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Continuum random-phase approximation for (n, γ ) reactions on neutron-rich nuclei:
Collective effects and resonances
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We formulate a microscopic theory to calculate cross section of the radiative neutron capture reaction on
neutron-rich nuclei using the continuum random-phase approximation (cRPA) to the time-dependent density
functional theory (TDDFT). With an intention of applying to the r process, for which the statistical reaction
model may not be appropriate, we describe the transition between a initial state of incident neutron and a final
state of the γ decay by means of a single many-body framework of the cRPA-TDDFT. With the cRPA approach, it
is possible to describe various excitation modes present in the (n, γ ) reaction, including soft dipole excitation, the
giant resonances, as well as noncollective excitations and the single-particle resonances. Furthermore, it enables
us to describe the (n, γ ) reaction where the the final states of the γ transition are low-lying surface vibrational
states. We demonstrate the theory by performing numerical calculation for the reaction 139Sn(n, γ ) 140Sn. We
discuss various new features which are beyond the single-particle model: the presence of narrow and wide
resonances originating from noncollective and collective excitations and roles of low-lying quadrupole and
octupole vibrational states.

DOI: 10.1103/PhysRevC.107.064607

I. INTRODUCTION

The r process is believed to be the origin of about half
of the elements heavier than iron [1–3]. From the viewpoint
of nuclear physics, nucleosynthesis is a complex network
of the (n, γ ) and (γ , n) reactions, β decay, and the fission
taking place on a large number of short-lived neutron-rich
nuclei very far from the stability line. The cross sections and
the probabilities of the relevant reactions and decays need to
be provided theoretically for quantitative understanding since
the direct experimental measurements are quite difficult or
impossible in most cases. Recent observation of a kilonova
associated with a binary neutron star merger [4,5] provides the
first direct evidence and quantitative information on r process
nucleosynthesis [3,6–8]. It is therefore quite important for
nuclear theory to provide reliable theoretical models of the
relevant nuclear reactions which take into account the recent
progress of study of neutron-rich nuclei.

In the present study, we focus on the radiative neutron
capture reactions. They are usually described in terms of two
different mechanisms: the compound nuclear (CN) process
and the direct capture (DC) process [2,3]. The CN process
is assumed to proceed via compound states with high level
density, and it is usually evaluated by means of the Hauser and
Feshbach statistical model [9]. It is relevant for nuclei with
relatively large neutron separation energy and often applied
to the s process which occurs on stable nuclei or nuclei close
to the stability line. The r-process path, however, occurs on
short-lived neutron-rich nuclei in which the neutron separa-
tion energy or the excitation energy of nuclei is as small as

≈2 MeV, In this case the statistical description of the CN
process may not be appropriate [2,3,10]. Often considered in
this case is the direct capture process [10–21], where a neu-
tron scattering state decays directly to a bound state without
forming compound states. It is essentially a single-particle
model of γ decay or an independent-particle shell model for
the nuclear structure.

There exist various nuclear structure phenomena beyond
the single-particle description, such as the pairing correlation,
the low-lying collective states, and giant resonances. In ad-
dition, neutron-rich nuclei far from the stability line exhibit
characteristic features such as the neutron halo, the neutron
skin, and related exotic modes such as the pygmy dipole
resonance or the soft dipole mode [22–27] originating from
small neutron separation energy or the weak binding of the
last neutrons. In particular, the pygmy dipole resonance was
suggested to influence the r-process nucleosynthesis [28],
and efforts to include the exotic collective excitations have
been pursued in the framework of the CN process models
[19,28–34]. However, the assumption of the statistical com-
pound states may not be appropriate in the case of small
neutron separation energy. The effect of the weak neutron
binding is partly taken into account in the direct capture
models [35], which have, however, difficulty including the
collective correlations.

The purpose of our study is to formulate a microscopic
model of radiative neutron capture reaction which is relevant
to the r process. Namely we intend to take into account the
various nuclear structure effects which are not included in
the conventional direct capture models. We intend also to
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describe the whole process of the (n, γ ) reaction in a single
quantum many-body theory so that we can avoid the statis-
tical assumption of the CN process. To this end we adopt
the continuum random-phase approximation (cRPA) [36–38],
which is formulated as a linear response theory based on the
time-dependent density functional theory (TDDFT) [39]. In a
previous publication [40], we reported a prototype formula-
tion which describes the radiative capture process (A − 1) +
n → A∗ → Ag.s. + γ , i.e., a γ transition to the ground state
Ag.s. of the residual nucleus A from continuum excited states
A∗, which couples to the neutron scattering state (A − 1) + n.
This formulation enables us to describe the collective exci-
tations such as the pygmy and/or giant resonances, or the
RPA correlation in general in the continuum excited states
A∗. Note, however, that the final states of the actual (n, γ )
reaction are not only the ground state Ag.s. but also low-lying
excited states A∗∗. Therefore, in the present paper, we extend
the formalism so that it can describe the latter case, i.e., the
(n, γ ) reaction (A − 1) + n → A∗ → A∗∗ + γ populating the
low-lying excited states A∗∗. This is a necessary extension to
evaluate the total neutron capture cross section to which γ

decays to excited states contribute. Furthermore we will take
into account correlations in the low-lying excited states A∗∗,
such as surface vibrational modes.

One of the keys of the extension is given in a preced-
ing paper [41], where we formulated an extended linear
response theory (the continuum random-phase approxima-
tion) to describe photoabsorption transitions A∗∗ + γ → A∗
from a low-lying excited state A∗∗ to the continuum excited
states A∗. On the basis of this achievement, we formulate in
the present paper a framework to calculate the (n, γ ) cross
section. An important key for this purpose is the method
of Zangwill and Soven [42], which enables us to define the
T matrix for photoabsorption followed by particle emission.
Combining these key formalisms, we describe partial cross
sections of the (γ , n) reaction A∗∗ + γ → A∗ → n + (A − 1)
for individual channels of the neutron emission A∗ → n +
(A − 1). We then obtain the (n, γ ) cross section for the inverse
process (A − 1) + n → A∗ → A∗∗ + γ , using the reciprocity
theorem. Details of the formulation are given in Sec. II.

We demonstrate in Sec. III new features of the present
theory by performing a numerical calculation for radiative
neutron capture on 139Sn with E1 and E2 transitions pop-
ulating low-lying quadrupole and octupole states as well as
the ground state in 140Sn. We will show that the presence of
the low-lying octupole state brings new aspects in the (n, γ )
reactions originating from strong collectivity of this state. We
shall discuss also that the present cRPA approach describes
different kinds of resonance structure emerging in the cap-
ture reaction, including narrow resonances originating from
noncollective states as well as the giant resonances and the
single-particle resonances. We draw conclusions in Sec. IV.

II. THEORY

In this section we formulate a scheme to describe a radia-
tive neutron capture reaction (A − 1) + n → A∗ → A∗∗ + γ

where the final state of the gamma-transition is a low-lying
excited state A∗∗. We first describe the photoabsorption reac-

tion A∗∗ + γ → A∗ assuming that both initial and final states
are described by the continuum random-phase approxima-
tion (cRPA) to the time-dependent density functional theory
(TDDFT) (Secs. II A and II B). In the case where the ex-
cited state A∗ is located above the neutron separation energy,
A∗ decays by emitting a neutron A∗ → (A − 1) + n. In the
framework of the continuum random-phase approximation
the configuration of the daughter nucleus (A − 1) is a one-
hole state with respect to the ground state of A. It is then
possible to derive partial photoabsorption cross sections for
individual channels of the scattering states (A − 1) + n by
using the Zangwill and Soven method (Sec. II C). Finally
we obtain the neutron capture cross section for the inverse
process (A − 1) + n → A∗ → A∗∗ + γ using detailed balance
(Sec. II D).

A. The photoabsorption cross section between
RPA excited states

We express an initial state A∗∗ of photoabsorption reac-
tion as |iLiMi〉 with excitation energy Ei, where LiMi are
the angular momentum quantum numbers. We also express
an excited state A∗ as |kLM(E )〉 with the angular quantum
numbers LM. The excitation energy E is shown explicitly as
A∗ is a state in the continuum spectrum. k represents other
quantum numbers. Normalization is 〈k′L′M ′(E ′)|kLM(E )〉 =
δk′L′M ′,kLMδ(E − E ′).

The photoabsorption cross section of the transition from
|iLiMi〉 to states with angular momentum L and energy E =
Ei + Eγ is given generally by [43–45]

σλ
iLi+γ→L(Eγ ) = fλ(Eγ )

∑
k

B(Mλ, iLi → kL(E ))

= fλ(Eγ )

2Li + 1
S(Mλ; iLi, L; E ) (1)

for electromagnetic multipole M̂λμ transition with photon en-
ergy Eγ in terms of the reduced matrix element

B(Mλ, iLi → kL(E )) = 1

2Li + 1
|〈kL(E )||M̂λ||iLi〉|2, (2)

or the strength function

S(Mλ; iLi, L; E ) =
∑

kMMiμ

|〈kLM(E )|M̂λμ|iLiMi〉|2

=
∑

k

|〈kL(E )||M̂λ||iLi〉|2, (3)

and a kinematical factor

fλ(Eγ ) = (2π )3(λ + 1)e2

λ[(2λ + 1)!!]2

(
Eγ

h̄c

)2λ−1

. (4)

We assume that both excited states |iLiMi〉 and |kLM(E )〉 are
those which can be described by cRPA based on the TDDFT.
In other words, the model space is spanned by all the particle-
hole configurations including scattering single-particle states.
In the present work we assume that a nucleus A has closed-
shell configurations (or subshell-closed configurations) for
both neutrons and protons, and that the pair correlation can be
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neglected. Inclusion of the pairing is feasible with use of the
method in Ref. [40], but we leave it for future publications.

As shown in Ref. [41], the strength function
S(Mλ; iLi, L; E ) for transitions from an excited state iLi

is rewritten as another strength function,

S(FL; g, L; E ) ≡
∑

k

|〈kL(E )||F̂L||0+
g 〉|2 = S(Mλ; iLi, L; E ),

(5)

for an operator

F̂LM ≡
∑
μMi

〈λμLiMi|LM〉[M̂λμ, Ô†
iLiMi

]
, (6)

defined by a commutator between M̂λμ and the RPA cre-
ation operator Ô†

iLiMi
of the low-lying excited state |iLiMi〉 =

Ô†
iLiMi

|0+
g 〉. Note that the matrix elements in the strength func-

tion S(FL; g, L; E ) are those between the ground state |0+
g 〉 and

the RPA excited states |kLM(E )〉 for the operator F̂LM . Since
the operator F̂LM is a one-body, though nonlocal, operator, it is
possible to calculate the strength function S(FL; g, L; E ) using
an extended linear response formulation of the cRPA [41].

B. Linear response formalism

Here we recapitulate briefly an essence of the formulation
[41] by omitting the angular momentum algebra.

The nonlocal one-body operator F̂ = [M̂, Ô†
i ] is expressed

as

F̂ =
∫∫

dx dyF (x, y)ψ†(x)ψ (y), (7)

where ψ†(x) and ψ (y) are the creation and annihilation
operators of the nucleon, and F (x, y) is the coordinate repre-
sentation of the matrix element. Here x (and y) is shorthand
notation of the space coordinate 	r and the spin variable
σ =↑,↓, i.e., x = 	rσ ,

∫
dx = ∑

σ

∫
d	r. Using the linear

response δρ(x, y, ω) of density matrix ρ(x, y) = 〈ρ̂(x, y)〉,
ρ̂(x, y) = ψ†(y)ψ (x) for the perturbation F̂ , we can calculate
the strength function S(F ; h̄ω) = ∑

k |〈k(E )|F̂ |0〉|2 (E = h̄ω)
as

S(F ; h̄ω) = − 1

π
Im

∫∫
dx dy F ∗(x, y)δρ(x, y, ω). (8)

In the TDDFT scheme the density matrix response
δρ(x, y, ω) obeys the linear response equation

δρ(x, y, ω) =
∫∫

dx′dy′R0(x, y; y′, x′; ω)[F (x′, y′)

+ vind(x′, ω)δ(x′ − y′)]. (9)

Here vind(x, ω) is a time-dependent part of the Hartree-Fock
(or Kohn-Sham) potential originating from the density re-
sponse, which is called the induced field. Assuming that the
HF (KS) mean field U [ρ](x) is local, it is given by

vind(x, ω) = δU (x)

δρ
δρ(x, ω) (10)

with δρ(x, ω) ≡ δρ(x, x, ω). The function R0 is an unper-
turbed response function for the density matrix, and given by

R0(x, y; y′, x′; ω) ≡
∑

ph

{ 〈0|ρ̂(x, y)|ph〉〈ph|ρ̂(y′, x′)|0〉
h̄ω − (εp − εh) + iη

− 〈0|ρ̂(y′, x′)|ph〉〈ph|ρ̂(x, y)|0〉
h̄ω + (εp − εh) + iη

}
(11)

in the spectral representation with the single-particle eigen-
states in the static HF (KS) potential U [ρ0](x). |ph〉 = a†

pah|0〉
is one-particle–one-hole configuration, εp and εh are single-
particle energies of the particle and hole orbits. η is a positive
infinitesimal constant.

The response function R0 is expressed also as

R0(x, y; y′, x′; ω) =
∑

h

{φ∗
h (y)G0(x, x′, εh + h̄ω + iη)φh(y′)

+ φ∗
h (x′)G0(y′, y, εh − h̄ω − iη)φh(x)},

(12)

where G0(x, x′, ε) is the single-particle Green’s function for
the static HF (KS) potential U0, and φh(x) is the wave function
of the hole orbit h. The Green’s function satisfies a proper
asymptotic boundary condition for |x|, |x′| → ∞ so that it
describes scattering waves for unbound orbits.

We refer the readers to Ref. [41] for equations with the
angular momentum algebra.

C. The Zangwill-Soven method for partial photoabsorption
cross section

In the linear response formalism discussed above, unbound
particle states p represent the scattering states. It is therefore
possible to describe decay of the RPA excited states with
emission of a neutron (or a proton). Following Zangwill and
Soven [42], we shall calculate partial (γ , n) cross sections for
individual decay channels.

We first note that the strength function Eq. (5) is rewritten
as

S(F̂ ; h̄ω) = − 1

π
Im

∫∫∫∫
dx dy dx′dy′v∗

scf (x, y, ω)

× R0(x, y; y′, x′; ω)vscf (x′, y′, ω)

=
∑

ph

|〈ph|V̂scf (F̂ ; ω)|0〉|2δ(h̄ω − (εp − εh)).

(13)

Here V̂scf (F̂ ; ω) is a one-body field, called the self-consistent
field [42,46], defined as a sum of induced field V̂ind and the
perturbing field F̂ :

V̂scf (F̂ ; ω) ≡ F̂+V̂ind(F̂ ; ω)=
∫∫

dx dy vscf (x, y, ω)ρ̂(y, x),

(14)

vscf (x, y, ω) ≡ F (x, y) + δU (x)

δρ
δρ(x, ω)δ(x − y). (15)
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FIG. 1. The diagrams representing the matrix element
〈ph|V̂scf (F̂ ; ω)|0〉. (a) corresponds to the first term 〈ph|F̂ |0〉 =
〈ph|M̂|i〉 of the right-hand side (r.h.s.) of Eq. (16) while
(b) corresponds to the second term. Note that the electromagnetic
operator M̂ acts also on the hole line.

Note that matrix element 〈ph|V̂scf (F̂ ; ω)|0〉 is a T matrix
for the (γ , n) reaction under consideration. This is seen in

〈ph|V̂scf (F̂ ; ω)|0〉 = 〈ph|F̂ |0〉

+
∫

dx〈ph|δU (x)

δρ
ρ̂(x)|0〉δρ(x, ω).

(16)

The first term 〈ph|F̂ |0〉 corresponds to the diagram represen-
tation shown in Fig. 1(a). The density response δρ(x, ω) in the
second term can be expanded in infinite series,

δρ = R0F + R0
δU

δρ
δρ = R0F + R0

δU

δρ
R0F

+ R0
δU

δρ
R0

δU

δρ
R0F + · · · , (17)

representing symbolically the linear response equation (9).
We notice that this infinite series corresponds to ring
diagrams, and the matrix element 〈ph|V̂scf (F̂ ; ω)|0〉 is repre-
sented by the diagrams shown in Fig. 1.

These diagrams indicate that the matrix element
〈ph|V̂scf (F̂ ; ω)|0〉 represents the transition amplitude for
the electromagnetic operator M̂ between the low-lying
excited state |i〉 and a RPA excited state (represented by
series of the ring diagrams) which is connected to a specific
particle-hole configuration |ph〉. In the case when the particle
state p is an unbound single-particle state, it represents the
transition matrix, or T matrix, of the (γ , n) reaction where
the final state consists of a unbound neutron (specified by
the particle configuration p) and the residual nucleus (A − 1)
with one-hole configuration ah|0〉. We call it the RPA T
matrix. We give a more detailed discussion in Appendix A.

Consequently each term in the r.h.s. of Eq. (13) is related to
the partial photoabsorption cross section for a (γ , n) process,
A (state i) + γ → (A − 1) (one-hole state ah|0〉) +n (single-
particle state p):

σλ
i+γ→ph(Eγ ) = fλ(Eγ )|〈ph|V̂scf (F̂ ; ω)|0〉|2

× δ(h̄ω − (εp − εh)). (18)

with Eγ = h̄ω − Ei.

The photoabsorption cross section can be written also
in terms of the single-particle Green’s function. Inserting
Eq. (12) into Eq.(13), we have the partial photoabsorption
cross section:∑
p(εp=ε)

σλ
i+γ→ph(Eγ ) = − fλ(Eγ )

π
Im

∫∫∫∫
dx dy dx′dy′φ∗

h (y)

× v∗
scf (x, y, ω)G0c(x, x′, h̄ω + εh + iη)

× vscf (x′, y′, ω)φh(y′), (19)

for final states consisting of an escaping neutron with energy
ε = h̄ω + εh = Eγ + Ei + εh and a one-hole state ah|0〉 of
the residual nucleus (A − 1). Here G0c is the single-particle
Green’s function in which a contribution of bound orbits is
removed:

G0c(x, x′, ε) ≡ G0(x, x′, ε) −
∑

i(εi<0)

φi(x)φ∗
i (x′)

ε − εi
. (20)

D. Concrete expressions for (γ, n) and (n, γ ) cross sections

In actual application we consider the angular momentum
algebra with the polar-coordinate representation. For example
vscf (x, y, ω) is represented as

vscf
LM (x, y, ω) =

∑
l jm,l ′ j′m′

Yl ′ j′m′ (x̂)
1√

2 j′ + 1

× 〈 jmLM| j′m′〉v
scf
L,l ′ j′,l j (rx, ry, ω)

rxry
Y ∗

l jm(ŷ).

(21)

Here Yl jm is the spin spherical harmonics. We
specify the escaping neutron with energy ε and
the partial wave quantum numbers l j, and ex-
press the final state |ph〉 as |[εlp jp, nhlh jh]LM〉 =∑

mpmh
〈 jpmp jhmh|LM〉a†

εlp jpmp
a

˜nhlh jhmh
|0〉 with L being the

total angular momentum, which is identical to that of the RPA
excited state A∗. Accordingly we obtain the expression for the
partial photoabsorption cross section for the specific channel
of neutron decay as

σλ
iLi+γ→[εlp jph]L

(Eγ )

= fλ(Eγ )
1

2Li + 1
|〈[εlp jph]L||V̂scf (F̂L; ω)||0〉|2

= − fλ(Eγ )

π (2Li + 1)
Im

∫∫∫∫
drxdrydrx′dry′φ∗

nhlh jh (ry)

× vscf∗
L,lp jp,lh jh (rx, ry, ω)G0c,lp jp (rx, rx′ , εh + h̄ω + iη)

× vscf
L,lp jp,lh jh (rx′, ry′ , ω)φnhlh jh (ry′ ). (22)

Note that h̄ω = Eγ + Ei is the excitation energy of the state
A∗ of the nucleus A. Expression of vscf

L,lp jp,lh jh
(rx′, ry′ , ω) and

a closed form expression of the cross section are given in
Appendix B.

Finally, we use detailed balance to obtain the radiative
neutron capture cross section for the reaction (A − 1) + n →
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A∗ → A∗∗ + γ :

σλ
[εlp jph]L→iLi+γ (ε) = 2Li + 1

2 jh + 1

E2
γ

2mc2ε
σλ

iLi+γ→[εlp jph]L
(Eγ )

(23)

for an incident neutron with partial wave lp jp and energy ε

impinging on the (A − 1) nucleus with a one-hole configura-
tion h, and γ transition to the excited state |iLiMi〉. The total
cross section is obtained by summing all the contributions of
the partial waves lp jp and the total angular momentum L of
the system.

III. NUMERICAL EXAMPLES

A. Setting

We shall apply the theory to radiative neutron capture re-
action on a neutron-rich nucleus 139Sn, which populates the
ground and low-lying excited states of 140Sn after γ transition.
We have chosen these isotopes since the neutron separation
energy of 140Sn is estimated to be ≈3 MeV [47] and these
isotopes are relevant to the r process. Another reason is that
140Sn has a subshell closure at the 2 f7/2 orbit for neutrons, and
the pairing correlation neglected in the present formulation is
expected to be weak.

Numerical calculations are performed with the same set-
ting as in our previous paper [41]. We use a Woods-Saxon
potential in place of the static self-consistent field U0 in order
to keep consistency with our previous work. It is straightfor-
ward to use the Skyrme-Hartree-Fock potential for U0 [40],
and results may not be affected strongly by the difference in
the potential. We adopt a Skyrme-type contact interaction as
the residual two-body force, given by

vph(r, r′) =
{

t0(1 + x0Pσ ) + t3
12

(1 + x3Pσ )ρ(r)

}
δ(r − r′).

(24)

The details including the parameters are the same as those
in [41]. We describe the single-particle wave function by
solving the radial Schrödinger equation with the Runge-Kutta
method up to a maximal radius Rmax = 20 fm (with interval
�r = 0.2 fm). At r = Rmax the single-particle wave function
is connected to the asymptotic wave, i.e., the Hankel function
with an appropriate (complex) wave number. The small real
constant η in the response equation is set to η = 1.0 × 10−5

or 0.1 MeV.
In the present analysis, we intend to demonstrate effects

of the RPA correlations on the (n, γ ) reaction, in particular,
roles of the collectivity which may exist both in the scattering
state of 139Sn +n and the final states of 140Sn. We focus on the
low-lying quadrupole and octupole vibrational states as well
as the dipole and quadrupole giant resonances. Other types
of the particle-hole excitations such as the soft dipole mode
and noncollective excitations are also discussed. We take into
account the RPA correlation for the states with natural spin-
parity Lπ = 1−, 2+, and 3− whereas we neglect it for other
spin-parities.

Table I shows the Woods-Saxon single-particle orbits. The
highest occupied neutron orbit in 140Sn is 2 f7/2 with ε2 f7/2 =

TABLE I. Single-particle energies of the adopted Woods-Saxon
potential for 140Sn. Several orbits around the Fermi energy (repre-
sented by spaces) are listed.

Neutron ε (MeV) Proton ε (MeV)

2 f5/2 −0.31 1h11/2 −11.40
3p1/2 −0.81 2d3/2 −11.61
3p3/2 −1.46 2d5/2 −14.06
1h9/2 −1.53 1g7/2 −15.08

2 f7/2 −2.59 1g9/2 −19.97
1h11/2 −6.64 2p1/2 −21.75
3s1/2 −8.65 2p3/2 −23.02
2d3/2 −8.65 1 f5/2 −24.81
2d5/2 −10.40
1g7/2 −10.96
1g9/2 −14.64

−2.59 MeV (the Fermi energy). The configuration of the
ground state of 139Sn is assumed to be a configuration with a
neutron hole in 2 f7/2 with spin-parity jπh = 7/2−. We denote
it 139Sn(7/2−) in the following. The RPA calculation for 140Sn
brings about several bound excited states below the neutron
separation energy S1n = 2.59 MeV (see Fig. 2 of Ref. [41]).
Among them we adopt the lowest-lying excited states, i.e., 2+

1,2

and 3−
1 states, as the final states |iLi〉 of the 139Sn(n, γ ) 140Sn

reaction. The excitation energies of these states are E2+
1

=
0.888 MeV, E2+

2
= 1.093 MeV, and E3−

1
= 1.768 MeV. As

seen in the RPA forward amplitudes Xph of these states (Ta-
bles II and III), the 3−

1 state exhibits a moderately strong
collectivity, i.e., it contains many particle-hole configurations
both in neutrons and protons, typical of the surface vibra-
tional octupole state. The 2+

1 and 2+
2 states consist mostly of

two neutron particle-hole configurations (1h9/2)(2 f7/2)−1 and
(3p3/2)(2 f7/2)−1 while the correlation causes strong mixing
among them.

For the γ transition, we mostly discuss the E1 transition
for the purpose of demonstrating new features of the present
theory, but we also mention briefly the E2 case. Magnetic
transitions such as M1, another important contribution to the
(n, γ ) reaction [3], can be taken into account by extending the
linear response equation with the spin density, but we leave it
for future study.

We take into account all possible angular and spin
quantum numbers of the total system (both for the scattering
state of 139Sn +n and the final states of 140Sn) as long
as they are allowed by the angular momentum coupling

TABLE II. The RPA forward amplitudes Xph of the 2+
1 and 2+

2

state. Particle-hole configurations with large amplitude |Xph| > 0.1
are listed. The RPA backward and forward amplitudes Xph and Yph

are calculated using a method of Ref. [48].

Neutron config. X
2+

1
ph X

2+
2

ph

(1h9/2)(2 f7/2)−1 −0.601 0.791
(3p3/2)(2 f7/2)−1 0.789 0.600
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TABLE III. The RPA forward amplitudes Xph of the 3−
1 state.

Particle-hole configurations with large amplitude |Xph| > 0.1 are
listed. The neutron single-particle orbit 1i13/2 is a resonance in the
continuum.

Neutron config. X
3−

1
ph Proton config. X

3−
1

ph

(1i13/2)(2 f7/2)−1 0.831 (1h11/2)(1g9/2)−1 −0.285
(1i13/2)(1h11/2)−1 0.354 (1g7/2 )(2p1/2)−1 0.203
(1h9/2)(2d3/2)−1 −0.299 (2d5/2)(2p1/2)−1 0.176
(1h9/2)(1g7/2)−1 −0.189 (2d5/2)(2p3/2)−1 0.135
(2 f5/2)(3s1/2)−1 0.134 (1 j15/2 )(1g9/2)−1 0.129
(2g9/2)(2 f7/2)−1 0.133 (2 f7/2)(1g9/2)−1 −0.129
(2 f5/2)(2d3/2)−1 −0.126 (2d3/2)(2p3/2)−1 −0.120
(3p3/2)(2d3/2)−1 −0.112 (3p3/2)(1g9/2)−1 −0.103
(2 j15/2 )(1g9/2)−1 0.108 (1g7/2)(1 f5/2)−1 0.102
(2 f5/2)(1g7/2)−1 −0.101

of the adopted final states (Lπ
i = 0+

g.s., 2+
1,2, and 3−

1 ) and
the multipolarity (λ = 1, 2) of the γ ray. Namely, we
describe 139Sn(7/2−) + n → 140Sn(1−) → 140Sn(g.s.) + γ ,
139Sn(7/2−) + n → 140Sn(1−, 2−, 3−) → 140Sn(2+

1,2) + γ ,
139Sn(7/2−) + n → 140Sn(2+, 3+, 4+) → 140Sn(3−

1 ) + γ

for the E1 transition while 139Sn(7/2−) + n → 140Sn(2+)
→ 140Sn(g.s.) + γ , 139Sn(7/2−) + n → 140Sn(0+, 1+, 2+,

3+, 4+) → 140Sn(2+
1,2) + γ , 139Sn(7/2−) + n → 140Sn(1−,

2−, 3−, 4−, 5−) → 140Sn(3−
1 ) + γ for the E2 case. We

include all the partial waves of the incident neutron which
are allowed by the coupling to the the spin-parity 7/2− of the
target nucleus 139Sn. Its maximum is lp, jp = 8, 17/2.

B. Low energy (n, γ ) cross section with E1 transition

Figure 2 shows the cross sections of neutron capture with
E1 for low neutron kinetic energy relevant to the r process,
calculated separately for each final state. A characteristic fea-
ture is that the cross sections exhibit significant differences
for different final states. In particular the most dominant tran-
sitions at low energy are the ones to the 2+

1 and 2+
2 states rather

than to the ground state. Another noticeable feature is that the
transition to the octupole vibrational state 3−

1 is present al-
though the absolute magnitude is small. It is noted that there is
no negative parity one-particle–one-hole (1p1h) configuration
with energy smaller the neutron separation energy 2.59 MeV.
The collective 3−

1 is exceptional as this state emerges at low
energy due to the RPA correlation. The third observation is
that the cross sections exhibit many resonancelike behaviors
above 2 MeV whereas they are smooth below 2 MeV. In the
following we shall discuss these features in more detail.

1. Transitions to the ground state

Let us discuss the (n, γ ) reaction where the γ transition
populates directly the ground state of 140Sn, whose cross
section is the green curve in Fig. 2. In order to analyze the
structures seen in Fig. 2, we decompose the cross section
with respect to the partial waves of the incident neutron. The
decomposed cross sections are shown in Fig. 3. In the present
case the relevant spin-parity of the total system n + 139Sn or

FIG. 2. The calculated (n, γ ) cross sections for 139Sn(7/2−) +
n → 140Sn +γ with E1 transitions populating different low-lying
states in 140Sn: the ground state (plotted with a green curve), the
low-lying 2+

1 and 2+
2 states (red and blue curves respectively), and the

octupole vibrational state 3−
1 (yellow curve). The horizontal axis is

kinetic energy εkin of the incident neutron. The smoothing parameter
is η = 10−5 MeV.

that of the excited continuum state of 140Sn is 1−. Thus the
partial waves of the incident neutron are limited to d5/2 and
g7/2,9/2 due to the angular momentum coupling to the ground
state 139Sn(7/2−).

The cross section at low energy �1 MeV is dominated by
the d5/2 wave since it has the lowest orbital angular momen-
tum among the available partial waves. The s-wave capture is
forbidden due to the angular coupling rule. The low energy be-
havior of the partial cross sections exhibits a scaling ∝εlp−1/2,
which points to direct transitions from nonresonant partial

FIG. 3. The calculated partial (n, γ ) cross sections for
139Sn(7/2−) + n → 140Sn(1−) → 140Sn(g.s.) + γ for E1
transitions, plotted separately for different partial waves of the
incident neutron: d5/2 (yellow curve), g7/2 (green), and g9/2 (dashed
green). The horizontal axis is the neutron kinetic energy εkin. The
smoothing parameter is η = 10−5 MeV.
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FIG. 4. The diagrams representing the (n, γ ) reaction of
139Sn(7/2−) + n → 140Sn(1−) → 140Sn(g.s.) + γ .

waves to the ground state of 140Sn. It is seen that a rather
broad peak around εkin = 4 MeV is that in the g9/2 wave. It
is the E1 transition from the single-particle g9/2 resonance to
the bound 2 f7/2 orbit which is vacant in 139Sn. These features
reflect the single-particle nature of the soft dipole excitation of
140Sn.

Several sharp peaks in the energy range εkin > 4.5 MeV,
however, cannot be of single-particle origin. Indeed
they originate from noncollective states whose main
components are one-particle–one-hole (1p1h) configurations
ν[(3p3/2)(3s1/2)−1], ν[(3p1/2)(3s1/2)−1], ν[(3p3/2)(2d3/2)−1],
ν[(3p1/2)(2d3/2)−1], ν[(3p3/2)(2d5/2)−1], and
ν[(3p1/2)(2d5/2)−1]. Although the particle and hole orbits of
these configurations are both bound orbits (see Table I), they
couple to the scattering states of n + 139Sn via the residual
interaction as represented in Fig. 4, and they form narrow
resonances. Note that noncollective states with proton 1p1h
configurations also appear as narrow resonances.

In Fig. 5 we magnify the resonance structures in the range
of εkin = 5–7 MeV. We see clearly interferences between the
resonances and the nonresonant capture. Note that dominant
partial wave contributing to the peak as well as the inter-

FIG. 5. The same as Fig. 3, but a magnification in the range of
εkin = 5.0–7.0 MeV.

FIG. 6. The calculated partial (n, γ ) cross sections for
139Sn(7/2−) + n → 140Sn(2−, 3−) → 140Sn(2+

1 ) + γ for E1
transitions, plotted separately for different partial waves of the
incident neutron; s1/2 (blue curve), d3/2 (yellow), g7/2 (green), etc.
Panel (a) is for the total spin Lπ = 3−, and (b) for Lπ = 2−. The
horizontal axis is the neutron kinetic energy εkin. The smoothing
parameter is η = 10−5 MeV.

ference pattern are quite different for different resonances,
reflecting the noncollective nature of these resonance states.

2. Transitions to the low-lying states 2+
1,2

The transitions decaying to the low-lying quadrupole states
2+

1,2 are most dominant at low energy as seen in Fig. 2 (red
and blue curves). Here we shall discuss the one for 2+

1 since
the cross sections for 2+

1 and 2+
2 behave similarly.

The spin-parity values of the total system relevant to the
present case are Lπ = 1−, 2−, and 3−. Figure 6 shows the par-
tial cross section decomposed with respect to the partial waves
lp jp of the incident neutron, plotted separately for Lπ = 3−
and 2− in panels (a) and (b), respectively.

It is seen from comparison of Figs. 2 and 6 that a large
cross section at low energy is attributed to the s-wave capture.
A noticeable feature is that the s-wave capture is present only
for Lπ = 3− but not for Lπ = 2−. Possible partial waves of
incident neutron allowed for the total spin-parity Lπ = 3− are
s, d , g, and i due to the the angular momentum coupling to
spin 7/2− of the target 139Sn. However, for Lπ = 2−, allowed
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FIG. 7. The diagrams representing (n, γ ) reaction of
139Sn(7/2−) + n → 140Sn(2−, 3−) → 140Sn(2+

1 ) + γ : (a) for the
total spin Lπ = 3− and (b) for Lπ = 2−.

partial waves are d , g, and i11/2 for Lπ = 2−, excluding the
s wave. This is the same reason why there is no s wave
capture in the transitions to the ground state. Consequently
the transitions to 2+

1,2 dominate at low energy.
Another significant feature is that many resonancelike

structures with narrow width are seen for Lπ = 3−, but not for
Lπ = 2−, though the impact on the absolute cross section is
small. Similarly to the transition to the ground state (cf. the
previous subsection), the narrow resonances originate from
the coupling between the nonresonant continuum states (s,
d , g, and i wave coupled to 139Sn with 7/2−) and noncollec-
tive 1p1h configurations of both neutrons and protons, e.g.,
ν[(1h9/2)(3s1/2)−1], ν[(2 f5/2)(3s1/2)−1], ν[(1h9/2)(2d3/2)−1],
ν[(3p3/2)(2d3/2)−1], and ν[(2 f5/2)(2d3/2)−1] [cf. Fig. 7(a)].
However, the spin-independent residual interaction, Eq. (24),
does not cause mixing among 1p1h states with unnatural spin-
parity 2−. In this case only the direct transition shown by the
diagram Fig. 7(b) is relevant and the noncollective 1p1h states
do not show up as resonances.

3. Transitions to the octupole vibrational state 3−
1

Let us discuss the (n, γ ) reaction whose final state is the
octupole vibrational state 3−

1 at E = 1.768 MeV. The relevant
spin-parity values of the total system are Lπ = 2+, 3+, and 4+,
and we show in Fig. 8 partial (n, γ ) cross sections for Lπ =
2+ and 3+ separately. The low energy cross sections εkin �
1 MeV are dominated by the p-wave capture in both cases
since l = 1 is the smallest orbital angular momentum of the
neutron partial waves allowed for both Lπ = 2+ and 3+. Note
that the capture in the p wave (and other negative-parity partial
waves) would not be present if the collective octupole state did
not exist below the neutron separation energy.

The cross section for Lπ = 2+ [Fig. 8(a)] shows a sig-
nificant enhancement around εkin ≈ 2–3 MeV with resonant
structures. These resonance behaviors originate from excited
2+ states of 140Sn at E = 4.8 and 5.6 MeV, which appear
as relatively large peaks in the E2 and isoscalar quadrupole
strength functions shown in Fig. 2(b) of Ref. [41]. These

FIG. 8. The calculated partial (n, γ ) cross sections for
139Sn(7/2−) + n → 140Sn(2+, 3+) → 140Sn(3−

1 ) + γ for E1
transitions, plotted separately for different partial waves of the
incident neutron: p1/2 (blue curve), f5/2 (yellow), h9/2 (green), etc.
Panel (a) is for the total quantum number Lπ = 2+, and (b) for
Lπ = 3+. The horizontal axis is the neutron kinetic energy εkin. The
smoothing parameter is η = 10−5 MeV.

quadrupole states have some collectivity, i.e., they consist of
coherent neutron particle-hole admixture in addition to main
proton particle-hole configurations π [(1g9/2)(1g9/2)−1] and
π [(2d5/2)(1g9/2)−1]. We remark that the collectivity in the
quadrupole states is reflected in Fig. 8(a): the neutron partial
waves p3/2 and f7/2,5/2 contribute coherently to the resonance
structures. Such a coherence effect is not seen in the narrow
resonance structures shown in Figs. 3, 5, and 6 where the
relevant resonant states have a character of noncollective 1p1h
excitations.

As for the case of Lπ = 3+ [Fig. 8(b)], the energy depen-
dence is smooth without narrow resonance structures since
there is no effect of the correlation, similarly to Fig. 6(b). The
process here is the direct capture represented by the diagram
Fig. 9(b).

C. Cross section at higher energy

Let us examine a global behavior of the calculated
cross sections in a wide energy region covering up to
εkin ≈ 20 MeV, although the result at high energies is not
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FIG. 9. The diagrams representing the (n, γ ) reaction
139Sn(7/2−) + n → 140Sn(2+, 3+) → 140Sn(3−

1 ) + γ .

relevant to the r process. We remark also that the model
space of the present theory does not include multiparticle-
multihole configurations, needed to describe the high level
density and the complex structure of compound states at
high excitation energy. In other words the present calculation
lacks a part of the (n, γ ) processes that is usually mod-
eled in terms of the statistical treatment of the compound
states.

Figure 10 shows the (n, γ ) cross section for transitions to
the low-lying 2+

1,2 and 3−
1 states as well as the ground state

in 140Sn. It is the same as Fig. 2 but for εkin < 20 MeV. The
smoothing constant η is set to η = 0.1 MeV, which washes
out narrow resonances.

We see several resonancelike peaks having sizable width
at εkin ≈ 4, 8, 10 MeV and a bunch of peaks around εkin ≈

FIG. 10. The calculated (n, γ ) cross sections for 139Sn(7/2−) +
n → 140Sn +γ with E1 transitions populating different low-lying
states in 140Sn: the ground state (plotted with a green curve), the
low-lying 2+

1 and 2+
2 states (red and blue curves respectively), and

the octupole vibrational state 3−
1 (yellow curve). The horizontal

axis is the neutron kinetic energy εkin. The smoothing parameter is
η = 0.1 MeV.

10–13 MeV. The large peak at εkin ≈ 4 MeV is the one which
we already discussed in Sec. III B 1. It is essentially a single-
particle resonance in the partial wave g9/2, from which a
single-particle E1 transition to the 2 f7/2 orbit occurs.

The peak at εkin ≈ 8 MeV seen in the transition to the 2+
1,2

states reflects the single-particle i11/2 resonance. Note that
this peak is seen only for the transition to the 2+

1,2 states, but
not to the ground state. The single-particle E1 transition is
possible from the resonant i orbit to the bound 1h9/2 orbit [see
Fig. 7(a)], which is occupied in the 2+

1,2 states as one of the
main particle-hole configurations (see Table. II).

The largest peak at εkin ≈ 10 MeV is present in the
transition to the octupole state 3−

1 . It originates from a single-
particle resonance in the partial wave j15/2. We remark that
the collectivity of the low-lying octupole state 3−

1 plays an
essential role. The single-particle j15/2 resonance has a siz-
able E1 matrix element for a transition to the neutron 1i13/2

orbit, which is, however, an unbound state (resonance) in the
present model. Therefore the capture is not possible via the
single-particle process. In contrast, the 3−

1 state with the col-
lective character of surface vibration can be a final state of the
E1 transition from the neutron single-particle j15/2 resonance
since it contains configuration (1i13/2)(2 f7/2)−1 as one of main
1p1h components (cf. Table III).

A distribution of several peaks around εkin ≈ 10–13 MeV
seen in the transition to the ground state (green curve) is
another feature that points to importance of the collectivity in
the (n, γ ) reaction. These peaks are not related to the single-
particle resonance, but they originate from the giant dipole
resonance (GDR) in 140Sn with spin-parity 1− distributed
around excitation energy E ≈ 12–16 MeV. The capture pro-
ceeds through the GDR, which enhances γ decay to the
ground state.

D. (n, γ ) reaction with E2 transition

We have calculated also the cross section for E2 transitions
using the same formalism. The obtained cross sections are
shown in Figs. 11 and 12 for the low energy part and the
high energy part, respectively. The cross section for the E2
transition is smaller than those for E1, as is seen by comparing
with the results for the E1 case (Figs. 2 and 10). An apparent
reason is the kinematical factor which suppresses the high
multipole transitions.

A noticeable difference from the E1 case is that the tran-
sitions to the ground state is dominant over other transitions
feeding the low-lying excited states 2+

1,2 and 3−
1 . Here we

note that the adopted E2 operator acts only on protons, ne-
glecting the recoil correction of an order of A−1. For this
reason both the continuum excited state and the low-lying
excited states need to include proton 1p1h configurations in
order for the E2 transition to occur. Note that the calculated
low-lying states in neutron-rich 140Sn have dominant neutron
character where the proton component is relatively small.
This is especially the case for the 2+ states (cf. Table II).
Consequently, the transitions to the low-lying 2+

1,2 and 3−
1

states are suppressed. For the transition to the ground state,
in contrast, the E2 transition occurs as far as the continuum
excited states contains both proton 1p1h configurations and
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FIG. 11. The calculated (n, γ ) cross sections for 139Sn(7/2−) +
n → 140Sn +γ with E2 transitions populating different low-lying
states in 140Sn; the ground state (plotted with a green curve), the
low-lying 2+

1 state (red curve), and the octupole vibrational state 3−
1

(yellow curve). The horizontal axis is the neutron kinetic energy εkin.
The cross section for 2+

2 is not seen as it is smaller than the plotted
range. The smoothing parameter is η = 10−5 MeV.

a scattering neutron orbit. This is the case for the resonance
peaks around εkin = 2.2 and 3.0 MeV (corresponding to 2+
states at excitation energy at E = 4.8 and 5.6 MeV), and the
broad peaks around εkin ≈ 10 MeV and εkin ≈ 15–22 MeV,
which correspond to the isoscalar giant quadrupole resonance
(ISGQR) and isovector giant quadrupole resonance (IVGQR),
respectively.

IV. CONCLUSION

The continuum random-phase approximation (cRPA) with
use of the Green’s function in the coordinate-space repre-
sentation enables us to describe various types of correlated

FIG. 12. The same as Fig. 11, but for higher neutron kinetic
energy and larger smoothing parameter η = 0.1 MeV.

particle-hole excitations and their coupling to unbound single-
particle orbits. Utilizing this feature of the cRPA, we have
formulated a quantum many-body theory to calculate the
cross section of the radiative neutron capture reaction on
neutron-rich nuclei with a scope of application to r-process
nucleosynthesis. In our previous publication [40] we gave a
formulation for the (n, γ ) reaction, in which the final state of
the γ transition is restricted to the ground state of an even-
even nucleus. In the present study, we introduced an extended
formulation so that we can describe decay channels in which
the γ transition populates low-lying excited states. With the
cRPA approach it is possible to describe various excitation
modes present in the scattering state of n + (A − 1), includ-
ing soft dipole excitation, the giant resonances, as well as
noncollective excitations and the single-particle resonances.
Furthermore, we are able to take into account the correla-
tion in the final states of the γ transition, e.g., the low-lying
quadrupole and octupole vibrational states.

In order to demonstrate the new features taken into account
in the cRPA description of the (n, γ ) reaction, we performed a
numerical study of the neutron capture of neutron-rich nucleus
139Sn followed by E1 or E2 γ transitions to the ground state or
low-lying excited states 2+

1 , 2+
2 , and 3−

1 in 140Sn. The RPA cor-
relation in the scattering states produces resonance structures
in the (n, γ ) cross section, which originate from particle-hole
excitations with both collective and noncollective characters.
There appear resonances with rather wide widths, arising from
single-particle resonances and collective excitations such as
the giant resonances. In addition narrow resonances emerge
from noncollective excitation modes, which are particle-hole
excitations from bound to bound orbits of neutrons as well
as those of protons. The correlation in the final states, i.e.,
the low-lying quadrupole and octupole states of 140Sn, has
also significant impact on the (n, γ ) cross section. A par-
ticular example is the transitions to the 3−

1 state, which is
not present in the single-particle model as this collective
state appears below the neutron separation energy only by
including the RPA correlation. Furthermore additional neu-
tron partial waves contribute to the capture, compared with
those in the single-particle model, because of the strong con-
figuration mixing of many one-particle–one-hole states in the
3−

1 state.
Finally we remark a scope for future developments of the

present study. The pair correlation neglected in the present
formulation can be taken into account by a straightforward
extension from the cRPA to the continuum quasiparticle
random-phase approximation (cQRPA). This will be done by
combining the formulation in Ref. [40] and that in the present
study. This extension will make it possible to describe the
(n, γ ) reaction systematically for open-shell spherical nuclei.
Extension of the model space to that beyond the RPA, includ-
ing many-particle–many-hole states, is another direction of
future development, which might be required for description
of the neutron capture in nuclei close to the stability line, e.g.,
in application to the s process and capture reactions at high
neutron energy. Description of the case where the final state
nucleus is an odd-A or an odd-odd nucleus also needs to be
studied in future.
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APPENDIX A: T MATRIX FOR (γ, n) REACTION

We shall discuss a relation between the T matrix T RPA
(γ ,n) =

〈ph|V̂scf (F̂ ; ω)|0〉 given in the present cRPA theory and the T
matrix of the (γ , n) reaction in the general theory of nuclear
reaction.

Following the general reaction theory [49], the T matrix
for the (γ , n) reaction in the prior form is given by

T(γ ,n) = 〈� (−)
n+(A−1)(E )|M̂|�i,A〉, (A1)

|� (−)
n+(A−1)(E )〉 = |φn�A−1〉 + Ĝ(−)(E )V̂ |φn�A−1〉 (A2)

for the γ -ray absorption caused by the multipole field M̂
with a kinematical factor and the angular momentum omitted.
Here |�i,A〉 is the target nucleus A at state i and |φn�A−1〉
is the final state in the n + (A − 1) channel consisting of an
escaping neutron φn and the daughter nucleus (A − 1) (the
state �A−1). |� (−)

n+(A−1)(E )〉 is an energy eigenstate with an
incoming boundary condition, which is given as a solution of
the Lippman-Schwinger equation. Here V̂ is the interaction
between the neutron and the subsystem (A − 1), and Ĝ(±)(E )
is a many-body Green’s function Ĝ(±)(E ) = 1

E−Ĥ±iη
for the

total Hamiltonian Ĥ = Ĥ0 + V̂ with Ĥ0 describing the nonin-
teracting n + (A − 1) system. Note that the T matrix can be
written also as

T(γ ,n) = 〈φn�A−1|M̂|�i,A〉 + 〈φn�A−1|V̂ Ĝ(+)(E )M̂|�i,A〉,
(A3)

which is the post form representation of the T matrix. Besides
the photonuclear interaction M̂, the interaction V̂ also con-
tributes to the T matrix in the post form as represented by the
second term in the r.h.s. of Eq. (A3).

The RPA T matrix [cf. Eqs. (14) and (16)] is written as

T RPA
(γ ,n) = 〈ph|F̂ |0〉 + 〈ph|V̂ind(F̂ ; ω)|0〉 (A4)

in terms of the induced field

V̂ind(F̂ ; ω) =
∫

dx
δÛ (x)

δρ
δρ(x, ω),

δÛ (x)

δρ
= δU (x)

δρ
ρ̂(x).

(A5)

The first and second terms in Eq. (A4) correspond to the
respective terms in Eq. (A3). To see this, we first note corre-
spondence in the initial and final states:

〈ph| ↔ 〈φn�A−1|, Ô†
i |0〉 ↔ |�i,A〉 (A6)

assuming the excited state |�i,A〉 of the nucleus A is described
by the RPA creation operator Ô†

i acting on the ground state
|0〉. The particle-hole state |ph〉 = a†

pah|0〉 corresponds to the
scattering final state |φn�A−1〉 if we assign the daughter nu-
cleus �A−1 as a one-hole state ah|0〉 whereas the particle a†

p
corresponds to the neutron scattering wave φn. We see then

correspondence

〈ph|F̂ |0〉 = 〈ph|M̂|i〉 ↔ 〈φn�A−1|M̂|�i,A〉 (A7)

between the first terms in the r.h.s. of Eqs. (A4) and (A3). See
also Fig. 1(a).

Concerning the second term of the RPA T matrix, the
induced field

V̂ind(ω) =
∫

dx
δU (x)

δρ
ρ̂(x)δρ(x, ω) (A8)

is a mean-field part of the RPA residual interaction V̂RPA =
1
2

∫
dx δU (x)

δρ
ρ̂(x)ρ̂(x). It is associated with the perturbation

represented by the density response δρ(x, ω), which is
brought by the action F̂ = [M̂, Ô†

i ] of the multipole field M̂
on the initial state Ô†

i |0〉. We thus see a correspondence

V̂ind(F̂ ; ω)|0〉 ↔ V̂ Ĝ(+)(E )M̂|�i,A〉 (A9)

under an approximation that the interaction V̂ is replaced by
the RPA residual interaction V̂RPA and the model space is
limited to the one-particle–one-hole subspace. Thus we find
that the second terms in the r.h.s. of Eqs. (A4) and (A3)
corresponds to each other:

〈ph|V̂ind(F̂ ; ω)|0〉 ↔ 〈φn�A−1|V̂ Ĝ(+)(E )M̂|�i,A〉. (A10)

It is noted also that the general form of the T matrix and
the RPA T matrix have a similar structure: the interaction V̂
or V̂RPA is taken into account up to infinite order as

T(γ ,n) = 〈φn�A−1|(M̂ + V̂ Ĝ(+)
0 (E )M̂

+ V̂ Ĝ(+)
0 (E )V̂ Ĝ(+)

0 (E )M̂ + · · · )|�i,A〉, (A11)

T RPA
(γ ,n) = 〈ph|

(
F̂+δÛ

δρ
R0(ω)F+δÛ

δρ
R0(ω)

δU

δρ
R0(ω)F+ · · ·

)

× |0〉 (A12)

where the density response δρ(x, ω) obeying the linear re-
sponse equation (9) is symbolically represented as Eq. (17).
Here Ĝ(+)

0 (E ) = 1
E−Ĥ0+iη

is the unperturbed Green’s function
whereas R0(ω) is the unperturbed response function Eq. (11).
A diagrammatic representation is shown in Fig. 1.

APPENDIX B: THE (γ, n) CROSS SECTION UNDER
SPHERICAL SYMMETRY

The self-consistent field V̂ scf
LM (ω) = F̂LM + V̂ ind

LM (ω) is a
rank L nonlocal one-body operator. The radial coordinate
representation of this matrix element is expressed as

vscf
L,l ′ j′,l j (rx, ry, ω) = FL,l ′ j′,l j (rx, ry) + 〈l ′ j′||YL||l j〉

× δU

δρ
(rx )

1

r2
x

δρL(rx, ω)δ(rx − ry).

(B1)

The radial matrix element FL,l ′ j′,l j (rx, ry) of the operator F̂LM

is given in Eq. (34) of Ref. [41].
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Inserting Eq. (B1) into Eq. (22), we obtain

σλ
iLi+γ→[εlp jph]L

(Eγ ) = − f (Eγ )

π (2Li + 1)
Im

{
|〈lp jp||YL||lh jh〉|2

∫∫
drxdrx′φ∗

nhlh jh (rx )
δU

δρ
(rx )

1

r2
x

δρ∗
L (rx, ωγ + ωi )

× G0c,lp jp (rx, rx′ , εh + h̄ωγ + h̄ωi + iη)
δU

δρ
(rx′ )

1

r2
x′

δρL(rx′, ωγ + ωi )φnhlh jh (rx′ )

+ 〈lp jp||YL||lh jh〉∗
∫∫∫

drxdrx′dry′φ∗
nhlh jh (rx )

δU

δρ
(rx )

1

r2
x

δρ∗
L (rx, ωγ + ωi )

× G0c,lp jp (rx, rx′ , εh + h̄ωγ + h̄ωi + iη)FL,lp jp,lh jh (rx′, ry′ )φnhlh jh (ry′ )

+ 〈lp jp||YL||lh jh〉
∫∫∫

drxdrydrx′φ∗
nhlh jh (ry)F ∗

L,lp jp,lh jh (rx, ry)

× G0c,lp jp (rx, rx′ , εh + h̄ωγ + h̄ωi + iη)
δU

δρ
(rx′ )

1

r2
x′

δρL(rx′, ωγ + ωi )φnhlh jh (rx′ )

+
∫∫∫∫

drxdrydrx′dry′φ∗
nhlh jh (ry)F ∗

L,lp jp,lh jh (rx, ry)

× G0c,lp jp (rx, rx′ , εh + h̄ωγ + h̄ωi + iη)FL,lp jp,lh jh (rx′, ry′ )φnhlh jh (ry′ )

}
. (B2)

The function G0c,lp jp (rx, rx′ , ε) is the single-particle Green’s function G0c in the partial wave lp jp. It is calculated exactly using
Eq. (B2) of Ref. [41], together with the subtraction of the bound orbits; see Eq. (20). The correlation in the low-lying state
|iLiMi〉 is reflected in FL,l ′ j′,l j while the correlation in the continuum RPA states |kLM(E )〉 is in the density fluctuation δρL.
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