
PHYSICAL REVIEW C 107, 064605 (2023)

Cluster model of 12C in the density functional theory framework
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We employ the constrained density functional theory to investigate cluster phenomena for the 12C nucleus. The
proton and neutron densities are generated from the placement of three 4He nuclei (α particles) geometrically.
These densities are then used in a density constrained Hartree-Fock calculation that produces an antisymmetrized
state with the same densities through energy minimization. In the calculations no a priori analytic form for the
single-particle states is assumed and the full energy density functional is utilized. The geometrical scan of the
energy landscape provides the ground state of 12C as an equilateral triangular configuration of three αs with
molecular bond like structures. The use of the nucleon localization function provides further insight to these
configurations. One can conclude that these configurations are a hybrid between a pure mean-field and a pure α

particle condensate. This development could facilitate density functional theory based fusion calculations with a
more realistic 12C ground state.
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I. INTRODUCTION

In stellar evolution carbon plays a pivotal role through
the carbon burning process. The ignition of carbon burning
for stars in the mass range M > 8–10 solar masses lead to
white Ne/O dwarfs, while massive stars with masses M > 25
solar masses can continue burning Ne, O, and Si and end up
as supernovae. Similarly, Type Ia supernovae are believed to
result from an explosion of a white dwarf accreting mass from
a binary companion or a merger, inducing high enough tem-
peratures to ignite carbon in the core leading to a supernovae
explosion. Superbursts are set off by the ignition of carbon in
the accumulated ashes of previous x-ray bursts [1–3]. Overall,
a change in the 12C +12C reaction rates has a profound impact
on all these mechanisms as well as nucleosynthesis [4–11].
In the stellar environment carbon is produced in a two step
process; in the first step two 4He nuclei come together to form
an unstable 8Be, which decays back to two 4He nuclei with
a very short lifetime (10−16s). However, during the helium
burning stage, the densities are high enough to maintain a
small abundance of 8Be, which renders it possible to combine
with another 4He to form an excited carbon nucleus through
the well known Hoyle state of 12C. With a much lower prob-
ability a triple 4He combination may also lead to the same
outcome.

In addition to its astrophysical importance, the microscopic
description of the carbon nucleus, which is an essential ingre-
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dient to the reaction calculations, has proven to be a challenge.
This is predicated by the expectation that the structure of
carbon should exhibit a pronounced cluster structure. Clus-
tering effects are widely believed to play prominent role in
the structure of N = Z nuclei, resulting in a molecular type
phenomenon. To what degree such nuclei can be viewed as
being comprised of a pure α particle condensate is still an
open question [12].

However, employing the standard nonrelativistic density
functional theory (DFT) results in a ground state of 12C
without any sign of clusterization [13]. This is also true for
16O, while the ground states of 8Be and 20Ne do show some
cluster features [13]. Relativistic mean-field theories seem to
favor more clusterization due to deeper potentials [14]. Alter-
nate approaches of using configuration mixing with generator
coordinate method (GCM) calculations using the Skyrme en-
ergy density functional have also been done in Refs. [15,16].
Furthermore, these calculations using modern energy density
functionals commonly result in a spherical ground state for the
12C nucleus, which is experimentally known to have an oblate
deformation [17–19]. On the other hand the excited states of
these nuclei do seem to exhibit some cluster structure, e.g.,
the linear-chain configuration of 12C, which originally was
thought to be the Hoyle state [20], and excited states obtained
by various constraints [14,21–30]. Such formations are also
observed via the time-dependent Hartree-Fock studies of the
triple-α reaction [31,32] and studied in recent experiments
[33,34]. In these time-dependent calculations a bent-arm in-
termediate configuration is observed during the decay of the
metastable linear chain state of 12C.

The fact that DFT calculations account for only limited
clustering effects prompted alternate approaches to study 12C
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structure that rely more heavily on cluster wave functions.
These calculations suggest that a substantial contribution of
alpha cluster correlations that are not accounted for in the
mean-field description should nevertheless be present in 12C
states. These include various ab initio calculations [35–37]
as well as approaches that are collectively referred to as
molecular dynamics that significantly extend the original
Bloch-Brink α cluster model [38]. In Brink’s approach each
quartet of nucleons where represented using harmonic oscil-
lator wave functions with zero angular momentum displaced
from each other by a relative coordinate. Antisymmetrization
followed by normalization comprised the many-body wave
function in terms of the locations of the quartets. These quar-
tets, interacting via an effective nucleon-nucleon interaction,
are optimized with respect to their size and position to map
out the energy landscape showing the location of the minima.
This approach was extended via the resonating group method
as well as generator coordinate method to better incorporate
the internal structure of the clusters. The antisymmetrized
molecular dynamics (AMD) [39–41] approach employs a
Slater determinental many-body wave function comprised
of single-particle states as Gaussian wave packets using an
advanced set of geometrical variables. Fermionic molecular
dynamics (FMD) [42] further extends AMD by not putting
any restriction on the width of these Gaussians. These calcu-
lations indicate a large admixture of α-cluster triangular states
for the ground and some of the excited states configurations
of 12C. The use of Gaussian basis and suitable interactions
allow for very powerful extensions for the above methods,
such as the treatment of the center-of-mass energy, angular
momentum projection, and the use of the generator coordinate
method (GCM). However, many of these calculations assume
a degeneracy between neutron and proton wave functions and
do not include the full effective interaction and the spin-
orbit force. A collection of recent reviews can be found in
Refs. [12,43–47].

In this paper we introduce another approach for study-
ing cluster structures within the DFT framework. This is
accomplished through the use of the density constrained
Hartree-Fock approach. Here, we start with α particles as
solutions to the unconstrained Hartree-Fock (HF) equations.
These α particles are then geometrically arranged on the
numerical grid defining the total density of the system. For
each arrangement, a mean-field solution is obtained through
minimization of the energy by constraining the density of
the entire system. Density constraint iterations allow for the
rearrangement of the single-particle states through their or-
thogonalization and energy minimization. This takes care
of antisymmetrization as well as the overall energy depen-
dent normalization of the many-body wave function. No
assumption about the mathematical form of the single-particle
states is made and the full effective interaction, including
the Coulomb force, can be used. We also employ the nu-
clear localization function (NLF), which allows for a more
precise characterization of spatial distributions. This method
blends the cluster based approach with the fully microscopic
approach. As we shall see, it has advantages and certain dis-
advantages.

II. MICROSCOPIC METHODS

In this section we briefly outline the formalisms and meth-
ods used in our calculations. Further details can be found in
the cited references.

A. Density constraint

Given a reference density, the density constraint procedure
[48,49] allows the single-particle states, comprising the com-
bined nuclear density, to reorganize to attain their minimum
energy configuration and be properly antisymmetrized as the
many-body state is a Slater determinant of all the occupied
single-particle wave functions. Here, the reference density is
given by the combined density of three α particles obtained
from independent Hartree-Fock calculations and placed in
close proximity of each other. The HF minimization of the
combined system is thus performed subject to the constraint
that the local proton (p) and neutron (n) densities do not
change:

δ

〈
H −

∑
q=p,n

∫
dr λq(r)

[
3∑

i=1

ρα
iq (r, Ri)

]〉
= 0 , (1)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton local densities,
ρα

iq
(r, Ri) is the proton/neutron densities of an α particle

located at position Ri, and H is the effective many-body
Hamiltonian. This procedure determines a unique Slater deter-
minant |�(R1, R2, R3)〉 for the combined system. The density
constraint has been extensively used in the calculation of ion-
ion interaction barriers for fusion calculations [50–52].

B. Center of mass correction

A major drawback of any mean-field based microscopic
calculation is the uncontrolled presence of the energy associ-
ated with the center-of-mass (c.m.) motion [53]. This energy
is particularly large for light nuclei. Most Skyrme interactions
adopt a simple one-body correction for this energy, which
may be reasonable for heavy systems. This issue has been
discussed more extensively in the context of α clustering phe-
nomenon for the mean-field calculations in Ref. [23], where
a constant value of 7 MeV per α particle was subtracted.
However, the c.m. correction for a composite system may not
be the same as adding corrections for each α. Due to this we
cannot make any binding energy comparisons and adopted the
SLy4d interaction, which does not employ any center-of-mass
correction term.

C. The nucleon localization function (NLF)

The measure of localization has been originally devel-
oped in the context of a mean-field description for electronic
systems [54], and subsequently introduced to nuclear sys-
tems [13,55,56]. We first realize that a fermionic mean-field
state is fully characterized by the one-body density-matrix
ρq(rs, r′s′). The probability of finding two nucleons with
the same spin at spatial locations r and r′ (same-spin pair
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probability) for isospin q is proportional to

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2 , (2)

which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (3)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [13,55]. The
leading term in the expansion yields the localization measure

Dqsμ
= τqsμ

− 1

4

|∇ρqsμ
|2

ρqsμ

− |jqsμ
|2

ρqsμ

. (4)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or time-dependent Hartree-
Fock (TDHF). The densities and currents are given in their
most unrestricted form [57–59] for μ axis denoting the spin-
quantization axis by [55]

ρqsμ
(r) = 1

2ρq(r) + 1
2σμsqμ(r) , (5a)

τqsμ
(r) = 1

2τq(r) + 1
2σμTqμ(r) , (5b)

jqsμ
(r) = 1

2 jq(r) + 1
2σμJq(r) · eμ , (5c)

where σμ = 2sμ = ±1 and eμ is the unit vector in the di-
rection of the μ axis. Note that subscripts sμ denote spin
along the quantization axis and should not be confused by the
spin-density sqμ. The dot product in Eq. 5(c) is explicitly given
in the case of, e.g., μ = z,

Jq(r) · ez = 1

2i
[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [55,57]. We note that the localization measure
includes the spin-density sqμ(r), the time-odd part of the
kinetic density Tqμ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense all of the terms
in the Skyrme energy density functional [57] contribute to the
measure. Finally, we note that the time-odd terms contained
in the above definitions (sqμ, Tqμ, and jq) are zero in static
calculations of even-even nuclei but the spin-tensor Jq is not.
Therefore, jqsμ

is not zero in general.
It is interesting to visualize the NLF as it is also defined

from the localization measure in Eq. (4). We first normalize
the localization measure using [55]

Dqsμ
(r) = Dqsμ

(r)

τTF
qsμ

(r)
, (6)

where the normalization τTF
qsμ

(r) = 3
5 (6π2)2/3ρ5/3

qsμ
(r) is the

Thomas-Fermi kinetic density. The NLF can then be repre-
sented either by 1/Dqsμ

or by

Cqsμ
(r) = [

1 + D2
qsμ

]−1
(7)

which is used here. The advantage of the latter form is that
it scales to be in the interval [0,1], but otherwise both forms
show similar localization details.

The information content of the localization function is
better understood by considering limiting cases. The extreme
case of ideal metallic bonding is realized for homogeneous
matter where τ = τTF

qσ . This yields C = 1
2 , a value which thus

signals a region with a nearly homogeneous Fermi gas as
it is typical for metal electrons, nuclear matter, or neutron
stars. The opposite regime are space regions where exactly
one single-particle wave function of type qσ contributes. This
is called localization in molecular physics. Such a situation
yields Dqσ (r) = 0, since it is not possible to find another
like-spin state in the vicinity, and consequently C = 1, the
value which signals localization.

In the nuclear case, it is the α particle which is perfectly
localized in this sense, i.e., which has C = 1 everywhere for
all states. Well bound nuclei show usually metallic bonding
and predominantly have C = 1

2 . Light nuclei are often ex-
pected to contain pronounced α-particle substructures. Such
a substructure means that in a certain region of space only
an α particle is found which in turn is signaled by C = 1 in
this region. In fact, an α substructure is a correlation of four
particles: p ↑, p ↓, n ↑, and n ↓. Thus it is signaled only if
we find simultaneously for all four corresponding localization
functions Cqσ ≈ 1. This localization procedure was recently
employed to visualize the cluster structure in N = Z light
nuclei [60].

D. Numerical details

Calculations were done in a three-dimensional Carte-
sian geometry with no symmetry assumptions using the
code of Ref. [61] and using the Skyrme SLy4d in-
teraction [62], which has been successful in describing
various types of nuclear reactions [50,63]. The three-
dimensional Poisson equation for the Coulomb potential
is solved by using fast-Fourier transform techniques and
the Slater approximation is used for the Coulomb exchange
term. The static HF equations and the density constraint
minimizations are implemented using the damped gradient it-
eration method [64]. The box size used for all the calculations
was chosen to be 24 × 24 × 24 fm3 with a mesh spacing of
1.0 fm in all directions. These values provide very accurate
results due to the employment of sophisticated discretization
techniques [65,66].

III. RESULTS

The placement of the three α particles were done as fol-
lows: Two α particles were placed on the x axis with a
spacing denoted by d2/2 on each side of the origin. The
third α particle was placed at distance z3 vertically from the
origin. There are numerous studies of α cluster models for
12C that show that this more symmetric arrangement leads to
the minimum energy configuration [46], as anticipated from
symmetry arguments. Moving the third α in the y direction
would simply correspond to tilting the three-α system in the
three-dimensional (3D) space. We have scanned d2 values
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FIG. 1. The 3-α energy surface obtained from the density con-
straint procedure as a function of the spacings d2 and z3. The point
marked by X indicates the location of the minimum.

ranging from 1.5–6.6 fm in steps of 0.1 fm. For each value
of d2, z3 was varied from 0.7–5.0 fm in steps of 0.2 fm.
When necessary we have used a smaller spacing to pinpoint
the desired location more precisely. For z3 < 0.7 the large
overlap among the three αs lead to convergence problems due
to unphysically large densities.

In Fig. 1 we plot the 3-α energy surface as a function of
the spacings d2 and z3 obtained by the density constrained
minimization procedure. The minimum energy is obtained
for d2 = 2.65 fm and z3 = 2.3 fm. This numerically obtained
minimum corresponds to an equilateral triangle placement of
α particles, and is identified as the ground state. These find-
ings are in agreement with other cluster model calculations
(see for example [46]). In Fig. 2(a) we plot the ground state
density as well as the localization function for the ground
state of 12C in the x-z plane. The density has a triangular
shape and looks relatively compact with an octupole defor-
mation. Experimentally deduced mass radius of 12C is 2.43 fm
[67,68]. Different cluster model calculations yield a range of
2.40–2.53 fm [40]. Our calculations result in a slightly larger
radius of 2.57 fm. The quadrupole deformation for 12C is
experimentally deduced to be oblate with β2 = −0.4 [17,69].
Cluster calculations of Ref. [29] found β2 = −0.41 and γ =
27.5◦. Our calculations find β2 = −0.42 and γ = 29.7◦.

Figure 2(b) shows the n ↑ localization function immedi-
ately after placing the three αs in their appropriate locations
but before the start of the density constraint iterations. As we
have mentioned above, for a single α particle the localization
has a fixed value of 1.0 throughout. Thus the mere combina-
tion of three αs does show a significant localization. However,
the dominant localization is still 1.0 suggesting a pure α

makeup. The density constraint minimization modifies this
localization function as shown in Fig. 2(c). The α substructure
of the ground state is still clearly pronounced. The regions

FIG. 2. (a) The total density for the ground state configuration of
the three alpha particles plotted in the x-z plane. (b) The n ↑ localiza-
tion function before the density constraint. (c) The n ↑ localization
function of the ground state configuration after the density constraint
minimization.

close to the value 1.0 indicate the prominent positions of the
three α particles. It is clear that the α particles are connected
by bond like arms. The localization function for protons and
spin-down components essentially show the same structure.

We have previously shown that enforcing the Pauli ex-
clusion principle in density-constraint HF calculations has
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FIG. 3. Angular momentum projection of the 12C ground state
configuration.

a strong impact on the spin-orbit energy [51], absorbing a
large part of the Pauli repulsion. This is in agreement with
the observations that the spin-orbit interaction is the primary
driver in partially dissolving the α clusters in the ground state
of 12C [16,70,71].

What is also interesting is the evolution of the single-
particle parities during the density constrained minimization
procedure. Initially, all the α particles are naturally in their
s states. While we do not have good parity for the deformed
state, at the end of the minimization four of the six neutron or
proton single-particle states acquire average negative parity
values (not unity), which is appropriate for the ground state
of 12C. This has been previously observed in the dynamical
collapse of the metastable linear-chain state in TDHF calcu-
lations [31]. The conclusion is that within our approach the
ground state of 12C is not a pure α condensate but more of a
molecular type state formed by the bonding of three αs.

We have performed angular momentum projection of this
ground state configuration following the method discussed in
Ref. [15], which is shown in Fig. 3. It is interesting to see that
the major component is J = 0, as one would expect for the
ground state. There is, however, a significant J = 2 compo-
nent implying that, in principle, ground state observables (e.g.,
binding energy) should be evaluated from the J = 0 projected
state. Note that there is little contribution from J > 2.

Using the same procedure we have also tried to identify
the configuration that was observed in Ref. [31], which could
be the candidate for the Hoyle state at DFT level. It is be-
lieved to arise from the bending of the linear-chain three
α configuration, which was seen in TDHF calculations of
the triple-α reaction [31] as an intermediate state during the
dynamical collapse of the linear-chain state to the spherical
ground state. There, the dynamical transition of some of the
initial single-particle parities from an s state to a p state was
also noted. The observed metastable bent-arm configuration
occurred during this parity transition. Here, we also looked
at the changing parities of the single-particle states as we
changed the values of d2 and z3. Again, these are not parity
projected states so this is simply a signature for changing
single-particle symmetries. Dependence on parity was also
studied in cluster model calculations [72]. The location of
this configuration is shown in Fig. 1 with a “+” sign. As

FIG. 4. (a) The total density for the bent-arm state configuration
of the three α particles plotted in the x-z plane. (b) The corresponding
localization function of the bent-arm state configuration.

we see PES is very soft in the “d2” direction and this point
is a very shallow local minimum. It is interesting that the
dynamical collapse of the linear chain state also showed that
the system spent some time at the bent-arm configuration but
there was no discernible minimum in the DC-TDHF potentials
(see Fig. 3 of Ref. [31]). This makes the identification of this
configuration more tenuous. The lowest energy configuration
corresponding to this intermediate state is depicted in Fig. 4
and corresponds to d2 = 5.0 fm and z3 = 2.2 fm. Similar to
the ground state case we find this bent-arm mode to be a
hybrid configuration of three αs with molecular like bonds
between the center alpha particle and the ones on each end, as
shown in Fig. 4(a). Unlike the ground state configuration this
configuration has only two main bonds and has the shape of
an obtuse isosceles triangle. The overlap between the Slater
determinant of the ground state configuration and the bent-
arm state is on the order of 10−3, which is small enough to
consider that these are different eigenstates of the system. The
localization function for the bent-arm configuration, shown
in Fig. 4(b), is very telling. We see that the two clusters that
are on each end are associated with extended C ≈ 1 regions,
indicating that they are closer to becoming pure α particles.
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IV. CONCLUSIONS

We have introduced a new framework for studying
clusterization in light nuclei, which is based on the con-
strained density functional theory. The new approach does not
make any assumptions about the mathematical form of the
single-particle wave functions and employs the full effective
interaction. Results show that the 12C ground state is an equi-
lateral triangle, which has a molecular type configuration. The
nuclear localization function shows bond like structures being
formed among the original alpha particles as a result of an-
tisymmetrization and energy minimization. One can conclude
that these configurations are a hybrid between pure mean-field
and a pure α particle condensate. From our investigation of
the cluster energy surface it is clear that a pure α condensate
(characterized by pure s-wave states) would only occur if the
three αs are relatively far from each other.

One disadvantage of not using Gaussian type single-
particle states or α particles with custom cluster potentials is
that we are unable to correct for the spurious center of mass
energy. Another is that procedures like angular momentum
projection, generator coordinate method, etc., become numer-
ically very challenging for the full effective interaction. This

makes detailed spectroscopic comparisons with experiment
very difficult. On the other hand one advantage is that this
ground state of 12C may be suitable for fusion barrier calcula-
tions using frozen Hartree-Fock or density constrained frozen
Hartree-Fock methods [51,52], which we plan to investigate in
the future. The preparation of the α clustering configuration
can also be used for the development and quantification of
new energy density functionals, particularly in sectors where
the static properties are underinformed by the typical data
used in calibration [73,74].
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tional theory studies of cluster states in nuclei, Phys. Rev. C 90,
054329 (2014).

[25] Y. Funaki, Hoyle band and α condensation in 12C, Phys. Rev. C
92, 021302(R) (2015).

[26] P. W. Zhao, N. Itagaki, and J. Meng, Rod-shaped Nuclei
at Extreme Spin and Isospin, Phys. Rev. Lett. 115, 022501
(2015).

[27] J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Localiza-
tion and clustering in atomic nuclei, J. Phys. G 44, 103001
(2017).
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