
PHYSICAL REVIEW C 107, 064905 (2023)

Cumulants of net-strangeness multiplicity distributions at energies available
at the BNL Relativistic Heavy Ion Collider

Changfeng Li,1 Deeptak Biswas ,2 and Nihar Ranjan Sahoo 1,3,4

1Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
2The Institute of Mathematical Sciences, a CI of Homi Bhabha National Institute, Chennai 600113, India

3Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, Shandong 266237, China
4National Institute of Science Education and Research, HBNI, Jatni 752050, India

(Received 26 September 2022; revised 3 May 2023; accepted 19 May 2023; published 9 June 2023)

The higher-order cumulants of net-proton number, net-charge, and net-strangeness multiplicity distributions
are widely studied to search for the quantum-chromodynamics critical point and extract the chemical freeze-
out parameters in heavy-ion collisions. In this context, the event-by-event fluctuations of the net-strangeness
multiplicity distributions play important roles in extracting the chemical freeze-out parameter in the strangeness
sector. Due to having difficulties in detecting all strange hadrons event by event, the kaon (K) and lambda (�)
particles serve as a proxy for the strangeness-related observables in heavy-ion collisions. We have studied the
net-K , net-�, and net-(K + �) multiplicity distributions and calculated their different order of cumulants using
the ultrarelativistic quantum molecular dynamics model and hadron resonance gas calculation. To adequately
account for the net-strangeness cumulants, it has been found that the inclusion of resonance decay contributions
in K and � is necessary.
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I. INTRODUCTION

A deconfined phase of quantum chromodynamics (QCD)
matter—known as the quark-gluon plasma—is created by col-
liding heavy ions at the BNL Relativistic Heavy-Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC). The
main goal of the RHIC Beam Energy Scan (BES) program is
to search for the QCD critical point and gauge the QCD phase
diagram in temperature (T ) and baryon chemical potential
(µB) plane. In BES phase-I, the STAR experiment reported
several measurements on the higher-order cumulants of net-
charge [1], net-proton number [2–4], net-kaon [5], and net-�
[6] multiplicity distributions as well. These cumulants are
associated with their respective conserved charge susceptibil-
ities, and hence these are related to thermodynamic quantities,
like T and μB, in heavy-ion collisions.

The net-proton number cumulant measurements are pro-
posed as the proxy of net-baryon number susceptibility;
hence, it is used to search for the location of the QCD
critical point [7] in heavy-ion collision. References [2–4]
have reported several net-proton cumulant measurements. In
addition, one can extract the chemical freeze-out (CFO) tem-
perature and μB in the heavy-ion collisions with the help of
these cumulants [8–10].

On the other hand, the cumulants of net-kaon and net-�
multiplicity distribution act as a proxy for the strangeness and
help to extract the CFO parameters from the strangeness sec-
tor, especially strangeness chemical potential (μS) and the re-
spective temperature. The standard practice is to extract these
parameters using the strange hadron yields [11,12] and also
the higher order cumulants of net-strangeness multiplicity

distributions. The inclusion of different resonances in the
thermal model fit influences the CFO parameter [13]. The
freeze-out temperature increases with the inclusion of heavier
hadrons [11,14]. Furthermore, the strange meson freezes out
earlier than lighter hadrons at the highest RHIC energy, as
studied in Refs. [15,16]. Hence it is important to know the
other strange baryons’ freeze-out temperature and their chem-
ical potential in heavy-ion collisions.

In this paper, we study the cumulants of net-kaon, net-�,
and net-(kaon + �) multiplicity distributions using the ul-
trarelativistic quantum molecular dynamics (UrQMD) model
and the centrality variation for the STAR energies. To estimate
the degree of thermalization, we have compared the most
central results from UrQMD with the hadron resonance gas
(HRG) calculation. These results would set a baseline for the
ongoing measurements in the STAR experiment. The CFO
parameters extracted from the thermal model fit of the particle
yields are used in the HRG calculations to match the net-
kaon and net-� higher-order cumulant data from the STAR
results [12]. A one-to-one comparison between UrQMD and
HRG results for the net-(kaon + �) elucidates the necessity
to consider the contribution of the feed-down from the decay
of higher mass resonance into the thermal model to explain
the net-strangeness observable at RHIC energies.

This paper is organized as follows. In Sec. II A, the defi-
nition of net-(kaon + �) and their cumulants are introduced.
A brief introduction of the UrQMD model and HRG cal-
culation are mentioned in Secs. II B and II C, respectively.
The net-kaon, net-�, and net-(kaon + �) cumulants and their
ratios are discussed in Sec. III A. The comparison between
the UrQMD and HRG calculations for the net-K and net-�
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multiplicity distributions is discussed in Sec. III B. The
strangeness production and resonance decay effects are dis-
cussed in Sec. III C. Finally, we summarize our studies and
outline the STAR measurements as an outlook in Sec. IV.

II. OBSERVABLES AND MODELS

A. Cumulants of net-(kaon + �) multiplicity distributions

We define the number of net-(kaon + �) [in short net-(K +
�)] as

NK+� = (NK+ + N�̄) − (NK− + N�). (1)

Here, Nx is the number of x particle in an event within a given
phase space window, where x is K+(us̄), K−(ūs),�(uds), or
�̄(ūd̄ s̄). Here, the (NK+ + N�̄) and (NK− + N�) represents
the total positive and negative strangeness quantum numbers
in an event, respectively. In heavy-ion collisions, the initial
strangeness is zero. Note here that the STAR net-kaon and
net-� publications are reported with (NK+ − NK−) in net-kaon
[5] and (N� − N�̄) in net-� measurements [6], respectively.

The 〈N〉 is the ensemble average of multiplicity in a given
centrality class. The deviation of N from its mean 〈N〉 is de-
fined as δN = N − 〈N〉. The nth order of diagonal cumulants
(Cn) can be defined as

C1 = 〈N〉, (2)

C2 = 〈(δN )2〉, (3)

C3 = 〈(δN )3〉, (4)

C4 = 〈(δN )4〉 − 3〈(δN )2〉2. (5)

A detailed discussion regarding the cumulant-generating
function and relationships between moments, central mo-
ments, and cumulants can be found in Ref. [17]. In this
paper, we discuss different orders of cumulants and their
ratios for the net- (K + �), net-K , and net-(�) multiplicity
distributions. The connection between these cumulants and
the thermodynamics susceptibilities is discussed in Sec. II C.

B. UrQMD model

The UrQMD [18,19] model is a microscopic transport
model. In this space-time evolution model, the propaga-
tion, rescattering among hadrons, and string excitation are
included, whereas no in-medium modification effects are im-
plemented. Hence, this model is used to study the baseline
measurement in heavy-ion collisions for various observables
[20,21].

In the present work, the Au + Au collision events are sim-
ulated at

√
sNN= 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV

with minimum-bias configuration (impact parameter, b = 0
to 14 fm). The different particles with their particle data
group particle identification in an event are analyzed using the
same phase space window similar to the STAR experiment.
The centrality selections are performed based on the charged
particle multiplicity distribution at the midrapidity, following
the STAR experiment specifications. The net-K , net-�, and
net-(K + �) multiplicity distributions are calculated within
0.4 < pT < 1.6GeV/c and rapidity window |y| < 0.5. The
cumulants and their ratios are calculated as mentioned in
Sec. II A.

C. HRG calculation

The ideal HRG model considers an ensemble of nonin-
teracting hadrons and their resonances. The logarithm of the
partition function can be written as

ln Z id =
∑

i

ln Z id
i , (6)

where the sum runs over all the hadrons and resonances; the
‘id’ stands for the ideal gas consideration. The Boltzmann
approximation provides a reasonable baseline for the mas-
sive hadrons and resonances (except π ) along the chemical
freeze-out boundary [22]. In this work, the particle species
under consideration (K,�) have much higher masses than the
freeze-out temperature and mi − μi � T for the respective
freeze-out parametrization. Within this consideration, we can
approximate the partition functions in the Boltzmann limit
[23]. With such assumption [22],

ln Z id
i = ±V gi

2π2

∫ ∞

0
p2d p e−(Ei−μi )/T , (7)

where V , T , and gi is the system volume, temperature, and de-
generacy factor of the ith hadron. Ei =

√
p2 + m2

i is the single
particle energy. μi = BiμB + SiμS + QiμQ is the chemical
potential, where Bi, Si, and Qi are, respectively, the baryon
number, strangeness, and charge of the particle. The μB, μS ,
and μQ are the baryon, strangeness, and charge chemical
potentials, respectively.

With the Boltzmann approximation, the pressure of a single
hadron species i is defined as [22,24]

Pid
i = T

V
ln Z id

i = ± giT

2π2

∫ ∞

0
p2d p e−(Ei−μi )/T .

The nth order susceptibility is defined as

χn
x = 1

V T 3

∂n(ln Z )

∂
(

μx

T

)n , (8)

where μx is the chemical potential for conserved charge x. The
derivatives of the logarithm of the grand canonical partition
function (Z ) with respect to the chemical potential define
susceptibilities. These susceptibilities are related to the event-
by-event measured cumulants of net-charge, net-baryon, and
net-strangeness multiplicity distributions. For our present pur-
pose x = S (strangeness).

With the Boltzmann limit in Eq. (7), the nth order suscep-
tibility can be expressed as

χn
x =

∑
i

gixn
i

2π2T 3

∫ ∞

0
p2d p e−(Ei−μi )/T . (9)

This form simplifies the representation of cumulants, making
the multiplicity distribution similar to a Poisson distribution
[23]. This simplification is due to the fact that the derivative
of the exponential function is also exponential and the ana-
lytical form is independent of the order of derivative n. In
Boltzmann limit, the relationship between different cumulants
becomes straightforward with C1 = C3 and C2 = C4. Exper-
imental observations at RHIC energies, as reported by the
STAR experiment, confirm this Boltzmann approximation by

064905-2



CUMULANTS OF NET-STRANGENESS MULTIPLICITY … PHYSICAL REVIEW C 107, 064905 (2023)
2

/C 1
C

0
0.5

1
1.5 7.7 GeV7.7 GeV7.7 GeV7.7 GeV

2
/C 3

C

0

0.5

1

1.5

0 100 200 300

2
/C 4

C

0
1

2

3

11.5 GeV11.5 GeV11.5 GeV11.5 GeV

0 100 200 300

19.6 GeV19.6 GeV19.6 GeV19.6 GeV

0 100 200 300

27 GeV27 GeV27 GeV27 GeV

Net-K

ΛNet-

Net-K

ΛNet-

Net-K

ΛNet-

Net-K

ΛNet-

〉
part

 N〈
0 100 200 300

39 GeV39 GeV39 GeV39 GeV

)ΛNet-(K+

Ind. Prod.

)ΛNet-(K+

Ind. Prod.

)ΛNet-(K+

Ind. Prod.

)ΛNet-(K+

Ind. Prod.

0 100 200 300

62.4 GeV62.4 GeV62.4 GeV62.4 GeV

Au+Au, UrQMD
<1.6 GeV/c

T
0.4<p

|y| < 0.5

Au+Au, UrQMD
<1.6 GeV/c

T
0.4<p

|y| < 0.5

Au+Au, UrQMD
<1.6 GeV/c

T
0.4<p

|y| < 0.5

Au+Au, UrQMD
<1.6 GeV/c

T
0.4<p

|y| < 0.5

0 100 200 300

200 GeV200 GeV200 GeV200 GeV

0 100200300

FIG. 1. The cumulants ratios of net-K (box), net-�(circle), net-(K + �) (triangle), and independent particle production for net-(K + �)
(diamond) are shown at

√
sNN=7.7–200 GeV calculated within the same acceptance. The vertical bars are statistical errors.

considering the Poisson distributions in the net-K and net-�
cumulants measurements [5,6].

D. Connection with experimental observable

The event-by-event net-charge multiplicity distributions
are measured in heavy-ion experiments within a finite accep-
tance. The cumulants (Cn) discussed in Sec. II A are related to
the different order of susceptibilities by the following relation:

V T 3χn
x = Cn. (10)

The ratios of these cumulants are taken to cancel the volume
term in the above expression. The mean (Mq), variance (σ 2

q ),
skewness (Sq), and kurtosis (κq) are also related with different
cumulants as follows:

σ 2
q /Mq = C2/C1 = χ2

q /χ1
q , (11)

Sqσq = C3/C2 = χ3
q /χ2

q , (12)

κqσ
2
q = C4/C2 = χ4

q /χ2
q . (13)

III. RESULTS AND DISCUSSION

A. Cumulants of net-K, net-�, and net-(K + �) in UrQMD

The K−/K+ yield ratio increases with collision energy and
approaches to unity at higher collision energy [11] due to
the interplay between associated production (NN → KY N ,
πN → KY ) and pair production (NN → NNK+K−). The
�̄/� yield ratio also shows the same trend as a function of
collision energy [25]. Recent net-K [5] and net-� [6] mea-
surements show that the C1 of these multiplicity distributions
are positive and increase with centrality and also collision en-
ergy. In this paper, we calculate the cumulant ratios of net-K ,
net-�, and net-(K + �) multiplicity distributions for seven
collision energies using the UrQMD model. Figure 1 shows
the three cumulant ratios C1/C2, C3/C2, and C4/C2 for the

net-K , net-�, and net-(K + �) multiplicity distributions from√
sNN=7.7 to 200 GeV. The C1/C2 for net-kaon and net-� is

always positive as a function of centrality. Contrarily, this is
negative up to

√
sNN=39 GeV for net-(K + �). Negative C1 is

responsible for the negative value of this ratio. A similar trend
is observed in the case of C3/C2. The negative C1 and C3 are
responsible for making these ratios negative for net-(K + �).
The C4/C2 is almost the same for three cases at all energies
and remains around unity.

On the contrary, the mean value (C1) of net-(K + �) is
negative at lower energy, whereas it becomes positive at√

sNN=200 GeV in Au + Au collisions in UrQMD. Here,
we reiterate the combined quantity, NK+� = (NK+ + N�̄) −
(NK− + N�). We can understand this trend as the following.
More baryons are produced at the lower collision energy due
to the higher baryon deposition. The � particle, being the
lightest strange baryon, dominates the net-(K + �) and gives
rise to this negative value. This negative trend decreases as the
collision energy increases and particle-to-antiparticle yields
become similar. This implies more negative net-strangeness
number (more s quarks) is observed at lower collision energies
than at the top collision energy.

Furthermore, to study the correlation contribution between
(NK+ + N�̄) and (NK− + N�) to net-(K + �) distribution, we
calculate the following expression for the independent particle
production:

CK+�
n = Cn(NK+ + N�̄) + (−1)nCn(NK− + N�). (14)

It should be noted that the expression mentioned above is
built on the basis of Eq. (1). After examining the comparison
between the assumption of independent particle production
and cumulant computed from the sample of net-(K + �) dis-
tributions in the UrQMD model, there seems to be a negligible
difference. However, it is essential to incorporate experimen-
tal data to study these correlations in the BES energies.
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FIG. 2. The μB/T , μS/T , and −μQ/T as a function of
√

sNN .
The red color markers are the input parameters used in HRG calcu-
lation to match the STAR net-kaon [5] and net-� [6] data as shown
in Figs. 3 and 4. The blue markers are the thermal model fit from the
STAR data [12].

B. Comparison with HRG

A comparison between the UrQMD results and HRG cal-
culation is important to understand the underlying hadronic
scattering contribution to these observables and set a base-
line for heavy-ion collision experiments. To study the degree
of thermalization, we calculated the HRG estimations at the
chemical freeze-out boundary. Reference [26] has shown that
various cumulants (up to third order) of different species
can describe the susceptibilities calculated in the HRG using
a grand canonical ensemble above certain colliding energy,
which restricts the applicability of the HRG model to the
fireball created in low-energy heavy-ion collisions. In Fig. 2,
we present the variation of μB/T , μS/T , and μQ/T with
collision energy (

√
sNN ), which are evaluated by fitting the

yield data with the thermal model assuming a grand-canonical
ensemble. The particle yields, including π , K , p, �, 	, and


, are used to estimate these parameters [27–29]. While the
strangeness and baryon chemical potential values are consis-
tent with those reported by the STAR collaboration [11,12],
there are no reported values for μQ. We have included these
parameters along with the available ones for a comprehen-
sive analysis, as they serve as input parameters for HRG
calculations. We must emphasize that these parameter val-
ues result from fitting the yield and are included here for
completeness.

Using these parameters, we will initially compare the ratios
of cumulants for individual species. Previous studies [30,31]
have shown that the decay feed-down does not significantly
affect the ratios of cumulants up to the third order for individ-
ual species.

Figure 3 shows the M/σ 2 and Sσ of net-K as a function
of collision energy (

√
sNN ). The HRG calculations are carried

out using the same acceptance cuts as employed in the STAR
measurements [6]. The HRG calculation and UrQMD results
exhibit a good agreement with experimental data for both
these ratios.

Figure 4 shows the M/σ 2 and Sσ of net-� as a function of
collision energy (

√
sNN ). The HRG calculations well explain

the data both for the M/σ 2 and Sσ results. The UrQMD
estimations have a large deviation from the experimental data
for net-�, which mainly comes from the disagreement in the
values of C2 [6]. Note here that no decay contributions are
included in these HRG calculations.

The comparison between the UrQMD model and HRG cal-
culations shows that the net-K results are comparable and also
match the data. The net-� results have an apparent difference
between the UrQMD and HRG calculations. The UrQMD
result for net-� deviates from the data at all energies. The
higher mass resonances decay channels are included in the
UrQMD events. This difference in the net-� M/σ 2 and Sσ

results from the UrQMD could be due to the difference in
the �, higher resonance (anti)particle production yields in
UrQMD, and the RHIC energies [19].
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FIG. 3. The M/σ 2 (C1/C2) (left panel) and Sσ (C3/C2) (right panel) of net-K as a function
√

sNN . The circles, star markers, and triangles
represent the STAR data, HRG calculations (done with the same kinematic cuts as the data), and the UrQMD model calculations, respectively.
Net-kaon data are from Ref. [5].
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Here, it is worth noting that the quantitative similarity be-
tween the ratios C1/C2 (M/σ 2) and C3/C2 (Sσ ) establishes the
applicability of the Boltzmann approximation in the context
of heavy-ion collisions, i.e., C3 = C1. The good agreement
among the HRG results with the Boltzmann statistics and the
experimental data validates the Poisson limit of the particle
distribution. Any deviation from this Poisson limit is due to
the additional underlying physics present in the data.

With a general agreement among UrQMD results, STAR
data, and HRG calculations, it would be interesting to com-
pare results for the net-(K + �) multiplicity distribution. As
no experimental data are available yet for this combination,
we have compared the UrQMD results with those from the
HRG model. In the framework of the ideal HRG model,
the cumulants of net-(K + �) are just the addition of the
cumulants of the net-kaon and net-�. Within the Poisson
distribution approximation, this simple addition assumes a
Skellam distribution, where C1 = C3, C2 = C4. The C1 is the
difference between the mean in the case of cumulants of
net quantities. This simplified picture thus provides a trivial
baseline for the cumulant study.

In Fig. 5, the energy dependence of the net-(K + �) C1/C2,
C3/C2, and C4/C2 for 0–5 % central Au + Au collisions in
the UrQMD model and HRG calculations are compared. The
C1/C2 and C3/C2 show an opposite trend at lower collision
energy between the UrQMD and the thermal model predic-
tions. The HRG calculations have been performed with the
chemical freeze-out parametrization from Refs. [27–29]. This
disagreement is prominent at lower collision energy. This
difference arises from higher mass resonance decay in the
UrQMD model, whereas no such decay feed-down is included
in the HRG calculations. A detailed discussion on the im-
portance of higher mass resonance decay contributions can
be found in Sec. III C. The C4/C2 of HRG calculation is
unity at all energies and consistent with the UrQMD mod-
els. It shows that C4/C2 is less sensitive to the resonance
contributions.

C. Strangeness production in HRG

In heavy-ion collisions, the strange particles’ yields con-
tain the contribution from the decay feed-down of higher
mass resonances [11,12]. In the thermal model, it is impor-
tant to include all higher mass resonance decay channels
to capture the bulk description of the chemical freeze-out
surface properly. Inclusion of these decays for higher order
susceptibility calculations needs to consider the probabilistic
nature of decay channels through their branching fractions
[30,32–34]. Including these decay products in the yield, cal-
culations are trivial as those are the first cumulant (mean).
The (anti-)�(1115) has the contributions from the higher
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mass strange baryons, e.g., �(1385),�(1405),�(1520),
and other heavy resonances. Kaons (493) have contribu-
tions mostly from the higher mass meson resonances like
K∗(892), K (1270), φ(1020), etc. However, for kaons, the
inclusion of all resonances becomes complex as many reso-
nances decay into both K+ and K−. In this work, we have not
included any decay channels from the higher resonances for
the susceptibility calculation in the HRG.

To quantify the relevance of decay from the higher mass
resonances, we have plotted the ratio of the mean value of
the net-(K + �) with that of the total in Fig. 6. The model
calculations are performed following the freeze-out parame-
ters from Refs. [27,28,35]. These parameters were extracted
with the mean value of yields and successfully explained
the hadronic yield ratios. By including decays from higher
mass resonances, the model agrees with the data, whereas the
ratio increases with decreasing beam energy if we exclude
the decay contribution. Hence, for a reasonable estimate of
the parametrization and to explain the data, it is necessary to
include the higher mass resonance decay in the calculation of
the net-strangeness observable.

Although the strangeness neutrality demands the net-
strangeness to be zero in the total system and distributed
among the final particle species in the whole phase space.
Here, we investigate only the charged kaon(493) and �(1115).
With increasing μB at lower collision energies, strange
baryons dominate, and the strangeness gets distributed mainly
among the hyperons. The � being the lightest one contributes
the most significant part. The decay from higher mass reso-
nances increases the yield of � and produces a net negative
strangeness at lower collision energies. With only the primary
abundance, the net strangeness remains positive in our ob-
servable, as the lightest kaons dominate the sum and deliver
a positive strangeness. Such behaviors can be seen in the
UrQMD model calculation as it includes all resonance decays
in an event, as discussed in Sec. III B.

IV. SUMMARY AND OUTLOOK

In heavy-ion collision experiments, observables related to
net-K and net-� act as a proxy for the strangeness. Although
the individual results for net-K and net-� are available from
STAR BES, results for the combined study for the net-(K +
�) are yet to be performed. In this work, we have studied the
cumulants of net-K , net-�, and net-(K + �) multiplicity dis-
tributions for the RHIC BES energy range using the UrQMD
model. These studies serve as a baseline for the cumulant
measurement of the net-(K + �) multiplicity distributions.

In UrQMD, the C1/C2 and C3/C2 of net-(K + �) are nega-
tive at lower energies and become positive at higher collision
energies within the given acceptance window mentioned in
this paper. At lower

√
sNN , the finite baryon density favors the

dominance of hyperons over strange mesons, which produces
this negative strangeness. This effect diminishes as the colli-
sion energy increases and the kaon becomes more abundant
than the hyperons. On the contrary, the higher-order cumulant
C4/C2 has no significant variation between net-K , net-�, and
net-(K + �) multiplicity distributions.

As a benchmark, we have compared our UrQMD cal-
culations of various cumulants with available STAR data
of net-K and net-� for the most central collision, where a
good agreement is apparent. Furthermore, we have compared
the UrQMD results with the HRG calculation to study the
thermalization contribution to these observables. The HRG
calculations have been performed at the standard chemical
freeze-out parametrization. Although there is good agreement
among data, UrQMD calculations and model (HRG) predic-
tions for the individual net-K and net-�, differences among
UrQMD results and HRG for cumulant ratios of net-(K + �)
are apparent.

It seems that the difference between the decay feed-down
of higher mass resonances is responsible for the difference
between UrQMD and HRG. The decay consideration is nec-
essary to explain the available experimental data, which is
responsible for a negative C1 and C3 at lower collision ener-
gies.

This net-(K + �) cumulant measurements along with that
of net-K and net-� multiplicity distributions can provide nec-
essary information on the strangeness in heavy-ion collisions
at RHIC energies, and will act as a benchmark for future ex-
periments. It is important to compare these calculations from
the UrQMD and HRG with the STAR ongoing measurements.
The STAR’s BES-II data with lower collision energies in the
fixed target experiment could provide important information
about the strangeness production and their event-by-event
fluctuations in heavy-ion collisions. The proper treatment of
the decay feed-down into kaon and � would facilitate the
extraction of the chemical freeze-out parameters from the
strangeness sector.
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