
consider also inhomogeneous polynomial kernels for the GP
emulator, including linear, quadratic, and fourth-order regres-
sion kernels:

klin(θi, θ j ) = σ 2
0 + θi · θ j, (21)

kquad(θi, θ j ) = k2
lin(θi, θ j ), (22)

kfourth(θi, θ j ) = k4
lin(θi, θ j ), (23)

where σ0 controls the inhomogeneity of the kernel and is set
as unity here. Meanwhile, a white kernel, kwhite(θi, θ j ) = 3 δi j ,
is also added into the covariance function in the GP emulator
to account for the fluctuation noise induced by the omission
of higher principle components. So we combine the above
polynomial kernel and white kernel as the covariance function
for linear, quadratic, and fourth-order regression, respectively.
More details of the GP regression and different kernels’ influ-
ence can be found in Ref. [67].

To examine the accuracy of the GP emulators, we quantify
the relative uncertainty of the emulator as the square of the
relative difference between the true value (Otruth

a,i ) and the em-

ulator prediction (Opred
a,i ), averaged over the testing ensemble,

δOrel
a ≡

√√√√ 1

d

d∑
i=1

(
Opred

a,i − Otruth
a,i

Otruth
a,i

)2

. (24)

In Fig. 1 we compare the relative differences of different
observables taking linear, quadratic, and fourth-order regres-
sion kernels in GP. For comparison, we also tried the widely
adopted RBF kernel (20), which can interpolate the training
data points smoothly. We find that quadratic and fourth-
order regressions are able to reach the accuracy of RBF
intepolation, all of which are close to the “upper bound”
of performance limited by the PC truncation. We also note

that results taking linear regression agree decently with the
simulation data, but its significantly larger difference indicates
the limitation of applying Eq. (16) in such a wide range
of parameters, and therefore higher moments are needed.
The similarity between quadratic and fourth-order regression
shows the convergence of the expansion. In this work, we set
the emulator of the function relation between Woods-Saxon
parameters and observables in heavy-ion collisions to be the
fourth-order regression kernel, which not only ensures accu-
rate description but also has a clear physics dependence on the
Woods-Saxon parameters, i.e., a higher order generalization
of the empirical linear response (16).

D. Parameter inference using Markov chain Monte Carlo

With the function relation Oa(θ) represented by the GP em-
ulator, now we are ready to infer the likelihood distribution of
parameters from observables. According to Bayes’ theorem,
given experimental measurements yexp

a with covariance matrix
�−1

exp, the posterior distribution of the model parameter is given
by

P
(
θ
∣∣yexp

a

) = N exp

(
−χ2

2

)
Prior(θ), (25)

χ2 =
∑
a,b

(
�−1

θ

)
a,b�ya(θ)�yb(θ), (26)

where N is the normalization parameter, �ya(θ) ≡ ya(θ) −
yexp

a is the difference between experimental observables and
the corresponding model prediction. Observables, herein, can
be either a single system observable Oa(θ) or the ratio in the
isobar system. �θ = �exp + �emu

θ is the covariance matrix
which includes the contribution from both experimental and
theoretical (emulator) uncertainties. We note that we keep
only the most important PC’s in the emulator, which makes it
nontrivial to calculate the correlation between ratios. Details
will be shown in Appendix B. Prior(θ) is the prior distribution
that encodes the preknowledge of the parameters. We take
uniform prior distribution within the parameter range of the
training data set.

In this work, we employ the MCMC method to compute
P(θ|yexp

a ). MCMC generates representative samples according
to the posterior distribution by making a random walk in
parameter space weighted by the relative posterior probability.
Denoting the parameter set in the nth iteration step as θ(n),
MCMC samples the next step θ(n+1) as a random walk starting
from θ(n), and decides whether to accept this update accord-
ing to a probability being p = min[1, P(θ(n+1))/P(θ(n) )]. One
can show that samples generated in such a way satisfy the
desired posterior distribution P(θ|yexp

a ). Markov chains have
a property that the conditional probability distribution of fu-
ture states depends only on the current state and not on the
past states preceded by the current one, which guarantees the
stational distribution to be achieved.

For the practical computation, we apply the pymc frame-
work and choose the No-U-Turn Sampler (NUTS), which is
the extension to Hamiltonian Monte Carlo method [68,69].
We take 1000 samples from each Markov chain with an
iteration number of adaptive phase (i.e., number of update
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FIG. 2. One- and two-dimensional marginal posterior distributions of nuclear structure parameters reconstructed from single system mock
data corresponding to Ru-Ru (left) and Zr-Zr (right) collisions. In the two-dimensional posterior, darker (lighter) area corresponds to the
68%(95%) C.L. regions.

iterations between two taken samples in a Markov chain)
being 1500 to ensure decorrelation. With a sufficient amount
of parameter sets (θi), we are able to cast them into one(two)-
dimensional histograms to measure single-parameter marginal
posterior distributions or two-parameter correlations.

III. RESULTS

With the framework set up in the above, now we are ready
to study the two questions raised in the Introduction. In this
section, we move on to discuss the feasibility of nuclear
structure reconstruction from heavy-ion collision observables.
We will also investigate what observables are essential to a
successful reconstruction.

Observables of interest include charge multiplicity dis-
tribution (Pa), elliptic (ε2,a), triangular (ε3,a), and radial
(d⊥,a) flows for a single collision system and their ratios
in isobaric systems (RuRu-to-ZrZr). Here, the index a ∈
{1–10, . . . , 391–400} labels the multiplicity bin. We denote
the RuRu-to-ZrZr ratio of elliptic flow as Rε2,a ≡ εRu

2,a / εZr
2,a.

Similarly, ratios of multiplicity distribution, triangular flow,
radial flow are represented as RP,a, Rε3,a, and Rd⊥,a, respec-
tively. For any observable X we use X̃ to represent the
emulator evaluation for it.

The mock “experiment measurements” in this work are
generated from two high statistic (108 events) MC-Glauber
simulations taking the optimal parameter sets of RuRu and
ZrZr isobaric systems from [28], which are, respectively,
RRu = 5.09 fm, aRu = 0.46 fm, β2,Ru = 0.162, β3,Ru = 0 and
RZr = 5.02 fm, aZr = 0.52 fm, β2,Zr = 0.06, β3,Zr = 0.20. We
take the diagonal of the statistical covariance matrix as the
“measurement” uncertainty. They are ≈ (1/10) of the black
curves in Fig. 1, which can be computed from the number
of events. Meanwhile, the theoretical uncertainties are taken
to be the emulator uncertainties. Their exact values depend

on the input parameter, but they are of the same order of
magnitude as the red curves in Fig. 1.

A. Single system reconstruction

Let us begin with single systems and try to answer the
first question in the Introduction. That is, we would like to
infer R, a, β2, β2, and their uncertainties from single system
observables Pa, ε2,a, ε3,a, d⊥,a. The posterior distribution is
given by Eq. (25), with evidences in the χ2 function (26) being

yRu ≡ {
PRu

a , εRu
2,a, ε

Ru
3,a, dRu

⊥,a

}
a=1,...,40, (27)

for the Ru-Ru system and likewise for the Zr-Zr system. We
take uniform prior for the parameter range of interest.

Our Bayesian inference results of Ru and Zr Wood-Saxon
parameters are shown in Fig. 2, each of which is obtained
from MCMC simulation with five Markov chains of 1000
samples. The marginal posterior distributions of each nuclear
structure parameter shown as the smoothed histograms are
plotted in the diagonal panels with the red dashed vertical
lines representing the ground truth of the parameter, while
the posteriors of two-parameter correlations are shown in the
off-diagonal panels. From these two-dimensional posterior
distributions, we see that the nuclear structure parameters
are not strongly correlated for the single system. Meanwhile,
after sufficient iterations the posterior of the nuclear struc-
ture parameters converges to the stationary distribution which
can be reflected from the one-dimensional marginal posterior
distributions. The mean values of the posterior distribu-
tion for the parameters are RRu = 5.09 fm, aRu = 0.4609 fm,
β2,Ru = 0.1599, β3,Ru = 0.02304 and RZr = 5.018 fm, aZr =
0.5217 fm, β2,Zr = 0.05786, β3,Zr = 0.1996, which are close
to the ground truth values we set. The ground truth of the pa-
rameters are also well covered by the packets of the posterior
distributions.

064909-6



EXAMINATION OF NUCLEON DISTRIBUTION WITH … PHYSICAL REVIEW C 107, 064909 (2023)

FIG. 3. Marginal posterior distributions (top) and simulated trajectories (bottom) of nuclear structure parameters reconstructed from the
mock data of the RuRu-to-ZrZr ratios of multiplicity distribution and elliptic, triangular, and radial flows. See Eq. (28). Different colors
represent results from different Markov chains.

The inference performance on single systems in Fig. 2
indicates that it is possible to reconstruct the nuclear structure
from the final state observables in heavy ion collisions, given
a reliable physical model to map the former to the latter. In
other words, the mapping is reversible for the chosen ob-
servables and targeted nuclear structure parameters. However,
it is well known that the initial to final mapping relies on
the details of the dynamical evolution of QGP. For instance,
hydrodynamic simulation assuming different transport param-
eters may result in different final state observables. Therefore,
reconstructions from single system observables are inevitably
dependent on the specific model that describes or approxi-
mates the evolutionary dynamics. Nevertheless, it is claimed
[28–30,41,43,70] that the ratio of final state observables in an
isobar system can largely cancel the dynamical-model depen-
dence. So we move on to study what observables are needed
to simultaneously extract the initial state nucleon distribution
for a pair of isobar systems.

B. Simultaneous reconstruction for isobar systems

Our attempts of simultaneously inferring the nuclear struc-
ture for the two isobaric collision systems (Ru-Ru and Zr-Zr)
start from their ratios on the four observables, i.e., evidences
in the χ2 function (26) read

yr,1 ≡ {
RP,a, Rε2,a, Rε3,a, Rd⊥,a

}
a=1,...,40. (28)

In the lower panels of Fig. 3 we show the nuclear deformation
parameters’ trajectories of five Markov chains, represented by
different colors and with the corresponding marginal posterior

distribution in the upper panel of the figure. We note that
the trajectories of different chains span a wide range in the
parameter space and are well separated. Some of them do not
overlap with each other, also we found their marginal posterior
distributions do not necessarily cover the ground truth. These
indicate that with the chosen evidence (i.e., ratio of those
four observables) the MCMC cannot converge to a stationary
distribution of the Woods-Saxon parameters.

We also observe strong correlations for the same parame-
ters in the two isobar systems. For instance, the trajectories
for RRu and RZr in the same Markov chain are with concurrent
and highly similar behavior, and similar phenomena are also
exhibited for other nuclear structure parameters. Such corre-
lations indicate the degeneracy for the inference results. The
ratios of observables in isobar systems are mostly sensitive
to the relative difference in their nuclear structure. One can
change the parameters of the two isobar systems with the
same amount and still reproduce the ratios of observables
reasonably. Consequently, starting from purely the ratios, one
cannot simultaneously determine the nuclear structures of the
two isobar systems.

We note that the final state multiplicity can be well de-
termined by the initial state total energy, which is also not
sensitive to the transport parameters in the QGP evolution.
Hence, we propose to include as well single-system charge
multiplicity distributions besides other ratios for the purpose
of model-independent and simultaneous inference of isobar
nuclear structures. If we reconstruct nuclear structure parame-
ters based on charged multiplicity distributions for both RuRu
and ZrZr systems, together with the RuRu-to-ZrZr ratios of ε2,
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FIG. 4. Same as Fig. 3 but reconstructed from single-system multiplicity distributions and the RuRu-to-ZrZr ratios of elliptic, triangular,
and radial flows. See Eq. (29).

ε3, and d⊥, i.e., evidences in the χ2 function (26) are chosen
to be

yr,2 ≡ {
PRu

a , PZr
a , Rε2,a, Rε3,a, Rd⊥,a

}
a=1,...,40, (29)

we find a good convergence of Bayesian inference results,
as shown in Fig. 4 (bottom) for the sampled trajectories.
The marginal posterior distribution of each parameter spans
a relatively narrow range, and all of them cover the ground
truth as seen from Fig. 4 (top). Especially, the parameter
range covered by the trajectories is much narrower compared
to Fig. 3. Therefore, taking the multiplicity distributions of
the two isobar systems together with the ratios of ε2, ε3, and
d⊥, as shown in Eq. (29), one can infer the isobar nuclear
structures to very high precision. Meanwhile, strong corre-
lations between the same parameter are still observed in the
trajectories and more quantitatively in the two-dimensional
marginal posterior distribution are shown as black curves in
Fig. 5.

To test the robustness, we drop the ratio of d⊥ in the
Bayesian inference, i.e., we take

yr,3 ≡ {
PRu

a , PZr
a , Rε2,a, Rε3,a

}
a=1,...,40 (30)

as the evidences in the χ2 function (26). We note that when
dropping the d⊥ ratio in the evidence, the PC analysis needs
to be performed separately since d⊥ observables need to be ex-
cluded therein. The corresponding one- and two-dimensional
marginal posterior distributions are shown as blue curves
in Fig. 5, which are very similar to the black ones. Par-
ticularly, the one-dimensional distributions almost overlap
with each other for the two inference results, indicating that
the Bayesian inference based on Eqs. (29) and (30) lead to

consistent mean values and uncertainties of the Woods-Saxon
parameters. We conclude that the radial flow (〈pT 〉) in heavy
ion collisions, which can be estimated by d⊥, carries redun-
dant information as the ratios of elliptic/triangular flows, and
it is nonessential for the reconstruction of nuclear structure
given the multiplicity and anisotropic flow measurements
provided.

IV. SUMMARY

Most atomic nuclei present intrinsic deformed shapes,
characterized notably by quadrupole and octupole moments,
and the deformation is hard to be precisely measured in low-
energy nuclei experiments. The high-statistics isobar collision
experiment performed by the STAR collaboration [19] shows
that the ratio of observables in the isobar system is very sensi-
tive to the difference in their nuclear structures, which attracts
interest in studying nuclear structure in isobar collisions.

In this work, we investigated the plausibility of
reconstructing the nuclear structure, in a statistical sense,
from the heavy-ion collision observables. We first design a
workflow of Bayesian inference of Woods-Saxon parameters
from different observables. As an exploratory first-step
analysis, we take the Monte Carlo Glauber model as
the estimator to map the initial nucleon distribution to
the final state observables. For single systems, we find
that one can precisely infer Woods-Saxon parameters
from the final observables (P, ε2, ε3, d⊥), assuming that a
reliable model is provided to map the former to the latter.
Whereas for the isobar systems, we find that one cannot
simultaneously determine the nuclear structures only from
the ratio of those observables. However, a high-precision
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FIG. 5. One- and two-dimensional marginal posterior distributions for reconstruction with [black, Eq. (29)] or without [blue, Eq. (30)] d⊥
ratio. In the two-dimensional posterior, solid (dashed) curves correspond to the 68%(95%) C.L. contours.

reconstruction becomes possible if the single-system
multiplicity distributions are provided. Meanwhile, the
ratio of radial flow is found to be nonessential for the
reconstruction. Such a feasibility analysis paves the way to
applying models with dynamical evolution to infer nuclear
structure from real experimental data. Our efforts with the
AMPT model are in progress and will be reported elsewhere.

As a side product, we also find that the Woods-Saxon pa-
rameter dependence in the final state observables can be well
approximated by a quadratic regression, within a relatively
wide range of parameters. Such a finding simplifies the choice
of parameter sets in future studies.
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APPENDIX A: MONTE CARLO GLAUBER MODELING

The MC-Glauber simulation package used in this work
follows the same setting as the date validated iEbE-VISHNew
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hydro package [64], with the details listed as follows. For
minimal-bias events,

(1) Sample nucleons according to the deformed Woods-
Saxon distribution (1).5

(2) Sample the impact parameter b. Then the center of the
projectile is translated to (xP, yP ) = (−b/2, 0), while
that of the target to (xT , yT ) = (b/2, 0).

(3) For any pair of projectile nucleon (located at xP,i) and
target nucleon (located at xT, j), determine whether
inelastic collision can happen according to probabil-
ity P(di j ) = 1 − exp [− 2σeff

σNN
e−2πd2

i j/σNN ], where di j ≡√
(xP,i − xT, j )2 + (yP,i − yT, j )2 is the transverse dis-

tance. We collect every nucleon-nucleon collision
event into the set of {binary collisions}, located at
xi j ≡ (xP,i + xT, j )/2. Meanwhile, for every nucleon
evolved in binary collisions, we collect it into the set of
{participants}. Events without initial binary collision
will be discarded.

(4) Compute binary collision density for i ∈{binary colli-
sions},

ρbin(x) ≡
∑

i

wbin,i

2πw2
N

exp
[−(x − xi )

2
/(

2w2
N

)]
.

(A1)
(5) Compute participant density for i ∈{participants},

ρpart (x) ≡
∑

i

wpart,i

2πw2
N

exp
[−(x − xi )

2
/(

2w2
N

)]
.

(A2)
(6) Compute energy density as the superposition of the

former two

e(x) = Se

τini

(
1 − αglb

2
· ρpart (x) + αglb · ρbin(x)

)
.

(A3)

In the above equations, wN = 0.5 fm is nucleon width,
σNN is the inelastic nucleon-nucleon cross section, σeff is the
effective cross section with finite nucleon width implemented,
which is determined by ensuring

σNN = 2π

∫
b db

(
1 − exp

(
−2σeff

σNN
e−2πb2/σNN

))
. (A4)

wbin,i and wpart,i are fluctuating weights, allowing extra fluc-
tuation on multiplicity, they follow the γ distribution with
expectation value of unity and shape parameters kbin ≡ kγ ·
αglb and kpart ≡ kγ · (1 − αglb)/2, respectively,

wbin ∼ P(wbin ) = wkbin−1 exp(−w/kbin )

�(kbin ) kkbin
bin

, (A5)

wpart ∼ P(wpart ) = wkpart−1 exp(−w/kpart )

�(kpart ) k
kpart

part

. (A6)

5It shall be worth noting that in some practices, a minimum distance
between any two nucleons is required. The minimum distance is set
to zero in this work.

We use parameters as follows: initial time τini = 0.4 fm,
the overall scaling factor Se × (Nch/E ) = 9.34, mixing pa-
rameter αglb = 0.123, and γ scaling kγ = 1.275 which are
fitted according to the multiplicity distributions of the isobar
experiment [19].

APPENDIX B: CORRELATION BETWEEN RATIOS

In the main text, we express the observables using principal
components,

Oa(θ) = μa + σa

Npc∑
f =1

Va f PC f (θ), (B1)

which can be rewritten in a compact vectorized form

Oθ = μ + �σ · V · PCθ, (B2)

where we use italic bold font for vectors, and roman bold
face for matrices, and the center dot “·” represents the inner
product between matrices and/or vectors. The parameter de-
pendence has been denoted by subscript/superscript. Also, �

represents diagonal matrices. Emulator uncertainty between
different principal components are uncorrelated,

Cov[PC f (θ), PC f ′ (θ′)]

≡ 〈PC f (θ)PC f ′ (θ′)〉 − 〈PC f (θ)〉〈PC f ′ (θ′)〉
= δ f f ′Cf (θ, θ′), (B3)

where 〈·〉 denotes statistical ensemble average. Cf (θ, θ′) is the
covariance function of PC f at two different parameter points,
θ and θ′. It can be computed as

Cf (θ, θ′) = k(θ, θ′) −
d∑

i, j=1

k(θ, θi )(K
−1)i, jk(θ j, θ

′). (B4)

The covariance between different observables follows

Cov[Oa(θ), Ob(θ′)] = σaσb

∑
f

Va f Vb f Cf (θ, θ′). (B5)

For single system (θ = θ′), we denote �θ,ab ≡
Cov[Oa(θ), Ob(θ)], and the ( f , f )th element of diagonal
matrix �C,θ is Cf (θ, θ), i.e.,

�θ = �σ · V · �C,θ · VT · �σ . (B6)

The χ2 function is then

(Oθ − E )T · �−1
θ · (Oθ − E )

= (
�μT + PCT

θ · VT · �σ

) · �−1
θ · (�μ + �σ · V · PCθ )

= (
�μT · �−1

σ · V + PCT
θ

) · �−1
C,θ · (

VT · �−1
σ · �μ + PCθ

)
= (

PCT
θ − PCET

) · �−1
C,θ · (PCθ − PCE ), (B7)

where E represents experimental data on a single system,
�μ ≡ μ − E, and PCE ≡ VT · �−1

σ · (E − μ) is the PC
transformation on experimental observables. Therefore, the
χ2 function in single system is equivalent to direct comparison
of PC’s.
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When comparing the isobar systems, the χ2 function be-
comes

(Rθ,θ′ − RE )T · �−1
θ,θ′ · (Rθ,θ′ − RE ), (B8)

where REa ≡ ERu
a /EZr

a is the experimental ratio, and Rθ,θ′
a ≡

Oθ
a/Oθ′

a . We define the covariance of two ratios as

�θ,θ′
R;a,b = Cov

[
Oa(θ)

Oa(θ′)
,

Ob(θ)

Ob(θ′)

]
, (B9)

and the covariance between an observable and a ratio as

�θ;θ,θ′
X ;a,b = Cov

[
Oa(θ),

Ob(θ)

Ob(θ′)

]
(B10)

and

�θ′;θ,θ′
X ;a,b = Cov

[
Oa(θ′),

Ob(θ)

Ob(θ′)

]
. (B11)

After straightforward but tedious calculations, we find

�θ,θ′
R;a,b = Cθ,θ

a,b − Rθ,θ′
a Cθ′,θ

a,b − Rθ,θ′
b Cθ,θ′

a,b + Rθ,θ′
a Rθ,θ′

b Cθ′,θ′
a,b

Oθ′
a Oθ′

b

,

(B12)

�θ;θ,θ′
X ;a,b = Cθ,θ

a,b

Ob(θ′)
− Rθ,θ′

b Cθ,θ′
a,b

Ob(θ′)
, (B13)

�θ′;θ,θ′
X ;a,b = Cθ′,θ

a,b

Ob(θ′)
− Rθ,θ′

b Cθ′,θ′
a,b

Ob(θ′)
, (B14)

where we have used the shorthand that Cθ,θ′
a,b ≡

Cov[Oa(θ), Ob(θ′)] as defined in Eq. (B5).
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