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The study of open quantum systems (OQSs), i.e., systems interacting with an environment, impacts our
understanding of exotic nuclei in low-energy nuclear physics, hadrons, cold-atom systems, or even noisy
intermediate-scale quantum computers. Such systems often exhibit resonance states characterized by energy
positions and dispersions (or decay widths), the properties of which can be difficult to predict theoretically
due to their coupling to the continuum of scattering states. Dealing with this phenomenon poses challenges
both conceptually and numerically. For that reason, we investigate how the reduced basis method known as
eigenvector continuation (EC), which has emerged as a powerful tool to emulate bound and scattering states in
closed quantum systems, can be used to study resonance properties. In particular, we present a generalization of
EC that we call conjugate-augmented eigenvector continuation, which is based on the complex-scaling method
and designed to predict Gamow-Siegert states, and thus resonant properties of OQSs, using only bound-state
wave functions as input.
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I. INTRODUCTION

Resonances are a ubiquitous phenomenon in physics and
are found, for example, in materials, acoustic devices, or
even in planetary motion. Generally, they appear as ampli-
tude enhancements at the so-called natural frequencies of the
system considered. As early as 1884, Thomson used com-
plex frequencies to describe the “decay” of transient states
in specific electric systems [1]. In quantum mechanics, i.e.,
the appropriate physical theory at microscopic scales, natural
frequencies of a system are associated with “eigenstates.”
However, the inherently time-dependent nature of resonances
makes their formal description as proper eigenstates delicate.
Indeed, while in scattering theory resonances appear as poles
of the scattering (S) matrix and are manifest as peaks in the
cross section characterized by an energy position ER and a
dispersion (or decay width) �, it is only in the quasistationary
formalism [2] that resonances can actually be treated as eigen-
states; this was first realized by Gamow [3] and Siegert [4] in
the context of quantum decay. In this formalism, the momen-
tum k associated with an eigenstate can be complex, leading
to complex eigenenergies E = ER − i�/2.

Mathematically, quantum states can be divided into three
categories depending on their properties as singularities of the
resolvent operator (full Green’s function) [5,6]

G(z) = (z − H )−1, (1)

where H is the Hamiltonian describing the physical system
of interest. Poles of G(z) located on the negative real axis
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correspond to bound states, and those located in the 1st and
4th quadrants of the second Riemann sheet correspond to
so-called resonant states (see details in the next section).
The branch cut of G(z) running along the positive real axis
is associated with scattering states. In contradistinction to
bound states, wave functions describing resonant and scatter-
ing states are not square-integrable. Although for that reason
such states do not belong in a Hilbert space, it is possible
to construct a so-called rigged Hilbert space [7] in which
quantum mechanics for all types of states listed above can be
formulated rigorously. The study of quantum resonances thus
presents profound conceptual questions and is directly con-
nected to the fundamental problems of quantum decay [8,9]
and irreversibility [10–14], as well as to the collapse of the
wave functions, all of which lead naturally to the open quan-
tum system (OQS) framework [15–19] describing quantum
systems coupled to a classical or quantum environment.

Despite their broad relevance, resonances in quantum sys-
tems are still challenging to describe theoretically—and in
particular to treat computationally—in many common in-
stances. The few-body dynamics of resonances involving no
more than a handful of particles coupled to the continuum of
scattering states can be described exactly, with state-of-the-art
calculations, based on the Faddeev-Yakubovsky formalism
extended to the complex-energy plane using the uniform
complex-scaling method, with the record currently standing at
five particles [20–22]. However, difficulties remain in many-
body systems composed of ten or more particles that can
feature resonances involving a few or more particles coupled
to the continuum. For such systems, the options are often
limited to quasiexact many-body techniques generalized in
the quasistationary formalism, which, in principle, can deal
with broad resonances, but are often plagued by an intractable
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increase of the computational cost, due to the discretiza-
tion of the continuum, or fail to identify physical states in
the complex-energy plane; or they are limited to lattice and
quantum Monte Carlo methods that discretize systems in co-
ordinate space but tend to be limited to narrow resonances,
i.e., resonances with � � ER, behaving similarly to bound
states and exhibiting effective few-body dynamics.

In this work, as a first step towards addressing the need
for stable and scalable calculations of many-body resonances,
we explore the possibility of applying a reduced basis method
known as eigenvector continuation (EC) to two-body reso-
nances. In particular, we construct a technique to perform
robust bound-state-to-resonance extrapolations in two-body
systems. The versatile EC method was originally introduced
in Ref. [23] and quickly found many applications in low-
energy nuclear physics [24–29]. Its impressive convergence
properties were analyzed in Ref. [30]. In particular, EC has
been used to build emulators [31–33] in the context of two-
body scattering [34–38], but so far it has not been applied
directly to resonance states.

In this work, we close this gap. We start by introducing the
general formalism in Sec. II to show how S-matrix poles can
be extracted using the uniform complex-scaling technique. In
Sec. III we then present the implementation and generalization
of EC to perform resonance-to-resonance and bound-state-to-
resonance extrapolations. We demonstrate all developments
with concrete numerical examples. Finally, we summarize our
results in Sec. IV.

II. FORMALISM

Because in this work we are interested primarily in a new
conceptual development, we study a quantum system of two
particles with masses m = 2μ and interacting via a spherically
symmetric local potential V . We only require the potential
to be short ranged or, more specifically, that the interac-
tion between the two particles falls off quicker than O(r−3)
[39, p. 27] with the relative distance r as r → ∞.

A. Basic scattering theory

We start by collecting relevant results from basic scattering
theory. Throughout the discussion, we use natural units with
h̄ = c = 1. Any eigenstate of the quantum system considered
has to satisfy the Schrödinger equation

[H0 + V − E ] |ψ〉 = 0, (2)

where H0 is the free Hamiltonian, which in momentum space
is given by p2/(2μ) in terms of the momentum operator p.
By the assumption of spherical symmetry, the equation can be
decomposed into partial waves and each state |ψ〉 will have
definite angular momentum l . The energy E in Eq. (2) will be
negative real for a bound state (of which there can be at most
a finite set), positive real for a scattering state, and complex
with a positive real part and a negative imaginary part for a
decaying resonance. We come back to these different cases,
and in particular to the treatment of resonances as eigenstates,
in more detail below.

FIG. 1. The analytic structure of the S matrix indicating its poles
in the p plane corresponding to bound states, virtual states, reso-
nances, and antiresonances (capturing resonances). Note especially
how bound states lie on the positive imaginary axis while resonances
are located in the 4th quadrant.

Introducing the “wave number” k by setting E = k2/(2μ),
we obtain from Eq. (2) the radial Schrödinger equation[

d2

dr2
− l (l + 1)

r2
− 2μV (r) + k2

]
ψl,k (r) = 0, (3)

where ψl,k (r) is the reduced radial wave function that we
define here via

〈r|ψ〉 = 2il

√
μ

πk
Y m

l (r̂)
ψl,k (r)

r
, (4)

with the standard spherical harmonics Y m
l (r̂) and assuming

|ψ〉 has quantum numbers (l, m).
By our assumption of a short-range potential, ψl,k (r) takes

the following simple form for asymptotically large r:

ψl,k (r) −−−→
r→∞

i

2
[ĥ−

l (kr) − sl (k)ĥ+
l (kr)]. (5)

Here ĥ±
l (z) are the Riccati-Hankel (RH) functions and sl (k) is

the partial-wave S matrix, defined implicitly through Eq. (5).
For more details, we refer to Ref. [39], from which we have
adopted the conventions used here. Equation (5) implies that
wherever sl (k) has a pole, we have

ψl,k (r) −−−→
r→∞ N ĥ+

l (kr), (6)

where N is a normalization constant. An illustration of the
analytic structure of the S matrix in terms of k is shown in
Fig. 1.

For bound states, the S-matrix sl (k) has corresponding
poles on the positive imaginary axis, and it is customary
to define the binding momentum κ by writing k = iκ , with
κ > 0. At such poles, bound-state wave functions are uniquely
defined [40] by κ and we can write

ψl,k (r) −−−→
r→∞ N ĥ+

l (iκr), (7)

which for an S-wave bound state reduces to

ψ0,k (r) −−−→
r→∞ N exp(−κr). (8)
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For all l it is apparent from the behavior of the Riccati-Hankel
functions for positive imaginary arguments that bound-state
wave functions tend to zero exponentially for large r. If a
bound state exists close to the scattering threshold, k = 0,
it follows from the analyticity of the partial-wave S matrix
as a function of E ∼ k2 that the scattering cross section gets
enhanced at small k.

Resonances are another phenomenon that can cause
enhancement of the scattering cross section. While the phys-
ically intuitive interpretation of resonances describes them
as short-lived “metastable” states, formal scattering theory
associates resonances with complex S-matrix poles, leading
to an enhancement of the scattering cross section if they are
located near the positive real axis (in either momentum or
energy representation). These poles are known as “Gamow”
or “Gamow-Siegert” states. It is clear that they are not ordi-
nary eigenstates of the Hamiltonian H = H0 + V , which, as
a Hermitian operator, can only have real eigenvalues. There
is, however, a well-defined extension of scattering theory to
incorporate resonances as eigenstates in a generalized sense
by introducing the concept of so-called “rigged Hilbert spaces
(RHSs).” In fact, already scattering states are not normalizable
in the sense of possessing square-integrable wave functions,
and therefore they do not reside within the ordinary Hilbert
space. From this perspective, they should strictly be consid-
ered within the RHS framework. For practical applications,
however, the mathematical complexity associated with this
is rarely necessary and can be avoided by, for example, re-
stricting the discussion to the radial Schrödinger equation and
the properties of wave functions that solve this ordinary dif-
ferential equation.1 In the same spirit, we can characterize
decaying Gamow states as solutions of Eq. (3) that satisfy the
asymptotic boundary condition specified in Eq. (6), albeit with
a complex k satisfying Re(k) > 0 and Im(k) < 0, i.e., located
in the 4th quadrant of the complex-momentum plane.

B. S-matrix pole trajectories

If the potential supports a bound state, it is possible, as a
theoretical exercise, to gradually weaken its strength to move
the associated pole into the complex-momentum plane. The
trajectory of the pole depends on the angular momentum of
the state and the details of the potential. For example, the pole
associated with an S-wave bound state generated by a purely
attractive potential will simply move down the imaginary axis
in the complex-momentum plane and become a virtual state
after crossing through the k = 0 threshold. In the complex-
energy plane, the bound-state pole, located on the negative
real axis, first moves towards the origin at E = 0 and then
moves backward as a virtual state on the second Riemann
sheet of the S matrix. The two sheets of the S matrix as a
function of E are determined by the double-branched nature
of the square-root function, k = ±√

2μE . The standard con-

1In momentum space, one can obtain a full description of scattering
observables by solving the Lippmann-Schwinger equation for the T
matrix.

FIG. 2. An illustration of a bound state moving through the
complex-energy plane as the potential is made gradually weaker. In
this case, it crosses the threshold and moves into the second Riemann
sheet to become a resonance (Gamow state) with a complex energy.

vention, which we also adopt here, is to attach the two sheets
along the positive real axis, the so-called “unitarity cut.”

If instead the potential has a barrier, either from the actual
shape of V (r) or effectively due to the nonzero centrifugal
term in Eq. (3) for l > 0, the pole may also move through
the threshold into the 4th quadrant (in both the momentum
and the energy planes) so that the state becomes a (decaying)
resonance. This is the scenario that is of primary interest to us
in this work. In particular, in Sec. III B we develop a strategy
to extrapolate along such a trajectory, as illustrated in Fig. 2.

C. Complex-scaling method (CSM)

As described above, bound states have associated imagi-
nary momenta k = iκ with real κ > 0, whereas resonances
are described by complex k with Im(k) < 0. This means that
asymptotically, resonance wave functions grow exponentially
with r and are therefore—like scattering states but in some
sense even more so—not square-integrable; i.e., they do not
correspond to normalizable states in the ordinary Hilbert
space. While the rigged Hilbert space construction offers a
rigorous mathematical formalism to deal with this difficulty
(see, for example, Ref. [41] for an introduction), for practical
calculations there exists a much simpler alternative. The so-
called (uniform) complex-scaling method [17,42] enables a
description of resonances with, essentially, bound-state tech-
niques. This is achieved by expressing the wave function not
as usual along the real r axis, but on a contour rotated into
the complex-r plane. This can be achieved by applying the
transformation

r → reiφ (9)

to Eq. (3), with some angle φ. The proper choice of φ in
general depends on the position of the resonance one wishes
to study. If the state of interest has a complex energy E , then
it is necessary to ensure that φ > − arg Er

2 . As E is usually
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FIG. 3. Illustration of the reduced radial wave function of a typi-
cal S-wave resonance (Gamow state), on a complex-scaled r contour.
The solid (dotted) line corresponds to the real (imaginary) part. It
asymptotically converges to the Riccati-Hankel function ĥ+

0 (kreiφ ) =
ĥ+

0 (k̃r) = exp(ik̃r), where we define k̃ = keiφ , the effective wave
number with Im(k̃) > 0, so that it is normalizable just like bound-
state wave functions.

not known beforehand, one might repeat the calculation while
increasing φ until a resonance is found.2

With the convention in Eq. (9), r is still a real parameter
but no longer describes the physical radial coordinate of the
system. The overall argument kreiφ of the Riccati-Hankel
function in Eq. (6) satisfies Im(kreiφ ) > 0, and therefore
square-integrability of the wave function as a function of r
is recovered. An example of such a scaled wave function is
illustrated in Fig. 3.

It was shown in Ref. [43] that the scaling of the radial
coordinate r is equivalent to a rotation in momentum repre-
sentation that goes in the opposite (clockwise) direction with
the same angle φ. That is, if we consider the wave function
of the state as a function of a momentum coordinate q, then
complex scaling is implemented via

q → qe−iφ. (10)

This procedure then makes it possible to alternatively cal-
culate resonance wave functions in momentum space. Note
furthermore that scaling in momentum space can also be un-
derstood as a rotation of the branch cut in the complex-energy
plane by an angle 2φ clockwise, thereby exposing a section of
the second Riemann sheet where resonances are located.

After this transformation, we can absorb the eiφ phase into
the wave number k and define the effective wave number as
k̃ = keiφ , so that the asymptotic form in Eq. (6) is preserved

2One might think of simply setting φ = π/4 to accommodate all
possible resonances. However, in most cases, large φ angles lead to
potentials and wave functions not vanishing fast enough along the
contour, thereby demanding more expensive calculations.

FIG. 4. Trajectory of an S-matrix pole in the k plane before
(a) and after (b) complex scaling. Thanks to the CSM, resonance so-
lutions have Im(k̃) > 0 and thus are square-integrable. Also note how
complex-scaled bound states come with “negative” wave numbers
[Re(k̃) < 0] while resonances come with “positive” wave numbers
[Re(k̃) > 0]. Indicated by asterisks are the CA-EC vectors discussed
in Sec. III B. They are obtained by complex conjugation of bound-
state wave functions and will have asymptotic wave numbers −k̃∗ =
k̃e−2iφ , placing them in the 1st quadrant and closer to the resonance
regime.

as

ψl,k (reiφ ) −−−→
r→∞ N ĥ+

l (k̃r). (11)

The scaling technique can thus be interpreted as mapping res-
onances from the 4th quadrant in the complex-k plane to the
1st quadrant in the k̃ plane (see Fig. 4). For future reference,
we note that, at the same time, it will effectively map bound
states from the positive imaginary k axis to the 2nd quadrant
in the complex k̃ plane.

D. Non-Hermiticity and the c-product

In traditional quantum mechanics, one requires the Hamil-
tonian H to be Hermitian (H† = H) to ensure that the energy
spectrum, being a physical observable, is real and that the time
evolution is strictly unitary, i.e., the norm of quantum states
are preserved under the time evolution operator e−iHt/h̄. How-
ever, when considering decay, an inherently time-dependent
phenomenon, in a time-independent framework such as the
complex-scaling method, the Hamiltonian is no longer Her-
mitian. Instead, in the present case, it becomes complex
symmetric (HT = H) [17]. This permits the energy spectrum

064316-4



EIGENVECTOR CONTINUATION FOR EMULATING AND … PHYSICAL REVIEW C 107, 064316 (2023)

to include complex eigenvalues, which, as discussed in
Sec. II A, is precisely what is needed to describe resonances.
In fact, the non-Hermiticity and the corresponding nonunitary
time evolution of Gamow states are well aligned with the
physical interpretation of resonances as metastable systems
that ultimately decay.

Similarly to how nondegenerate eigenvectors of a Hermi-
tian operator are orthogonal under the inner product defined
on the Hilbert space, the nondegenerate eigenvectors of a
complex symmetric operator are orthogonal under the so-
called “c-product” [44,45]. For eigenstates |ψ1〉 and |ψ2〉 with
equal angular-momentum quantum numbers (l, m), we define
the c-product in coordinate representation as

〈ψ1|ψ2〉 =
∫

dr ψ1(r)ψ2(r), (12)

and similarly in momentum space. Note that ψ1(r) appears
without complex conjugation under the integral. This is pre-
cisely the c-product introduced in Ref. [44] with the notation
(ψ1|ψ2). In this paper, we use the standard notation 〈ψ1|ψ2〉
with the implicit understanding that for complex-scaled sys-
tems this is meant to denote the c-product.

Equivalently, one can change the definition of bra states
so that no complex conjugation is involved when they are
associated with a complex-scaled system. This is so even for
bound states calculated with complex scaling. Although the
energies of such states remain real, wave functions become
complex when defined along the rotated contour and the or-
thogonality of states with different binding energies is ensured
only if no complex conjugation is performed for bras, leading
again to the c-product [45]. Ultimately, these concepts can be
understood by properly distinguishing bra and ket states as,
respectively, left and right eigenvectors of the non-Hermitian
complex-scaled Hamiltonian [43]. Even more rigorously, a
comprehensive theory for Gamow bras and kets can be devel-
oped within the RHS formalism mentioned previously [41].
However, in practice we find it convenient and sufficient to
employ complex scaling along with the c-product.

III. RESONANCE CONTINUATION

We now discuss the extension of eigenvector continuation
to resonance states. Generally, EC works by obtaining eigen-
states of a Hamiltonian H (c) with a parametric dependence
on a parameter c for several values of that parameter.3 The set
of parameters {ci} used for this step is referred to as “training
points,” and the corresponding “training vectors” |ψ (ci )〉 are
used to construct an effective basis within which the problem
is subsequently solved for one or more target values of the
parameter c. For typical applications of EC, this procedure
reduces the dimension of the problem from a large Hilbert
space to the small subspace spanned by the training vectors,
thereby leading to a vast reduction of the computational cost
for each target evaluation. Specifically, if we denote the target

3For simplicity, we assume here that there is only one scalar
parameter and note that the extension to multiple parameters is
straightforward [25].

point as c∗, EC involves solving the generalized eigenvalue
problem

HEC |ψ (c∗)〉EC = E (c∗)EC NEC |ψ (c∗)〉EC , (13)

with the following Hamiltonian and norm matrices:

(HEC)i j = 〈ψ (ci )|H (c∗)|ψ (c j )〉 , (14)

(NEC)i j = 〈ψ (ci )|ψ (c j )〉 . (15)

The key to making this remarkably simple prescription useful
is that typically EC is able to construct highly effective varia-
tional bases, with rapid convergence as the number of training
data is increased [30].

Eigenvector continuation involving resonance states can be
defined by prescribing that the matrix elements in Eqs. (14)
and (15) are to be evaluated using the c-product. Importantly,
this is to be used in connection with the complex-scaling
technique described in Sec. II C, so that for evaluating the
c-product one integrates along the rotated contour in either
r space or q space. This procedure ensures in particular that
all matrix elements remain well defined and finite, which
would not be the case without complex scaling because,
as previously mentioned, Gamow states would then not be
normalizable and their wave functions would exhibit, in co-
ordinate representation, an exponentially growing amplitude.
The Hamiltonian and norm matrices, HEC and NEC, obtained
with the c-product will not be Hermitian but complex sym-
metric, and therefore they may have complex eigenvalues, as
is required to describe resonances.

Numerical tests. We can show with explicit examples that
indeed this procedure works nicely in practice. All of the
calculations shown in the following sections were performed
using a discrete momentum basis with a cutoff of � = 8.0
(in the dimensionless units explained above) and consisting
of N = 256 mesh points distributed according to a 256-point
Gauss-Legendre quadrature to ensure convergence. In general,
the proper choice of � and N depends on the properties of V ,
and we have checked that the above is sufficient to ensure nu-
merical convergence for the particular examples we describe
below. Furthermore, the momentum basis is complex-scaled
as discussed previously, by an angle φ = π/6. As a crude
way to estimate the uncertainty of the EC extrapolations,
we repeat every calculation 128 times while randomizing the
training points within the given interval. Finally, the distribu-
tions of the extrapolation results are indicated in figures by
their 68.2% and 95.4% percentile intervals, the approxi-
mate intervals corresponding to 1 and 2 standard deviations,
respectively.

All of the potentials we use for numerical tests are based
on a local Gaussian form, which in configuration space reads

F (α, r) = exp(−αr2). (16)

For momentum-space calculations, we take the Hankel trans-
form of the above. This is given by

Fl (α, q, q′) = 2

π

∫ ∞

0
dr ĵl (qr) exp(−αr2) ĵl (q

′r), (17)
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where ĵl (z) are the Riccati-Bessel functions (see Ref. [39,
p. 182]). For l = 0, this reduces to

F0(α, q, q′) = 1√
απ

exp

(
−q2 + q′2

4α

)
sinh

(
qq′

2α

)
. (18)

For l = 1, we have

F1(α, q, q′) =
√

α

4π

[(
1

α
+ 2

qq′

)
exp

(
− (q + q′)2

4α

)

+
(

1

α
− 2

qq′

)
exp

(
− (q − q′)2

4α

)]
. (19)

Because there is no centrifugal term in the S-wave radial
equation, we include in the l = 0 potential a repulsive barrier
to support resonances:

V (c, q, q′) = c[−5F0(1/3, q, q′) + 2F0(1/10, q, q′)]. (20)

For a P-wave example, the following simple Gaussian poten-
tial is considered:

V (c, q, q′) = −cF1(1/4, q, q′). (21)

Although not exploited here, we note that Hamiltonians H (c)
with a simple linear dependence on c (like the ones we con-
sider), or more generally, an affine dependence on a vector of
parameters c, permit further optimization of the EC calcula-
tion via decomposition into off-line and on-line tasks, see for
example Ref. [33].

As Supplemental Material, we provide the code for our
calculations as downloadable files [46]. The setup is split
into a PYTHON library, twobodyEC.py, that implements the
basic numerical techniques discussed above, and a JUPYTER

notebook, calculations.ipynb, that reproduces the exact
numerical examples presented in the following.

A. Resonance-to-resonance extrapolation

We now consider a Hamiltonian H (c) that supports a
resonance for some range of c and we implement the
standard EC prescription by first constructing H (ci ) on a
complex-scaled basis for several training points {ci}. In our
calculation, this amounts to calculating the matrix elements
〈qne−iφ|H (ci )|qme−iφ〉 using a q momentum mesh as de-
scribed previously (with φ > − arg Er

2 , where Er is the complex
energy associated with the resonance for all c within the
region of interest). Then we proceed to solve the system to
obtain the exact eigenvectors |ψ (ci )〉 for each ci. This is the
part that takes the bulk of the computational time.

We now want to determine E (c∗) at some target point
c = c∗ via extrapolation. To that end, we construct H (c∗),
but instead of determining its eigenvalues directly, we project
H (c∗) onto the “EC subspace” spanned by {|ψ (ci)〉}. In
practice, this is done by calculating the projected matrix el-
ements (HEC)i, j = 〈ψ (ci )|H (c∗)|ψ (c j )〉 and the norm matrix
elements (NEC)i, j = 〈ψ (ci )|ψ (c j )〉. The latter accounts for the
nonorthogonality of the basis vectors. The c-product prescrip-
tion has to be followed in this step. Finally, we diagonalize the
much smaller projected matrix HEC by solving the generalized

FIG. 5. Application of EC for resonance-to-resonance extrapola-
tion. Five training points were randomly drawn from the region c ∈
(0.45, 0.78) per dataset. Apart from using the c-product formalism,
the calculation proceeds similar to ordinary EC, yielding accurate
approximations for the complex-energy eigenvalues of resonances
(Gamow states). See text for details.

eigenvalue problem4

HEC |ψ (c∗)〉EC = E (c∗)EC NEC |ψ (c∗)〉EC . (22)

Equation (22) yields a spectrum of complex eigenvalues
that includes the approximation E (c∗)EC corresponding to
the exact energy eigenvalue E (c∗) of the particular state we
are interested in. Identification of the relevant E (c∗)EC for
non-Hermitian systems cannot be based on the variational
principle, and so, unlike EC applied to bound states, it is
not sufficient here to simply pick extremal eigenvalues from
the EC spectrum. Because for the benchmark presented here
the exact value E (c∗) is calculated alongside the extrapolated
spectrum, we employ the criterion min |E (c∗)EC − E (c∗)| to
identify the proper state within the complex spectrum. For
practical applications of the technique, the exact E (c∗) will
typically be unknown. To deal with this situation, one might
manually follow the extrapolated pole as it gradually crosses
the threshold from being a bound state (for which the iden-
tification is straightforward) to becoming a resonance. More
generally, one may employ a systematic overlap-based tech-
nique as is common practice in the calculation of resonances
within the Berggren basis [47].

To exemplify resonance-to-resonance continuation, the
system described by Eq. (20) is considered. Results are shown
in Fig. 5.

4Alternatively, one could orthonormalize {|ψ (ci )〉} beforehand,
again following the c-product formalism, and then solve an ordinary
eigenvalue problem.
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B. Bound-state-to-resonance extrapolation

While applying EC solely within the resonant regime is
interesting and certainly useful in practice (e.g., to produce
EC-based emulators for uncertainty quantification [25]), it
is a more fascinating question whether we can set up an
extrapolation scheme that uses training vectors at c values
corresponding only to bound states, but which then extrap-
olates to c∗ where the state is a resonance. In other words, we
would like to use EC to extrapolate along the S-matrix pole
trajectories described in Sec. II B from the regime of bound
states into the resonance domain. We note that, in general,
not all bound states transition into resonances as illustrated in
Sec. II B, but in order to illustrate the method we consider here
only cases where it is known a priori that this is the case.

Clearly, a naive approach without appropriate complex
scaling of the basis will not be successful in predicting
resonance energies because HEC and NEC will be trivially
Hermitian with that prescription. However, even with com-
plex scaling and the matrix elements defined in terms of the
c-product, it is not possible to obtain complex energies via
EC because HEC and NEC will, in fact, be real and symmetric.
This can be seen as follows. If we use the notation ψ (ci; r) for
the (reduced) radial wave function corresponding to the state
|ψ (ci )〉, then for the norm matrix it holds that

(NEC)i j = 〈ψ (ci )|ψ (c j )〉

=
∫

C
dr ψ (ci; r)ψ (c j ; r)

=
∫ ∞

0
dr ψ (ci; r)ψ (c j ; r) ∈ R, (23)

where
∫

C denotes integration along the complex-scaled con-
tour. We have used the fact that the contour can be rotated
back to the real axis without changing the value of the integral
because no singularities are swept over and for bound states
the contribution of the arc at infinity that closes the curve
between the real axis and the rotated contour vanishes.5 Then,
we have made use of the fact that “c-normalized” bound-state
wave functions are real along the real axis. This is so because
any bound-state wave function ϕ(r) can be chosen to be real
and any arbitrary global factor N will be constrained to N ∈ R
by the c-normalization condition∫ ∞

0
dr[Nϕ(r)]2 = 1, (24)

resulting in a real normalized wave function ψ (r) = Nϕ(r).
NEC is also trivially symmetric due to the properties of the
c-product.

By the same token, for the projected Hamiltonian matrix,
we see that
(HEC)i j = 〈ψ (ci )|H (c∗)|ψ (c j )〉

=
∫

C
dr

∫
C

dr′ψ (ci; r)H (c∗; r, r′)ψ (c j ; r′)

=
∫ ∞

0
dr

∫ ∞

0
dr′ψ (ci; r)H (c∗; r, r′)ψ (c j ; r′) ∈ R,

(25)

5The bound-state wave functions remain strictly normalizable even
with the r contour rotated into the upper half-plane.

FIG. 6. Attempt to extrapolate from bound states to resonances
using ordinary EC without augmentation. Five training points were
randomly drawn from the region c ∈ (0.9, 1.3) per dataset. See text
for details.

noting that everything under the final integral is real. This
shows that HEC has only real entries. Because H (c∗) is com-
plex only due to the contour rotation, by the “turn over
rule” [17] it follows moreover that HEC is symmetric, which
concludes the proof.

The same S-wave potential given in Eq. (20) is considered
for demonstrating the failure of a naive bound-state-to-
resonance extrapolation. As shown in Fig. 6, the extrapolated
energies do not extend beyond the real axis, as one would
expect for resonance states.

Conjugate-augmented EC. Fortunately, it turns out that
there is a way to accomplish bound-state-to-resonance ex-
trapolations with an extension of the EC prescription. The
appropriate strategy, which we refer to as “conjugate-
augmented eigenvector continuation (CA-EC)” and which we
elucidate further below, is to enlarge the subspace spanned
by the bound-state training vectors by including, in addition,
complex-conjugate versions of the existing wave functions.
This can be easily implemented numerically (in any concrete
representation of the wave functions) by duplicating training
vectors stored in memory with elementwise complex conju-
gation.6

As we show with concrete examples below, CA-EC works
nicely in practice. To understand why that is so, note that after
complex scaling the asymptotic wave functions (as functions
of r along the rotated contour) will have decaying wave num-
bers for both bound states and resonances, i.e., Im(k̃) > 0, as
illustrated in Fig. 4. However, Re(k̃) is negative for bound
states and positive for resonances. EC is ineffective at ex-
trapolating complex “plane waves” of the form ĥ+

l (k̃r) with
rapidly changing wave numbers, especially when the sign
of the real part is supposed to change upon extrapolating
from the training regime to the target point. This systematic
deficiency of the basis can be remedied by including addi-
tional vectors that have “positive” asymptotic wave numbers,

6Note that the extra memory cost for storing the additional vectors
can be avoided if one performs the complex conjugation for the extra
states on the fly during the construction of HEC and NEC.
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FIG. 7. Bound-state-to-resonance extrapolation performed with
CA-EC for the system given by Eq. (20). Five training points were
randomly drawn from the region c ∈ (0.9, 1.3) per dataset. See text
for details.

i.e., Re(k̃) > 0. Exactly this is achieved with CA-EC because
the complex-conjugated wave functions have such asymptotic
wave numbers. Specifically, the asymptotic wave number of
a complex-conjugated bound state will be −k̃∗ = k̃e−2iφ if k̃
denotes the wave number of the bound state (cf. Fig. 4).

The systems described by Eqs. (20) and (21) are considered
to illustrate the CA-EC bound-state-to-resonance extrapola-
tion method. As shown in Figs. 7 and 8, CA-EC can reproduce
resonance states, and the extrapolated energies agree nicely
with exact calculations performed for comparison.

The key to understanding why CA-EC works is the in-
sight that in the interior region (i.e., r sufficiently small),
resonance wave functions look similar to those of bound
states. As shown in Fig. 3, the oscillating and exponentially
growing behavior only sets in at larger r. Therefore, in the
interior region, an EC basis comprised of bound states can
properly express the behavior of the resonance wave function
at the target point, and it is only the asymptotic behavior
that needs an enlarged basis to be properly represented. To
further elucidate this explanation, we can consider an alter-
native approach where we augment the original EC basis not

FIG. 8. Bound-state-to-resonance extrapolation with CA-EC for
the Gaussian potential shown in Eq. (21) in the P wave. Five train-
ing points were randomly drawn from the region c ∈ (3.1, 4.0) per
dataset. See text for details.

with complex-conjugated versions of the training bound-state
wave functions, but with Riccati-Hankel functions ĥ+

l (k̃r) that
have the same wave numbers k̃ that are otherwise provided
by the complex-conjugated bound states with CA-EC (i.e.,
asterisks in Fig. 4). This approach is somewhat similar to the
construction of the so-called Berggren basis [48,49].

This basis augmentation with Riccati-Hankel functions can
be performed in configuration space as well as in momentum
space. In configuration space, we can use the explicit repre-
sentation [50, Eq. 10.49.6]

ĥ+
l (kr) = exp(ikr)

l∑
n=0

in−l−1

2n

(l + n)!

n!(l − n)!

1

(kr)n
, (26)

for a state with angular momentum l . In momentum space, we
need the Hankel transform of ĥ+

l (kr), which is given by

φk (q) =
√

2

π

k(q/k)l

q2 − k2
. (27)

This can be verified by explicitly carrying out the inverse
Hankel transform as follows:√

2

π

∫ ∞

0
dq ĵl (qr)

[√
2

π

k(q/k)l

q2 − k2

]

= 2k

π

∫ ∞

0
dq ĵl (qr)

(q/k)l

q2 − k2

= k

iπ

∫ ∞

0
dq [ĥ+

l (qr) − (−1)l ĥ+
l (−qr)]

(q/k)l

q2 − k2

= k

iπ

[∫ ∞

0
dq ĥ+

l (qr)
(q/k)l

q2 − k2

−
∫ ∞

0
dq ĥ+

l (−qr)
(−q/k)l

q2 − k2

]

= k

iπ

∫ ∞

−∞
dq ĥ+

l (qr)
(q/k)l

q2 − k2

= k

iπ
(2π i) ĥ+

l (kr)
(k/k)l

k + k
= ĥ+

l (kr), (28)

where we have used the relation [50, Eqs. 10.47.10,15]

ĵl (qr) = 1

2i
[ĥ+

l (qr) − ĥ−
l (qr)]

= 1

2i
[ĥ+

l (qr) − (−1)l ĥ+
l (−qr)] (29)

in the second step and used the residue theorem to evaluate
the final integral.7

The same potential as given in Eq. (20) in the S wave
is used to test augmenting the basis with RH functions. As
shown in Fig. 9, RH augmentation, like CA-EC, is able to

7Note that the residue theorem is applied for the Im(k) > 0
case. This is because we only construct RH functions that are
square-integrable, and ĥ+

l (kr) is square-integrable if and only if k
is in the upper half-plane.
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FIG. 9. Bound-state-to-resonance extrapolation for the system
given by Eq. (20), performed by augmenting the basis with RH func-
tions with wave numbers the same as those of CA-EC vectors. Five
training points were randomly drawn from the region c ∈ (0.9, 1.3)
per dataset. See text for details.

provide bound-state-to-resonance extrapolations, in contradis-
tinction to the naive EC approach. Note that we use RH
augmentation here only to explain why CA-EC works as well
as it does. Beyond the simple two-body systems we consider
here as proofs of concept, RH augmentation would be difficult
to implement due to the more complicated structure of few-
and many-body wave functions. CA-EC, on the other hand, is
straightforward to implement even for such systems.

Convergence of basis augmentation with RH functions. To
quantify the contribution of RH functions to bound-state-to-
resonance extrapolations, we show in Fig. 10 the convergence
of extrapolated energies as a function of the number of RH
functions added. For each subplot (in descending vertical or-
der), we have added one, two, three, and four RH functions
picked randomly following the same prescription as in the
previous calculation. This calculation was performed for the
same system as considered before, given by Eq. (20). The
rapid convergence with the number of vectors clearly supports
the argument that CA-EC provides the asymptotic parts neces-
sary to describe the long-distance structure of resonance wave
functions.

IV. DISCUSSION AND OUTLOOK

In this work, we have studied the application of eigenvector
continuation to decaying resonance states. Specifically, we
considered a two-body system with a Hamiltonian controlled
by a single parameter, which can be tuned to map out res-
onance trajectories in the complex plane. Using the uniform
complex-scaling technique we showed that eigenvector con-
tinuation can be set up with resonance states as training data
to produce an emulator that predicts resonance properties
outside the training domain, provided that the appropriate
c-product is used to construct the EC Hamiltonian and norm
matrices.

We demonstrated that a naive implementation of EC
trained with only bound states cannot reliably predict reso-
nance properties, even if the bound-state wave functions are
defined along a contour rotated into the complex plane. We
identified this failure to be caused by the lack of outgoing

FIG. 10. Bound-state-to-resonance extrapolation for the system
given by Eq. (20), performed using bases constructed with five
training points and increasing number of RH vectors. The training
points were randomly drawn from the region c ∈ (0.9, 1.3). From
top to bottom, bases are augmented with one, two, three, and four
RH vectors, respectively. See text for details.

asymptotic behavior in the naive EC basis. However, we
subsequently showed that this problem can be overcome by
adding to the EC basis the complex conjugates of the ro-
tated bound-state wave functions, producing an approach that
we call conjugate-augmented eigenvector continuation (CA-
EC). Adding the complex-conjugated wave functions provides
basis vectors that effectively give contributions in the 1st
quadrant of the complex-momentum plane, which is where
the decaying resonances “exposed” by the complex-scaling
procedure are situated.
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We showed with numerical examples that CA-EC provides
accurate predictions for decaying resonances at a relatively
moderate increase in computational cost compared to standard
eigenvector continuation. We also confirmed the mechanism
at play behind the success of the method by replacing the
complex-conjugated eigenvectors with Riccati-Hankel func-
tions that provide the same outgoing asymptotic behavior that
in CA-EC is provided by the complex-conjugated bound-state
wave functions.

The findings presented in this work provide an important
step towards understanding robust bound-state-to-resonance
extrapolations, a new tool for the study of open quantum
systems in the context of few-body physics, and they open in-
teresting avenues for more efficient many-body applications in
the complex-energy plane. In future work, we will investigate

how to leverage the CA-EC method in many-body techniques
based on the Berggren basis to emulate multiparticle reso-
nances, with particular applications to exotic atomic nuclei.
We will also consider using more sophisticated methods to
optimize the number and the quality of training eigenvectors.
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