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Nonlocal optical potential in inelastic deuteron scattering off 24Mg
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Nonlocal nucleon-nucleus optical potential with rotational quadrupole deformation enabling the excitation of
the 24Mg(2+) state is developed; it fits well the proton-24Mg elastic and inelastic differential cross section in
the beam energy range from 30 to 45 MeV per nucleon. The inelastic deuteron-24Mg scattering leading to the
excited 24Mg(2+) state is studied in the same energy regime by solving the three-body Faddeev-type equations for
transition operators. Effects of the optical potential nonlocality are evaluated by comparison with local models.
Significant effects on the inelastic differential cross section are found at forward angles up to the first peak
and at larger angles beyond the second peak. Nonlocal optical potential provides a simultaneous reasonable
reproduction of the experimental data for the elastic and inelastic proton-24Mg and deuteron-24Mg scattering not
achieved using local potentials.
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I. INTRODUCTION

In a recent study of deuteron stripping and pickup reactions
[1] we united two important ingredients beyond the widely
employed standard nuclear dynamics, namely, the nonlocal
extension of the nucleon-nucleus potentials and the excitation
of the nuclear core. Furthermore, we used rigorous three-body
Faddeev-type equations for transition operators [2,3] and ob-
tained accurate solutions in the momentum-space partial-wave
framework. The achieved description of the experimental data
and the consistency between the two-body and three-body
description is considerably improved as compared to previous
studies.

Encouraged by the above-mentioned success, in the present
work we aim to investigate the interplay of the optical poten-
tial nonlocality and the collective nuclear degrees of freedom,
i.e., the nuclear core excitation (CeX), yet in another type
of reactions, the inelastic deuteron scattering. To the best
of our knowledge, the importance of the nonlocality in this
reaction type is unexplored so far since it necessitates the
CeX which in previous studies was always assumed to have a
local form. We take the 24Mg nucleus as a working example,
since (i) its lowest states display rather well the rotational band
structure describable by the quadrupole deformation, (ii) the
experimental differential cross section data are available not
only for elastic and inelastic scattering of deuterons [4], but
also for the elastic and inelastic nucleon-nucleus scattering
[5], which is necessary to constrain the potentials, and (iii)
several quite sophisticated theoretical calculations using local
potentials already exist. They are based on the extension of
the continuum discretized coupled channels (CDCC) method
[6,7] and the Faddeev-type theory [8]. As pointed out there,
the two-body distorted-wave Born approximation (DWBA),
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though able to fit the experimental data [4], requires val-
ues for the quadrupole deformation parameter β2 that are
inconsistent with the nucleon-nucleus data. The consistency
was partially improved by using three-body treatments such
as CDCC or Faddeev, though definite conclusions were pre-
cluded by the shortcomings of the used optical potentials.
The results in Refs. [7,8] were obtained with global optical
potential parametrizations such as Chapel Hill 89 (CH89) [9]
and Koning and Delaroche (KD) [10], that provide reasonable
but not perfect description of the nucleon-24Mg scattering
data. One of our goals in the present work is the development
of nonlocal optical potentials with an improved account of the
two-body data. Furthermore, while some parameters of local
optical potentials are energy dependent, the nonlocal form
exhibits a weaker energy dependence and therefore a good fit
of the experimental data over a broader energy range is possi-
ble with energy-independent parameters, thereby allowing to
reduce the ambiguities and increase the predictive power of
the nonlocal optical potential [1].

In Sec. II we recall the three-body Faddeev formalism,
while in Sec. III we develop nonlocal optical potentials and,
for comparison, local ones. In Sec. IV we present analysis and
discussion of the deuteron-24Mg scattering observables, with
conclusions summarized in Sec. V.

II. THREE-PARTICLE EQUATIONS
WITH NUCLEAR EXCITATION

We consider the three-particle system of a proton (p),
a neutron (n), and a nuclear core with the mass number
A, the latter being 24Mg in the considered case. The ver-
sion of three-particle Faddeev equations [2] for transition
operators, directly related to scattering amplitudes, was pro-
posed by Alt, Grassberger, and Sandhas (AGS) [3]. Extended
to include the excitation of one of the particles, the nucleus
A in the present case, the AGS equations for multicomponent
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transition operators U cb
γ β read

U cb
γ β = δ̄γ β δcb(Gc

0)−1 +
∑

α=p,n,A

∑
a=g,x

δ̄γ α T ca
α Ga

0U
ab
αβ. (1)

Here, the Latin superscripts label the internal states of the
nucleus, either the ground (g) state 24Mg(0+) or the ex-
cited (x) state 24Mg(2+) with 1.369 MeV excitation energy
(we do not include higher excited states of 24Mg), and the
Greek subscripts label the spectator particle in the odd-man-
out notation, e.g., the spectator p implies the pair A+n, etc.
Furthermore, δ̄γ β = 1 − δγβ , Ga

0 is the free resolvent in the
respective Hilbert sector a, and

T ca
α = V ca

α +
∑
b=g,x

V cb
α Gb

0T ba
α (2)

is the two-particle transition operator. For A+n and A+p pairs
it couples the two Hilbert sectors as the respective potential
V ca

α does, since the nucleus A can be excited/de-excited when
interacting with nucleons.

The amplitude for the deuteron inelastic scattering is de-
termined by the transition operator component U xg

AA, which is,
however, coupled to the other five components U cg

γ A via the
AGS equations (1). In Ref. [8] all those equations for transi-
tion operator components are given explicitly, together with
the description of asymptotic channel states, the Coulomb
treatment via the screening and renormalization method,
and the relation to the differential cross section. The AGS
equations are solved in the momentum-space partial-wave
representation, employing three different sets of basis states,
as appropriate for the treatment of three interacting pairs
of particles. Further technical details of calculations are de-
scribed in Ref. [8] and references therein.

III. NONLOCAL POTENTIAL

In our transition-operator integral-equation formalism the
nonlocal coordinate-space potentials V ca

α , transformed into the
momentum space representation, do not require any special
treatment as compared to local ones. As in Ref. [1] we start
with a single-particle nonlocal coordinate-space potential

〈r′|VN |r〉 = 1
2 [V (r′)H (|r′ − r|) + H (|r′ − r|)V (r)], (3)

where r and r′ are initial and final distances between particles,
V (r) is local potential function of the respective distance, and

H (x) = π−3/2ρ−3e−(x/ρ)2
(4)

is the nonlocality function with the nonlocality range ρ. As
argued in Ref. [1], this phenomenological form is closely
related to the Perey and Buck potential [11], and in the limit
ρ → 0 one obviously recovers the local potential V (r). We
parametrize V (r) in the same way as done for standard optical
potentials [9,10], i.e.,

V (r) = − VV fV (r) − iWV fW (r) − i4WS fS (r)[1 − fS (r)]

+ Vs
2

r

dfs(r)

dr
σ · L. (5)

The four terms with strength parameters VV , WV , WS , and Vs,
correspond to the real volume, imaginary volume, imaginary

surface, and real spin-orbit contributions, respectively. Their
radial dependence is modeled by the standard Woods-Saxon
functions

f j (r) = 1

1 + e(r−Rj )/a j
(6)

with parametric dependence on the radius Rj and
diffuseness a j .

The potential given by Eqs. (3)–(6) does not act on internal
degrees of freedom of the nucleus A and therefore does not
induce its excitation/de-excitation. This can be achieved by its
deformation [12–14]. The rotational model, quite consistent
with the low-energy spectrum of 24Mg, assumes a permanent
quadrupole deformation of 24Mg . This effectively results in
the Woods-Saxon radius Rj = Rj0[1 + β2Y20(ξ̂ )], where β2

is the quadrupole deformation parameter and ξ̂ describes the
internal nuclear degrees of freedom in the body-fixed frame
[8,13,14]. For calculations in the partial-wave representation
the deformed potential has to be expanded into multipoles. In
addition to the central contribution λ = 0 one has to include
also the λ = 2 multipole to induce the transitions between 0+
and 2+ states of 24Mg [7,8,13,14]. In the coordinate-space
partial-wave basis |rLSJ〉, where L, S, and J denote the two-
particle relative orbital momentum, the total spin S, and the
conserved total angular momentum J , respectively, the two
functions H (|r′ − r|) and V (r) are transformed separately,
and then combined into a nonlocal potential

〈r′L′S′J|V ca
N |rLSJ〉 = 1

2

[
V ca

L′S′,LS,J (r′)HL(r′, r)

+ HL′ (r′, r)V ca
L′S′,LS,J (r)

]
. (7)

Here,

HL(r′, r) = 2π

∫ 1

−1
dxPL(x) H (

√
r′2 + r2 − 2r′rx) (8)

is the partial-wave projection of H (|r′ − r|), with PL(x) being
the Legendre polynomial, and V ca

L′S′,LS,J (r) is the standard local
potential with the CeX [13,14], whose c �= a components arise
from the λ = 2 multipole and couple different internal states
of the nucleus A. A local potential of this type has been
used also in previous calculations of deuteron-24Mg scattering
[7,8].

Finally, the transformation of the potential (7) to the
momentum space, as required for our calculations, is straight-
forward, i.e.,

〈p′L′S′J|V ca
N |pLSJ〉 = (−1)

L′−L
2

2

π

∫ ∞

0
dr′ dr r′2r2 jL′ (p′r′)

× 〈r′L′S′J|V ca
N |rLSJ〉 jL(pr), (9)

where p is the relative nucleon-nucleus momentum, and jL(x)
is the spherical Bessel function of the order L. For the proton-
nucleus interaction the Coulomb contribution, including the
deformation [8,13], is added.

The values of the optical potential parameters have to be
obtained by fitting the experimental data. We are interested
in deuteron-24Mg scattering at 30 to 45 MeV/nucleon beam
energies [4], and the elastic and inelastic p + 24Mg data in this
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FIG. 1. Differential cross section for elastic p + 24Mg scattering at beam energies Ep = 30.4, 34.9, 39.9, and 44.9 MeV. Results obtained
with different parameter sets of the nonlocal optical potential are combined into bands, while curves represent predictions based on local
potentials, i.e., those developed in this work (dotted lines) and CH89 (dashed-dotted lines). The experimental data from Ref. [5] were measured
at University of Manitoba.

energy regime is available [5]. The data for the n + 24Mg reac-
tion are quite scarce and only available at lower energies. On
the other hand, 24Mg is an isospin symmetric Z = N nucleus,
consequently, after separation of the Coulomb contributions,
the nuclear parts of the proton and neutron optical potentials
should be similar, as it is the case for global parametrizations
[9,10,15]. We therefore take the optical potential parameters
for the neutron-nucleus to be those for the proton-nucleus.

One could consider the strengths, radii and diffuseness for
the four terms in Eq. (5) plus β2 and ρ as fit parameters. How-
ever, for a fair comparison with previous results we demand
that the number of free parameters in our potential does not
exceed the one in standard optical potentials, and introduce
additional constrains: (i) the nonlocality range is fixed to
ρ = 1 fm, a typical value for nonlocal potentials [1,15,16];
(ii) geometric parameters for both volume and surface imag-
inary terms are chosen to be the same, i.e., RW = RS and
aW = aS , as it is often the case for standard parametrizations
[9]; (iii) since polarization observables are not studied, and
cross sections are insensitive to the spin-orbit interaction, it is
not subjected to the fit and not deformed. Instead, we assume
Rs = RV 0, as = aV , and Vs = 7.5 MeV fm2, consistently with

the polarization data for 16O [1]. With these constrains our
fitting parameters are β2, VV , WW , WS , aV , aW , rV and rW ,
where the reduced radii r j are related to Woods-Saxon radii
in the standard way Rj0 = r jA1/3.

We fit simultaneously differential cross section for elastic
and inelastic p + 24Mg scattering at beam energies Ep = 30.4,
34.9, 39.9, and 44.9 MeV [5]. In order to achieve a better
fit at smaller angles, relevant for the deuteron scattering, we
exclude the data at center-of-mass angles 
c.m. beyond 70◦.
We estimate the uncertainties by developing a number of pa-
rameter sets that fit the data with a comparable quality; several
typical examples are collected in Table I. The quadrupole
deformation parameter β2 takes the values from 0.50 to 0.57,
i.e., with spread of nearly 15%, but the deformation length
δ2 = β2RV 0 varies within 5% only, ranging from 1.56 to
1.64 fm. The corresponding predictions for p + 24Mg elastic
and inelastic scattering to the 2+ state are displayed as bands
in Figs. 1 and 2, and agree reasonably well with the experi-
mental data [5].

In order to evaluate importance of the optical potential
nonlocality, we attempted to fit the same data with ρ = 0,
i.e., using an energy-independent local potential. The local
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FIG. 2. Differential cross section for inelastic p + 24Mg scattering leading to the 24Mg(2+) state. Results at beam energies Ep = 30.4, 34.9,
39.9, and 44.9 MeV are shown. Bands, curves, and experimental data are as in Fig. 1.

model has the same constrains as nonlocal one, except that
Vs = 6.0 MeV fm2, a typical value for local potentials. As ex-
pected, such a potential is less successful in a broader energy
range, the deviations from the data are most evident for the
lowest and highest considered energy. For each observable we
present in Figs. 1 and 2 two dotted curves, their difference
may provide some estimation of uncertainties. The deduced
values for β2 = 0.52 and 0.55 are consistent with nonlocal
cases, while for δ2 = 1.73 and 1.77 fm they are slightly larger.
In addition, as dashed-dotted curves we include the predic-
tions based on the global optical potential parametrization

TABLE I. Five example sets for nonlocal p + 24Mg optical po-
tential parameters with ρ = 1 fm. The strengths VV , WW , and WS are
in MeV, while r j , aj , and δ2 are in fm.

VV WW WS rV rW aV aW β2 δ2

106.64 7.76 6.84 1.01 1.10 0.70 0.67 0.54 1.57
100.75 7.25 9.80 1.07 1.09 0.66 0.56 0.50 1.56
101.28 8.01 9.73 1.05 1.03 0.67 0.61 0.52 1.60
105.34 7.46 7.37 1.02 1.04 0.68 0.75 0.53 1.58
108.79 7.39 8.66 0.99 1.03 0.69 0.70 0.57 1.64

CH89 [9], deformed with β2 = 0.5 and δ2 = 1.69 fm and
already used in previous studies [7,8]. This potential has
energy-dependent parameters. It reproduces reasonably well
the elastic differential cross section but fails for inelastic data
at 
c.m. > 40◦, having a different shape of the angular distri-
bution. Thus, the optical potentials developed in the present
work yield a significant improvement in the description of
inelastic p + 24Mg scattering.

IV. RESULTS FOR THREE-BODY REACTION

We proceed to the analysis of 24Mg(d, d ′) differential cross
sections at deuteron beam energies Ed = 60, 70, 80, and
90 MeV, as measured at Jülich Research Center [4]. Solution
of the three-body AGS equations with the quadrupole excita-
tion of the 24Mg nucleus requires three pair potentials as input.
The proton-nucleus and neutron-nucleus optical potentials are
taken from the previous section; as there, the proton-nucleus
interaction is appended with central and deformed Coulomb
terms. The neutron-proton interaction is modeled with a real-
istic CD Bonn potential [17].

In Fig. 3 we present the calculated differential cross sec-
tions for the 24Mg(d, d ′) reaction with the final 24Mg nucleus
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FIG. 3. Differential cross section for inelastic d + 24Mg scattering leading to the 24Mg(2+) state. Results at deuteron beam energies Ed =
60, 70, 80, and 90 MeV are shown. Bands and curves are as in Fig. 1. The experimental data from Ref. [4] were measured at Jülich Research
Center.

being in its first excited state 2+. The predictions obtained
with nonlocal potentials are displayed as bands, those with
local potentials as dotted curves, and those based on the CH89
are shown as dashed-dotted curves. The comparison of differ-
ent calculations and experimental data lead to the following
important observations:

(i) The CH89-based differential cross sections exhibit min-
ima near 
c.m. = 20 and 40 degrees that are considerably
deeper than those seen in data and other calculations. This
is likely a consequence of a similar discrepancy seen in the
24Mg(p, p′) inelastic scattering in Fig. 2 near 
c.m. = 50 and
90 degrees. Thus, the failure of the CH89 model around the
minima can be explained by the shortcomings present already
at the two-body level.

(ii) The first peak near 
c.m. = 15◦ is best reproduced by
the band of nonlocal optical potentials, with slight overpre-
diction at 70 and 80 MeV. The local models, especially CH89
at 60 and 70 MeV, show larger overprediction. This difference
has no evident explanation at the two-body level.

(iii) Both local and nonlocal models, fitted in this work
to proton-nucleus data, mutually agree quite well around the
second peak, that moves from 30 to 25 degrees with increasing

beam energy. The agreement with data is quite good at 60
and 90 MeV, but overprediction up to 20% is observed at 70
and 80 MeV. In contrast, the CH89 provides a better agree-
ment at 70 and 80 MeV, but underpredicts the data at 60 and
90 MeV. The energy evolution is smooth for the predictions
but not for the data points, raising some concerns regarding
their accuracy.

(iv) Predictions using nonlocal optical potentials describe
the experimental data well also at large scattering angles while
local models clearly overpredict the data. This again finds no
explanation by looking back into the nucleon-nucleus scatter-
ing, as there the local model predictions may be even below
those of nonlocal models and data, as happens in Fig. 2 at
Ep = 30.4 MeV.

(v) All three types of employed models predict different
energy evolution of the differential cross section at forward
angles 
c.m. < 10◦ below the first peak, with no evident expla-
nation at the two-body level. Unfortunately, no experimental
data is available in this angular regime.

We also would like to discuss several uncertainties related
to the above study and argue that the main conclusions remain
unaffected.
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FIG. 4. Differential cross section for elastic d + 24Mg scattering
at 60 and 90 MeV deuteron beam energy. Bands, curves, and experi-
mental data are as in Fig. 3.

(a) Changing the nonlocality parameter ρ by ±10% and
refitting other parameters does not change visibly the descrip-
tion of two- and three-body data shown in Figs. 1–3 for ρ = 1
fm. Changes in the spin-orbit force only become visible at
large angles, beyond the scale of Figs. 1–3.

(b) At Ep = 30 MeV we developed single-energy local
potential fitting proton-24Mg data as good as nonlocal models
do. Nevertheless, the three-body results follow closely the
trend of local models in Fig. 2

(c) Since global optical potentials such as CH89 have both
proton-nucleus and neutron-nucleus parametrizations, we ver-
ified the effect of using proton-nucleus parameters for the
neutron-nucleus pair. The effect turns out to be visible only at
very small angles, reaching 5% at 
c.m. = 0◦ but decreasing
to roughly 1% at the first peak and beyond it.

(d) We included only the first excited state 2+ of 24Mg,
while the CDCC-type calculations [7] investigated the effect
of the second excited state 4+ and found up to 7% reduction of
the 24Mg(d, d ′) differential cross section, most visible at the
first peak. However, one has to keep in mind that the inclusion
of the 4+ state changes also the 24Mg(p, p′) predictions. In
principle, one should refit the potential parameters, otherwise
also the 24Mg(p, p′) cross section is slightly decreased and the
observed effect in the 24Mg(d, d ′) reaction is partially caused
by changes in 24Mg(p, p′). As the refitting was not performed
in Ref. [7], the real effect of the 4+ state is expected to be less
significant.

The nonlocality effect in the deuteron-nucleus elastic scat-
tering has been investigated previously [18], as it does not
demand including the nuclear excitation. Therefore we show
in Fig. 4 the 24Mg(d, d ) differential cross section at lowest
and highest considered energy only. Despite different nucleus
and more elaborated optical potentials of the present work, the
nonlocality effect appears to be qualitatively similar to the one
observed in Ref. [18] for the elastic deuteron scattering off 16O
and 40Ca nuclei. As compared to local models, the nonlocal
ones predict lower differential cross section at intermediate

and large angles, and this change is clearly favored by the
experimental data, as can be seen in Fig. 4 as well.

V. CONCLUSIONS

We studied the effect of the optical potential nonlocality in
the inelastic deuteron-nucleus scattering. 24Mg nucleus with
the excited 2+ state was chosen as a working example. We
developed a nonlocal nucleon-nucleus optical potential with
rotational quadrupole deformation, coupling ground and ex-
cited states, and fitted to proton-24Mg elastic and inelastic
differential cross section. A good reproduction of data in the
30 to 45 MeV range was achieved with energy-independent
parameters; several parameter sets were determined to esti-
mate the uncertainties. The local models, especially the CH89
potential used in earlier calculations, are less successful in
reproducing experimental proton-24Mg data.

We described the elastic and inelastic deuteron-nucleus
scattering using rigorous three-body Faddeev-type equa-
tions for transition operators, and solved them in the
momentum-space partial-wave representation. Differential
cross sections were calculated at deuteron beam energies 60 to
90 MeV. Using nonlocal models we obtained a good descrip-
tion of the inelastic experimental data, the overprediction of
the second peak at 70 and 80 MeV may point to the inconsis-
tency of the data sets at different energies. The results based
on the global CH89 potential fail in the minima regions, which
can be explained by the shortcomings of the potential in the
nucleon-nucleus system. The most visible effects of the opti-
cal potential nonlocality occur at forward angles up to the first
peak and at larger angles beyond the second peak. While in
the former case the experimental data are not available, in the
latter case nonlocal models are clearly favored over the local
ones. These differences have no evident explanation in the
nucleon-nucleus system. We also argued that simplification
assumptions such as using the same parameters for proton and
neutron optical potentials and neglecting higher excited states
are not expected to change the conclusions.

Finally, the nonlocality effect in the elastic deuteron-
nucleus scattering is consistent with previous studies of other
nuclei. It reduces the differential cross section at larger angles
improving the agreement with the experimental data.

In summary, using nonlocal optical potentials we obtained
a simultaneous satisfactory reproduction of the experimental
data for elastic and inelastic proton-24Mg and deuteron-24Mg
scattering, not achieved in previous studies. A new measure-
ment at forward angles could provide even more stringent
test.
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