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Pairing reentrance in odd nuclei at finite temperature
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Pairing correlations typically decrease as temperature increases, but in some nuclei, pairing is enhanced within
a specific temperature range. This phenomenon, known as pairing reentrance, often occurs in nuclei with an odd
number of protons and/or neutrons and is possibly due to the configurations of single-particle levels, especially
those close to the Fermi energy. In this study, we examine various nuclear single-particle level configurations that
can produce this effect. Our findings show that, although configurations with an odd number of nucleons cause
the pairing reentrance, this effect may decrease or even disappear by decreasing the distance between levels
located close to the one occupied by the odd nucleon. This reduction leads to an increase in the Pauli blocking
effect, which is likely attributed to the participation of nucleons in the neighboring levels into the blocking
effect, particularly when the distance between these levels and that occupied by the odd nucleon is very small.
Our calculations for realistic calcium isotopes confirm the presence of this phenomenon.
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I. INTRODUCTION

Pairing correlation plays a fundamental role in the super-
conducting properties of many-body systems. These systems
range from large ones such as neutron stars to tiny ones,
such as atomic nuclei. The nature of pairing correlations
was first explained by the Bardeen-Cooper-Schrieffer theory
(BCS) [1], which is used to describe the superconductivity
in superconductors. Since then, this microscopic theory has
been successfully applied to describe the pairing effect in
many-body systems, including atomic nuclei [2,3].

The BCS theory suggests that nucleons, like electrons in
superconductors, tend to form Cooper pairs and move in
time-reversal orbits. These pairing correlations represent an
essential aspect of nuclear structure in addition to nucleon-
nucleon interactions. The pairing gap, which is built based
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on the pairing energy, pairing strength, and single-particle
occupation numbers, can be used to theoretically explore the
nuclear pairing property.

Previous works have indicated that nuclear pairing de-
creases with increasing temperature. In the BCS theory,
pairing correlations (characterized by the pairing gap) vanish
at a critical temperature, which denotes the phase transition
from the superfluid phase to the normal one [4–9]. However,
in other frameworks, such as the modified BCS (MBCS),
the modified Hartree-Fock-Bogoliubov (MHFB) [10], Lipkin-
Nogami method [11], or the finite-temperature exact pairing
method (FTEP) [12,13], which include the thermal fluctu-
ations due to the finiteness of the nuclear system, pairing
correlations decrease monotonically and still persist even at
high temperatures (T > 4 MeV). This nonvanishing pairing
gap was first pointed out and developed by Moretto in the
1970s [14].

As the pairing gap decreases with increasing tempera-
ture, a special phenomenon of enhanced pairing correlations,
which is called the pairing reentrance, in even-odd nuclei
was predicted at low temperature (T < 1 MeV) [10,15–19].
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In even nucleon systems, the pairing reentrance is related to
the energy of resonant states [9,15,16]. On the other hand,
the enhancement of the pairing gap in odd nucleon systems
arises due to the weakening of the Pauli blocking effect in
the level occupied by the odd nucleon, which is referred to as
the odd level hereafter [9,19]. The pairing reentrance appears
to be more prominent in nuclei near the drip line, where the
boundary of stability is unclear [15,16]. This phenomenon
also appears in hot rotating nuclei [17,20], where the effect
of thermal fluctuations and angular momentum acts together
[9].

In the present work, we focus on the thermal pairing
reentrance phenomenon in nonrotating hot nuclei with odd
nucleon numbers. This phenomenon was first predicted in
Ref. [18] in odd systems by using the number-parity pro-
jected gaps within the extended BCS in the N-odd system.
That result was confirmed in the latter work [19] via a pro-
posed treatment at finite temperature for the Pauli blocking
effect within both BCS and FTEP methods. The authors have
provided a plausible explanation for the phenomenon of ther-
mal pairing reentrance, which involves the weakening of the
blocking effect by the odd level k0. This results in a reduction
of the occupancy of the k0 level, which is set to be 1 in tra-
ditional approaches [21–23], thereby increasing the ability of
coupling between two nucleons at low temperature. However,
the relation between the single-particle levels around the odd
k0 level and the pairing reentrance effect was not clarified. The
present work investigates this relation in schematic models
for odd systems as well as in some realistic nuclei, such as
37,39,41,43,45Ca, by using the FTEP method. We aim to point
out the microscopic origin of the pairing reentrance and its
behavior depending on the distance between the levels closed
to the odd level.

II. FORMALISM

A. Exact pairing solution

The solution of the pairing problem, which can be obtained
by directly diagonalizing the pairing Hamiltonian, is referred
to as the exact pairing solution. This approach was first pro-
posed by Richardson et al. [24], and later simplified by Volya
et al. [12]. By using the special unitary group SU(2), the
authors of Ref. [12] introduced the quasispin angular momen-
tum operators that allow to rewrite the pairing Hamiltonian
[Eq. (1)] in a form that is simple and easy to be diagonal-
ized. To employ this method, we consider the original pairing
Hamiltonian in the nuclear system, which can be expressed as

Ĥ =
∑

j

ε ja
†
jma jm − G

∑
mm′

a†
jma†

jm̃a j′m̃′a j′m′ , (1)

where a†
jm and a jm are the creation and annihilation operators

of a nucleon on the jth orbital, whose projections, degen-
eracies, and single-particle energies are ±m, � j = j + 1/2,
and ε j , respectively. The symbol˜denotes the time-reversal
operator a jm̃ = (−1) j−maj−m.

In order to simplify the pairing Hamiltonian, one uti-
lizes the quasispin operators L̂ j , which are operators that
represent the nuclear pairing correlations and are derived by

using SU(2) operators [12]. These operators can be expressed
as

L̂−
j =

∑
m

ã jma jm, (2)

L̂+
j = (L̂−

j )† =
∑

m

a†
jmã†

jm, (3)

L̂z
j = 1

2

∑
m

(
a†

jma jm − 1

2

)
= 1

2
(N̂j − � j ), (4)

where N̂j is the particle number operator. These operators
satisfy the commutation relations

[L̂+
j , L̂−

j′ ] = 2δ j j′ L̂
z
j, [L̂z

j, L̂+
j′ ] = δ j j′ L̂

+
j , [L̂z

j, L̂−
j′ ] = −δ j j′ L̂

−
j .

(5)

By utilizing the quasispin operators L̂ j as defined in Eqs. (2)–
(4), the original pairing Hamiltonian given by Eq. (1) can be
expressed in a simplified form [12]

H =
∑

j

ε j� j + 2
∑

j

ε j L̂
z
j + G

∑
j j′

L̂+
j L̂−

j′ . (6)

With each L̂ j , the operator L̂2
j = L̂+

j L̂−
j − L̂z

j + (L̂z
j )

2 com-
mute with the Hamiltonian. It has been shown that the value
of quasispin Lj within the L̂2

j eigenvalue [Lj (Lj + 1)] is a
good quantum number. Thus, the Lj and its projection Lz

j
are expressed in terms of particle number Nj (the number
of particles on the jth level) and seniority s j (the number of
unpaired particles on the jth level) as [12]

Lj = 1
2 (� j − s j ), Łz

j = 1
2 (Nj − � j ), (7)

and

L̂ j
±∣∣Lj, Lz

j

〉 =
√(

Lj ∓ Lz
j

)(
Lj ± Lz

j + 1
)|Lj, Lj ± 1〉. (8)

The pairing states of the nuclear system are denoted as
|Lj, Lz

j〉, which can be described in terms of the basis states
|k〉 ≡ |s j, Nj〉 by using Eq. (7). The matrix element of the
pairing Hamiltonian (6) within the basis {s j, Nj} can be then
exactly calculated as the diagonal and off-diagonal matrix
elements corresponding to Eqs. (9) and (10) in the form

〈{s j}, {Nj}|H |{s j}, {Nj}〉

=
∑

j

(
ε jNj − G

4
(Nj − s j )(2� j − s j − Nj + 2)

)
, (9)

〈{s j}, . . . Nj + 2, . . . Nj′ − 2, . . . |H |{s j}, . . . Nj, . . . Nj′ , . . .〉

= −G

4
[(Nj′ − s j′ )(2� j′ − s j′ − Nj′ + 2)(2� j − s j − Nj )

× (Nj − s j + 2)]1/2. (10)

By diagonalizing the above pairing matrix (9)–(10), one ob-
tains the eigenvalues Es and eigenstates |s〉. These eigenvalues
correspond to the energy at the total seniority s (total number
of unpaired particles) with s = ∑

j s j , while the eigenstates
|s〉 = ∑

k Cs
k |k〉 are the products of the basic states |k〉 and

their coefficients (Cs
k )2. Here (Cs

k )2, with the normalization
condition

∑
k (Cs

k )2 = 1, are the weights of the eigenvector
components obtained from the diagonalization of the pairing
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matrix (9)–(10). The degeneracy of the states |s〉 is given as
[13]

ds =
∏

j

[
(2� j )!

s j!(2� − s j )!
− (2� j )!

(s j − 2)!(2� − s j + 2)!

]
. (11)

The exact single-particle occupation number of the jth level
corresponding to each |s〉 state is computed via the average of
the partial occupation numbers Nk

j overall the basic states |k〉
[13], namely

f s
j =

∑
k Nk

j

(
Cs

k

)2

∑
k

(
Cs

k

)2 =
∑

k

Nk
j

(
Cs

k

)2
. (12)

B. Exact pairing solution at finite temperature

At zero temperature, the exact pairing solution provides
a set of quantities, including the eigenvalues Es and single-
particle occupation numbers f s

j [12]. For finite temperatures,
the partition function in the canonical ensemble (CE) can be
constructed based on the eigenvalues Es at zero temperature as
[13]

Z (T ) =
∑

s

dse
−Es/T . (13)

From the partition function (13), one can easily derive various
thermodynamic quantities, including the free energy F , total
energy E , heat capacity C, and pairing gap �, namely

F = −T lnZ (T ), S = −∂F
∂T

, (14)

E = F + TS, C = ∂E
∂T

, (15)

� = √−GEpair, Epair = E − 2
∑

j

� j

[
ε j − G

2
f j

]
f j,

(16)

where f j are the temperature-dependent single-particle oc-
cupation numbers, which are calculated from the state-
dependent occupation numbers f s

j as

f j = 1

Z

∑
s

ds f s
j e−Es/T . (17)

Knowing the single-particle occupation numbers f j , one
can evaluate the effect of pairing correlations on the single-
particle spectra at finite temperatures. Specifically, the value
of f j for the odd level can be used to study the reentrance ef-
fect of pairing and/or the unblocking phenomenon that arises
due to the weakening of the Pauli blocking by the odd particle
at T �= 0.

III. NUMERICAL CALCULATIONS AND RESULTS

A. Ingredients of the numerical calculations

In order to study the pairing correlations in an odd-
nucleon system, we first perform the calculations within a
schematic equidistant multilevel pairing model. The model
consists of a single-particle spectrum with N = 9 particles
and � = 10 equidistant levels. The single-particle energy

FIG. 1. Temperature-dependent pairing gaps and occupation
numbers of odd [(a) and (b)] and even [(c) and (d)] nucleon con-
figurations obtained within the FTEP. The unit of ε4 and ε6 is MeV.

for each level k is set to εk = k − 1 MeV, where k =
1, . . . , 10.1 Each of the first four levels is occupied by two
particles, while the fifth level (k = 5) is occupied by the
odd one. For this configuration, we choose a constant pair-
ing parameter G such that the value of the zero-temperature
pairing gap �(T = 0) is always equal to 1 MeV. In order
to study the effect of the relative position of the single-
particle levels on the pairing correlation, we modify the
single-particle energy of two levels, which are located just
below and above the odd level (k = 5 with εk = 4 MeV),
i.e., the levels k = 4 and k = 6, as in the following cases
{ε4 = 3 MeV, ε6 = 5 MeV}, {ε4 = 2.1 MeV, ε6 = 5.9 MeV},
{ε4 = 3 MeV, ε6 = 4.1 MeV}, {ε4 = 3.9 MeV, ε6 = 5 MeV},
and {ε4 = 3.9 MeV, ε6 = 4.1 MeV}. The remaining levels are
left unchanged. We also perform some calculations with re-
alistic nuclei, namely the calcium 37,39,41,43,45Ca isotopes.
These isotopes have the proton magic number, therefore only
neutron pairing needs to be considered. Moreover, the lev-
els around the odd-neutron level in 43,45Ca are very close
to it, enabling a comparison of the results with those ob-
tained for 37,39,41Ca. The single-particle spectra for these
nuclei are calculated using the axially deformed Woods-Saxon
potential [25].

B. Pairing reentrance in odd nuclei at finite temperature

1. Appearance and disappearance of pairing reentrance in odd
nucleon configuration at finite temperature

In the first part of this work, we investigate an equidistant
level configuration with N = 9, � = 10, and εk = k − 1 MeV,
as mentioned earlier. We employ the FTEP method to obtain
the pairing gap and occupation numbers at T �= 0, as shown
in Figs. 1(a) and 1(b). For comparison, we also examine the
corresponding even nucleon configuration with N = 10, and

1We use the notation k to simulate the single-particle scheme in
deformed nuclei.
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the results are presented in Figs. 1(c) and 1(d). This allows
us to analyze the effect of the odd particle on the pairing
correlation in the system.

The results obtained without modified levels (solid line
in Fig. 1) show a clear difference between the pairing gaps
for odd and even configurations at finite temperatures. The
phenomenon of pairing reentrance (enhanced pairing gap) is
only observed in the odd configuration [Fig. 1(a)]. This is
caused by the weakening of the Pauli blocking in the odd level
(k = 5), whose occupation number, which is 0.5 at T = 0,
slightly decreases with increasing T , in the same way as that
previously discussed in Ref. [19].

To know in detail about the variation of pairing with the
level positions (distances), we adjust two levels with k = 4
and 6 that are adjacent to the odd level with k = 5, by mov-
ing them closer to the latter, namely {ε4 = 3.9 MeV, ε5 =
4 MeV, ε6 = 4.1 MeV}. The odd configuration in this case no
longer exhibits a pairing reentrance [dashed line in Fig. 1(a)]
as the enhancement of the pairing gap at low temperatures
is completely washed out. Meanwhile, no change is ob-
served in the behavior of the pairing gap for the configuration
with an even particle number, except its decrease starts at a
lower temperature. By examining the single-particle occupa-
tion numbers of the levels on the right panel of Fig. 1, we
see a strongly associated scattering in the levels k = 4, 5, and
6. These levels share their particles with each other due to a
very small single-particle energy gap (about 0.1 MeV). For
k = 4, 5, and six levels in the odd system, the average occu-
pation number is approximately 0.5 in the entire temperature
region from T = 0 MeV up to T = 4 MeV [Fig. 1(b)]. This
finding strongly suggests that these levels contribute to the
blocking effect so that the pairing reentrance is suppressed.
The corresponding levels in the even configuration exhibit
an average occupation number larger than 0.5 [Fig. 1(d)],
indicating a strong propensity for pairs to scatter to these
levels. As a result, pairs that scatter to these higher-energy
levels are more susceptible to breaking at lower temperatures,
causing a more rapid decrease in the pairing gap. Furthermore,
in the even configuration, there is no odd-level intermediary
to facilitate the transmission of the blocking effect to its
neighboring levels, as is the case in the odd configuration,
as we shall see in a more detailed discussions in the next
section.

2. Impact of odd-neighboring levels on pairing reentrance effect

The results presented above for the odd nucleon configu-
ration highlight the significant influence of level positions on
the pairing reentrance effect, particularly in relation to the odd
level. The proximity of neighboring levels to the odd level
can significantly diminish or even eliminate the reentrance
phenomenon in an odd system. To elucidate this issue, we
investigate changes in the level positions following different
scenarios. For instance, we alternately move two adjacent
levels (k = 4 and 6) closer to the odd level (k = 5). The results
obtained within the FTEP are shown in Fig. 2, where, one can
see that, when the k = 6 level is moved closer to the k = 5
one (ε6 is reduced from 5 to 4.1 MeV), the pairing reentrance
clearly decreases but is still not washed out [Fig. 2(a)]. By

FIG. 2. The pairing gaps and occupation numbers of the odd
nucleon configuration obtained within the FTEP for two cases
{ε4 = 3 MeV, ε5 = 4 MeV, ε6 = 4.1 MeV} [(a) and (b)] and {ε4 =
3.9 MeV, ε5 = 4 MeV, ε6 = 5 MeV} [(c) and (d)].

examining the occupation numbers in Fig. 2(b), one observes
a strong fluctuation, which is caused by the strong asymmetry
in the position of these levels. In this case, it appears that the
odd particle is shared between the k = 5 and k = 6 levels,
causing both of them to be blocked. This increase in the block-
ing leads to a decrease in the pairing reentrance. A similar
phenomenon can be observed in Figs. 2(c) and 2(d) when
the k = 4 level is brought closer to the odd one (k = 5). It
is reasonable to expect that bringing more levels closer to the
level with the odd particle will result in a stronger suppression
of the pairing reentrance, eventually up to the point of entirely
eliminating it.

Shown in Fig. 3 are results obtained with various shifts of
k = 4 and k = 6 levels. As they move closer to the odd level,
the enhancement of the pairing gap at low temperature (T < 1
MeV) gradually decreases and finally vanishes when ε4 = 3.9
MeV and ε6 = 4.1 MeV, that is when they are located at the
positions closest to the odd level. The position of the maxi-
mum of the pairing gaps is shifted towards the T = 0 region

FIG. 3. The correlation between the level positions and the
changes in the pairing gap obtained within the FTEP. The unit of
ε4 and ε6 is MeV.
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FIG. 4. Magnification of the pairing reentrance extracted from
Fig. 3. The unit of ε4 and ε6 is MeV.

when the level distance �ε = εk − ε5 (k = 4, 6) decreases.
When the energy levels get close together, it suggests that the
pairing reentrance occurs and concludes more rapidly. With
narrower level distances, the pair breaking process becomes
more sensitive to temperature. On the other hand, the presence
of a larger �ε makes it easier for nucleons to couple to the odd
level (creating the enhancement in the pairing gap) rather than
to scatter to higher orbits.

The pairing reentrance process can be magnified by using
the quantity �(T ) − �(T = 0) as shown in Fig. 4. This fig-
ure clearly displays the starting point, ending point, maximum
point, and weight of the pairing reentrance process. The case

with a smaller �ε experiences an earlier starting and ending
point compared to the case with a larger �ε.

To examine in more details the effect of changing the
odd-neighboring levels on the pairing reentrance as reported
in Fig. 3, we perform a series of changes on the k = 3, 4, 6,
and 7 levels. Thus, the resulting level distance �ε = εk − ε5,
falls within the range of 0–3 MeV. For example, for the k = 3
level, its energy is varied from ε3 = 2.1 MeV to ε3 = 3.9
MeV with a constant step of δε = 0.1 MeV. Consequently, the
corresponding energy distance from k = 3 level to odd k = 5
level (�ε = |ε3 − ε5|) also varies from 1.1–2.9 MeV. Similar
variations of the energy distance from k = 4, 6, and 7 levels to
the odd one can be seen in Table I. This Table I clearly shows
that the maximum temperature Tmax, at which the pairing gap
reaches its maximum value (�max), changes between 0.58
MeV and 0.67 MeV, when varying the energy of k = 3 and
k = 7 levels. The value of δ�max = �max − �(T = 0) in this
case oscillates around 0.074 MeV. This result implies that
changing the energy of k = 3 and k = 7 levels insignificantly
affects the pairing reentrance. Considering the two closest
levels to the odd one (k = 4 and 6 levels), one can see from
Table I that both Tmax and δmax significantly increases with the
energy distance �ε from 0.1–1.9 MeV, namely Tmax increases
from 0.43 MeV–0.78 MeV and δ�max raises from around 0.02
MeV–0.08 MeV.

In short, the above analysis of the pairing reentrance within
the framework of a schematic model indicates that the pairing
reentrance in an odd-nucleon system can be attributed to the
weakening of the Pauli blocking effect at finite temperature
caused by the presence of the odd particle. As the energy

TABLE I. The maximum temperature Tmax at which the pairing gap reaches its maximum value and relative pairing gap δ�max = �max −
�(T = 0) obtained within the FTEP by varying the energy distance �ε between the k = 3, 4, 6, and 7 levels and the odd k = 5 one. �ε, Tmax,
and δ�max have the same unit of MeV.

k = 4 k = 6 k = 3 k = 7

�ε Tmax δ�max Tmax δ�max �ε Tmax δ�max Tmax δ�max

0.1 0.43 0.0231 0.44 0.0286 1.1 0.67 0.0708 0.58 0.0760
0.2 0.46 0.0316 0.46 0.0356 1.2 0.67 0.0714 0.58 0.0765
0.3 0.48 0.0413 0.49 0.0463 1.3 0.67 0.0719 0.60 0.0764
0.4 0.50 0.0504 0.51 0.0527 1.4 0.67 0.0721 0.61 0.0762
0.5 0.54 0.0573 0.54 0.0590 1.5 0.67 0.0721 0.62 0.0762
0.6 0.56 0.0630 0.56 0.0653 1.6 0.67 0.0728 0.63 0.0758
0.7 0.59 0.0671 0.59 0.0676 1.7 0.66 0.0728 0.64 0.0755
0.8 0.61 0.0702 0.61 0.0743 1.8 0.66 0.0736 0.64 0.0752
0.9 0.63 0.0722 0.63 0.0728 1.9 0.66 0.0737 0.65 0.0747
1.0 0.65 0.0745 0.65 0.0758 2.0 0.66 0.0745 0.65 0.0741
1.1 0.67 0.0763 0.67 0.0791 2.1 0.65 0.0748 0.66 0.0737
1.2 0.69 0.0770 0.69 0.0784 2.2 0.64 0.0749 0.66 0.0736
1.3 0.71 0.0781 0.70 0.0780 2.3 0.64 0.0758 0.67 0.0729
1.4 0.72 0.0786 0.72 0.0822 2.4 0.63 0.0760 0.67 0.0724
1.5 0.74 0.0794 0.73 0.0823 2.5 0.62 0.0762 0.67 0.0722
1.6 0.75 0.0797 0.75 0.0828 2.6 0.61 0.0762 0.67 0.0716
1.7 0.76 0.0802 0.76 0.0794 2.7 0.60 0.0766 0.67 0.0715
1.8 0.77 0.0801 0.77 0.0804 2.8 0.59 0.0763 0.67 0.0711
1.9 0.78 0.0804 0.78 0.0817 2.9 0.58 0.0760 0.67 0.0708
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TABLE II. The neutron single-particle energies (in MeV) of 37–45Ca obtained within the axially deformed Woods-Saxon potential [25] with
the deformation parameter β2 collected from Ref. [27]. The bold values indicate the energies of the odd level.

37Ca 39Ca 41Ca 43Ca 45Ca
Level (β2 = −0.021) (β2 = 0.011) (β2 = −0.021) (β2 = 0.011) (β2 = −0.011)

k = 1 −20.898 −20.046 −19.287 −15.001 −13.646
k = 2 −20.722 −19.954 −15.436 −13.851 −13.511
k = 3 −20.638 −15.922 −14.147 −13.721 −8.805
k = 4 −16.474 −14.347 −13.872 −9.052 −8.719
k = 5 −14.707 −14.208 −9.490 −9.022 −8.663
k = 6 −14.418 −9.737 −9.321 −8.962 −8.635
k = 7 −10.292 −9.705 −9.211 −8.873 −5.183
k = 8 −10.115 −9.642 −9.157 −5.366 −5.081
k = 9 −10.000 −9.500 −5.621 −5.259 −2.941
k = 10 −9.944 −5.826 −5.422 −3.001 −1.545

levels neighboring to the odd level are shifted closer to the
latter, the level distance �ε decreases, resulting in a decrease
in the pairing reentrance effect. The explanation for this phe-
nomenon is that, when the neighboring levels get too close
to the odd one, they participate in the Pauli blocking effect
in a similar way to that for the odd level. As a result, pairing
reentrance is prevented due to the increased blocking effect.
In the next section, we shall further examine this effect in
realistic nuclei.

3. Pairing reentrance in Ca isotopes

We consider five odd Ca isotopes ranging from 37Ca to
45Ca. Since these isotopes have a magic number of protons,
only neutron pairing is considered. Some of them have the
single-particle spectra, which are obtained within the axially
deformed Woods-Saxon potential [25], with some energy lev-
els very close to the odd one (see Table II and Fig. 5). We
select the same � = 10 levels as in the analysis with the
schematic model. The pairing strength GN for neutrons is
adjusted to reproduce the empirical pairing gap �N (T = 0) ≈

FIG. 5. The neutron single-particle energies of 37–45Ca obtained
within the axially deformed Woods-Saxon potential [25]. The dash
line presents the odd level.

11.56.N−0.552, which is extracted from the odd-even mass
difference [26].

Figure 5 illustrates the density of the neutron single-
particle spectra for the calcium isotopes 37–45Ca. Upon
examining the figure, we can observe that in 43,45Ca, there
are very dense levels above and below the odd level, whereas
this distribution only occurs on one side in the remaining iso-
topes. As anticipated, the pairing reentrance effect is almost
imperceptible in the 43,45Ca isotopes, whereas it is evident in
the remaining ones (see Fig. 6).

The above investigation with realistic Ca isotopes suggests
that the occurrence of pairing reentrance is not universal in
odd nuclei. In nuclei such as 43,45Ca, where there are very
dense levels surrounding the odd level, this effect may not
be present. The key factor to the explanation is the increase
in Pauli blocking effect resulting from sharing the blocking
property of the odd level with the neighboring ones. In the
case of 43,45Ca, up to four levels participate in the blocking
effect (k = 4–7 for 43Ca and k = 3–6 for 45Ca, as seen in
Table II.

FIG. 6. The temperature-dependent pairing gaps obtained within
the FTEP for Ca isotopes.
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IV. CONCLUSION

The present paper proposes a method for testing the
pairing properties of odd nucleon configurations at finite
temperatures, utilizing the finite-temperature exact pairing
method. The configurations under consideration are the
schematic single-particle spectra with the levels adjacent to
the odd level being shifted in different scenarios. Our findings
indicate that the pairing reentrance effect, which occurs due to
the weakening of blocking by the odd particle at finite temper-
ature, can become depleted or even disappear, depending on
the position of single-particle levels surrounding the odd level.
When these levels are very dense, not only the odd level but

also the neighboring levels participate in the blocking effect.
The resulting increase in Pauli blocking effect outweighs
the weakening effect and ultimately prevents the occurrence
of pairing reentrance. This phenomenon is also observed in
realistic nuclei such as calcium isotopes 37–45Ca, where the
pairing reentrance effect is suppressed in 43,45Ca due to the
participation of up to four levels in the blocking effect.
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