
PHYSICAL REVIEW C 107, 064315 (2023)

Deconvoluting experimental decay energy spectra: The 26O case
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In nuclear reaction experiments, the measured decay energy spectra can give insights into the shell structure
of decaying systems. However, extracting the underlying physics from the measurements is challenging due
to detector resolution and acceptance effects. The Richardson-Lucy (RL) algorithm, a deblurring method that
is commonly used in optics and has proven to be a successful technique for restoring images, was applied
to our experimental nuclear physics data. The only inputs to the method are the observed energy spectrum
and the detector’s response matrix also known as the transfer matrix. We demonstrate that the technique can
help access information about the shell structure of particle-unbound systems from the measured decay energy
spectrum that is not immediately accessible via traditional approaches such as χ -square fitting. For a similar
purpose, we developed a machine learning model that uses a deep neural network (DNN) classifier to identify
resonance states from the measured decay energy spectrum. We tested the performance of both methods on
simulated data and experimental measurements. Then, we applied both algorithms to the decay energy spectrum
of 26O → 24O +n + n measured via invariant mass spectroscopy. The resonance states restored using the RL
algorithm to deblur the measured decay energy spectrum agree with those found by the DNN classifier. Both
deblurring and DNN approaches suggest that the raw decay energy spectrum of 26O exhibits three peaks at
approximately 0.15 MeV, 1.50 MeV, and 5.00 MeV, with half-widths of 0.29 MeV, 0.80 MeV, and 1.85 MeV,
respectively.

DOI: 10.1103/PhysRevC.107.064315

I. INTRODUCTION

Invariant mass spectroscopy allows experimental access to
unbound states. However, interpreting and extracting physics
from the measured decay energy spectra are often challenged
by limited resolution and distortions caused by experimental
acceptance effects. This is particularly true in investigations of
neutron-unbound states, since they involve the measurement
of neutrons and charged decay fragments in coincidence. In
a decay experiment of this type, the neutron-unbound state is
populated through a nuclear reaction induced by a rare isotope
beam, typically proton removal. The unbound state decays
immediately, and by measuring the momentum vectors of the
decay products, the invariant mass of the unbound system can
be calculated. The measured decay energy spectrum can then
be reconstructed by subtracting the masses of all constituents
of the system.

In this work, we are focusing on the two-neutron emission
decay energy spectrum of 26O. This unbound nucleus was
recently measured by the MoNA Collaboration [1], with the
setup illustrated in Fig. 1. The exploration typifies efforts
to learn about the structure of nuclei towards the neutron-
drip line [2]. In general, measuring neutron momenta implies
the use of a neutron detector array that usually has limited
position resolution and detection efficiency. Similarly, mea-
suring the momenta of charged particles involves tracking the
particle trajectories back through a magnetic field and part
of the reaction target to determine the angle and energy at
the point of the breakup reaction, which is not accessible to

direct measurements. The procedures introduce variations and
uncertainties in such a way that the measured decay energy
distribution is only a distorted and blurred image of the true
decay energy spectrum of the unbound system. In the present
work, we will utilize two methods of inferring features of the
true decay spectrum: a deblurring algorithm and a deep neural
network approach. There is much potential for these strategies
outside of the particular problem.

The rest of the manuscript is organized as follows. In
Sec. II, we discuss the interplay of experiment and analysis
methods of decay spectrum. In Sec. III, we discuss practi-
calities of deblurring and, in particular, how the procedure
is expanded to deal with noisy data. The methodology is
tested on simulated data in Sec. IV. In Sec. V, we discuss
the deblurring of the measured 26O decay energy spectrum.
In Sec. VI, we build a DNN classification model to identify
resonance states in the measured decay energy spectrum of
26O. We present our conclusions and outlook in Sec. VII.

II. INTERPLAY OF THE EXPERIMENT
AND THE ANALYSIS METHODS

A. Experiment and construction of transfer matrix

In the experiment considered here, the strongest distortion
of the spectrum stems from the acceptance and resolution
effects of the Modular Neutron Array and Large multi-
Institutional Scintillator Array (MoNA-LISA), and the fact
that it is hard to detect neutrons with good efficiency and
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FIG. 1. The MoNA experimental setup for invariant mass measurements in search of neutron-unbound states includes the Sweeper magnet,
charged particle detector suite, and neutron detector array. The rare isotope beam (orange arrow) impinges on a reaction target where the
unbound state is populated in a nuclear reaction. The charged breakup fragments (red shaded area) are directed by a magnetic dipole field into
the charged particle detector suite, while the neutrons (green shaded area) travel along the beam direction to the neutron detector array.

determine their location with good precision. Detailed sim-
ulations of the detector setup allow to quantify the impact of
the detection process on a decay energy spectrum and cast it
in the form of a response matrix or transfer matrix, cf. Figs. 2
and 3. The matrix folded with any input decay spectrum and
no detector distortions produces the spectrum expected to be
measured in the experiment with those distortions imposed.

In constructing the matrix, decays are simulated by
randomly drawing the decay energy, Ed , from a uniform dis-
tribution and randomly selecting the orientation of the decay
event in the 26O frame. Each decay is processed through a sim-
ulation of the detector response. The decay energy spectrum
is then constructed from that response in the same fashion
as for the measured data. By selecting a narrow range of
input decay energies, the resulting ‘resolution-folded’ spec-
trum, E ′

d , for a given Ed is produced (cf. Fig. 3). The Ed

values used as examples are shown as thick red lines in Fig. 3
and red arrows in Fig. 2. The full response/transfer matrix is
built from the resolution-folded spectra E ′

d . A difference in
normalization for the matrix shown here compared to Fig. 3
should be noted. In Fig. 3, the normalization is for practi-

FIG. 2. The response matrix P(Ed ′ |Ed ) of the MoNA experimen-
tal setup depicted in Fig. 1 used in measuring the decay energy of the
three-particle decay 26O → 24O +2n. See text for details.

cal purposes to illustrate the difference in response for two
example Ed , and in Fig. 2 it is appropriate for the matrix in
continuum limit, representing conditional probability density.
As a further note, integration over the measured energy yields
the probability of the event at a given input energy getting
accepted,

∫
dE ′

d P(E ′
d |Ed ) = P(Ed ). The E ′

d = Ed diagonal is
marked in the figure to guide the eye. The rapid decrease in
the probability at high E ′

d indicates that an event at high E ′
d

has a low chance to get recorded.

B. Accessing resonance properties

It is common practice to assess the original, undistorted
decay energy spectra with parameter estimation techniques.
For example, neutron-unbound resonances are often [2–5]
modeled using energy-dependent Breit-Wigner line shapes
[see Eq. (9)] [6]. Parameter estimation methods, such as χ2

FIG. 3. Construction of individual columns in the
response/transfer matrix (TM). A single bin (0.2 MeV width)
in input energy Ed is uniformly populated with events, as illustrated
by the solid (red) histograms. Processing of the events through
a simulation of the detection system yields corresponding event
partition across bins in E ′

d illustrated by the open (green) histograms.
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minimization, are used to extract the resonance energy, width
and angular momentum for each resonance state. For the
remainder of this paper we refer to such methods as traditional
fit methods.

The traditional approaches require decisions on the number
of parameters to fit for the original spectrum, such as the
choice of the number of resonances present in the explored en-
ergy range. The proposed deblurring method aims at restoring
the features of the original spectrum without assuming how
many states it contains. Using a deep neural network (DNN)
classifier method, we attribute probabilities to the hypothe-
ses of different number of states in the original spectrum.
When applied to the same data, the two approaches test and
complement each other. We complement the results from the
two novel approaches by carrying out the standard χ -square
minimization and assuming different numbers of resonance
peaks in the data.

1. The Richardson-Lucy deblurring procedure

Our deblurring procedure employs the Richardson-Lucy
(RL) algorithm initially developed to restore blurred images
in optics [7,8]. Over time the algorithm found use in as-
tronomy [9] and medicine for medical images analysis [10],
to list a few. In high-energy physics, analogous develop-
ments progressed [11] without realization of the prior work
elsewhere. Recently, Danielewicz and Kurata-Nishimura [12]
have demonstrated that a nonlinear extension of the algo-
rithm could be used to determine three-dimensional (3D)
momentum distributions of products in intermediate-energy
heavy-ion collisions. The RL algorithm derivation relies on
the Bayes’ theorem and it follows an iterative procedure to
find a self-consistent solution. The algorithm only uses the
distorted spectrum and discretized response function of the
apparatus, or transfer matrix (TM), as inputs. The spectrum
entries and matrix elements are positive definite and carry
probabilistic interpretation. The restoration of the original
spectrum is an inverse problem, but it progresses in the de-
blurring without directly inverting the TM, an uncommon
approach for inverse problems [13]. In maintaining the re-
stored spectrum positive throughout the iteration procedure
and by avoiding a direct TM inversion, serious singularity
problems plaguing inverse problems are avoided.

In Ref. [12], the RL was implemented without consider-
ation of noise. In the present work, we expand the utility
of the algorithm by considering measurement statistics and
improve on the assessment of what is actually learned from
the data. However, in other fields, it has been demonstrated
that the RL algorithm suffers from short-wavelength insta-
bility due to noise amplification after a limited number of
iterations [14–16]. To overcome this challenge, we intro-
duce a regularization in the algorithm that tames the short
wavelength component in the deblurring solution. There are
several options for such regularization, the Gaussian func-
tion smoothing being one such example. The smoothing
requires considerations of a function width and boundary
conditions [14]. Another regularization option is the use of
denoising algorithms that invoke nonlinear combinations of

derivatives of restored spectra [15,17], commonly termed total
variation (TV).

In this work, we use a simple version of TV regularization
employed in Ref. [12], but we make its strength increase with
energy, as the impact of noise on a restored spectrum increases
at higher energy. With this approach we are able to arrive at
stable deblurring solutions after just few RL iterations.

2. The deep neural network classification algorithm

In addition to the RL based deblurring algorithm, we
implemented a deep neural network (DNN) classification al-
gorithm in our analysis procedure to identify the number of
resonance states in the decaying nucleus (i.e., 26O) from the
measured decay energy distribution. The DNN methods have
been popular in face [18] and speech [19] recognition. In the
field of particle and nuclear physics, the methods have been
applied to particle identification and event selection [20–26].
In the present work, the DNN uses a training dataset generated
from a Breit-Wigner (BW) resonance distribution, folded with
the experimental response matrix and sampled according to
a Poisson distribution. This process yields a data set which
resembles experimental data. The data set is labeled and
grouped into classes based on the number of resonance peaks
introduced in the BW distribution.

III. RICHARDSON-LUCY DEBLURRING ALGORITHM

A. Setting

In a nuclear decay experiment, the decaying nucleus, char-
acterized by a total four-momentum p = (E , px, py, pz ), can
be thought of as an emitter of particles that fly off towards
the detector. The detector records the particles with some
efficiency and allows to determine their four-momenta with
some accuracy. From the combination of those four-momenta,
the invariant mass of the decaying nucleus is determined,
M =

√
p2, and, over many events, the particle decay energy

spectrum is established [1,27]. Structures in that spectrum can
tell us about the resonance states of the decaying nucleus.
Limitation in the detector resolution makes the measured
spectrum f blurred compared to the true decay spectrum F
of the nucleus.

The blurring relation between f and F can be written as

f (E ′
d ) =

∫
dEd P(E ′

d |Ed )F (Ed ) . (1)

Here, E ′
d is the measured energy, Ed is the true energy, and

P(E ′
d |Ed ) is the conditional probability that products for a nu-

cleus decaying at Ed are registered, the event is accepted and
determined to represent the decay energy E ′

d . In the context of
an experiment, P(E ′

d |Ed ) represents the response function of
the apparatus, but in the context of blurring analyses it may be
called a blurring or transfer function. As an extreme example,
P(E ′

d |Ed ) = δ(E ′
d − Ed ) represents an ideal detector.

Equation (1) invokes the spectra f and F in the limit of
infinite measurement statistics. In practice, the spectra get
discretized, most often simply binned. Moreover, in an exper-
iment, f only gets determined with some accuracy, and even
P gets established with some resolution. Under discretization,
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the blurring relation (1) acquires the matrix form

fi =
∑

j

Pi j F j , (2)

where 1 � i � N , 1 � j � M, and Pi j represents the condi-
tional probability density integrated over a discretization form
factor (typically �E bin) in Ed and averaged over one in E ′

d .
As such, the matrix elements Pi j are positive and Pi = ∑

j Pji

represents the probability than an event at decay energy near
Ei

d is analyzed.
In our analysis of decay-energy spectra, we most often

employ �Ed = 0.2 MeV binning. To construct the transfer
matrix (TM), P(E ′

d |Ed ), for the three-particle decay 26O →
24O +2n experiment [1], we randomly draw the decay energy,
Ed , from a uniform distribution and draw the orientation of the
decay event in the frame of 26O. Each decay is then processed
through the simulated response [1,27] of the detector setup
schematically illustrated in Fig. 1. The outcomes are sorted
by bins in Ed and E ′

d and their counts per Ed bin entry become
TM elements. The constructed matrix is illustrated in Fig. 2.
The TM construction is additionally illustrated in Fig. 3 for
individual Ed bins. An Ed bin is uniformly populated with
events, as indicated by the solid (red) histograms shown in
Fig. 3. Those events are processed through the simulation of
the detector response and sorted according to E ′

d bins, as indi-
cated by the open (green) histograms. After renormalization,
the open (green) distributions in Fig. 3 become columns in
the TM normalized as probability density P(E ′

d |Ed ), or as
contributions to the probability Pi j in practical calculations
with discretized spectra.

B. Deblurring

The goal of deblurring is to estimate F when only f and P
are known. The Richardson-Lucy (RL) algorithm [7,8,11,12]
relies on the conditional probability Q(Ed |E ′

d ) complimentary
to P(E ′

d |Ed ). The Bayesian theorem linking the two probabil-
ity densities yields a set of equations [12] that can be solved
for F (Ed ) by the iteration

f (n)
j =

∑
i

Pji F (n)
i , (3)

F (n+1)
i = F (n)

i

∑
j

f j

f (n)
j

Pji

Pi
. (4)

Here, n is the iteration index.
We have chosen to start RL iterations with a rough guess

for F (0), such as scaled up f . The iterations is stopped once
F (n) ceases to change with n. For distributions that quickly
change with their arguments, such as Ed here, the long-term
convergence may be slow and for large n numerical seesaw
instabilities in the arguments may set in. That instability can
be tamed with a renormalization factor [12,15] I (n) applied to
the right-hand side of Eq. (4):

I (n) = 1

1 − λ D · ∇( ∇F (n)

|∇F (n)|
) . (5)

Here, D is a vector with components that are intervals
over which F is discretized in its arguments (bin sizes),

the divergence is approximated in low order based on that
discretization and λ is a small positive number. In a one-
dimensional case, such as here, the factor becomes simply

I (n)
i =

⎧⎪⎨
⎪⎩

1
1−λ

, if F (n)
i < F (n)

i−1,i+1 ,

1
1+λ

, if F (n)
i > F (n)

i−1,i+1 ,

1 , otherwise .

(6)

This factor suppresses any patterns of maxima and minima
emerging on the discretization scale. However, when wider-
scale maxima or minima arise, the factor will be impacting
them too. As uncertainties in the restored F will be of interest
here, the use of the above regulation factor will introduce
a relative error of the order of λ around the extrema of the
restored F .

C. Fluctuations and other practicalities

The blurring relation (1) invokes spectra in the limit of
infinite statistics. However, the spectra are measured at finite
statistics and its characteristics are expected to fluctuate com-
pared to those at high statistics.

Let f represent the average event numbers registered in
different bins of decay energy for measurement series carried
out over a specific measurement time. If we carry out repeated
measurement series over that time, event counts for individual
bins will fluctuate in a Poisson-like manner. If we carry out
just one measurement series, then the event count in the bin i,
fi, is our best estimate for the mean count and the best estimate
for the mean squared deviation from that mean over-repeated
series [28].

When assessing uncertainties in the restored spectra, we
build up an ensemble of alternative measurement results over
the same time, consistent with the best estimates of the mean
values for decay energy bins and dispersion, by sampling the
Poisson probability distribution for content f ∗

i ,

P ( f ∗
i | fi ) = e− fi f f ∗

i
i

f ∗
i !

. (7)

We then carry out the RL restoration, Eqs. (3)–(4), with fi

replaced by f ∗
i , arriving at F∗ and we study the distribution

of the latter within the ensemble. The algorithm requires
F (0) � 0 to start. However, we have not seen any significant
sensitivity of the results to the fine details of F (0). In practice,
the important factor is the number of iterations, a few hun-
dreds is sufficient in our case, and the smoothing factor [see
Eq. (8)].

Within the higher end of the decay energy window in
which we operate, usually up to 10 MeV, the counts tend to
be low, fluctuating with energy and these fluctuations tend to
be amplified in the restoration. Correspondingly, we make the
parameter λ in the factor I , Eq. (6), increase with energy

λ = λ0

(
1 +

(
E

E0

)2)
, (8)

and we typically use λ0 = 0.035 and E0 = 6 MeV. The form
and parameter values have been adjusted through experimen-
tation. Notably, λ increases the bin-to-bin correlation, which
is illustrated in Fig. 7. The values for λ0 and E0 are chosen to
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FIG. 4. Restoration of decay-energy spectrum in the absence
of noise. The dots (green) represent the original event distribution
modelled with Eq. (9). Three wide peaks were assumed for the
spectrum. The dashed (blue) line represents the blurred distribution,
at adjusted normalization, and it has been obtained by folding the
original distribution with the TM, cf. Eq. (2). The solid (red) line rep-
resents the distribution obtained by subjecting the blurred spectrum
to deblurring with the RL algorithm, Eqs. (3) and (4). The restored
and original distributions lie practically on top of each another. A
binning in energy of 0.2 MeV was employed in generating these
spectra.

reduce the noise oscillations in the restoration; this could also
be done by increasing bin sizes. We choose λ to depend on
E to suppress the oscillations in the restoration in the high E
range, which is due to the finite statistics.

IV. TESTS OF DEBLURRING ALGORITHM

In this section we carry out tests of our deblurring pro-
cedures when applied to simulated data. We first consider
data with negligible errors and then data with statistical errors
comparable to those for the investigated decay energy mea-
surements [1,27].

Following physical expectations regarding the forms of
input decay-energy spectrum, the spectrum F (Ed ) in the tests
is modeled as a superposition of Breit-Wigner distributions:

F (Ed ) ≈
∑

i

Ai
0.5 �i

(Ed − Ei )2 + (0.5 �i )2
. (9)

We are generally interested in the decay energy region
extending up to 10 MeV, though we have also considered
energies up to 14 MeV. Within such regions we have ex-
perimented with distributions containing (1–5) Breit-Wigner
peaks at different energies Ei and of different widths �i and
amplitudes Ai. In the case we will use here for illustration, we
take three peaks at 0.3, 2, and 4.5 MeV, with respective widths
of 0.3, 0.85, and 1.3 MeV, see Fig. 4. For simplicity, we take
Ai ≡ 1. At first, we take the modeled input distribution F and
multiply it by the TM to get f . Up to some joint normalizing
factor for both, these distributions stand for those in the limit
of a very large statistics. The simulated input and measured
distributions are illustrated in Fig. 4. To the simulated mea-
sured distribution we apply the RL algorithm, Eqs. (3) and

(4). The restored distribution from the iteration is also shown
in Fig. 4 and it lies practically on top of the original. This
has been our typical finding for the limit of large statistics, no
matter what input. In the restorations for large statistics, we
usually can drop the smoothing factor (6).

Next, we turn to simulations of ensembles of events, such
as for real data. Specifically, we sample the shape of F within
the energy range Ed < 10 MeV, to get Ed for a single event.
Then we sample the probability density P(E ′

d |Ed ) from TM
to decide whether this event is accepted for analysis and what
the measured E ′

d is. We repeat the process until the number
of analyzed events is similar to that in the experiment. The
needed number of input events provides a normalization for
F . In Fig. 5, we show results from such four separate data
simulations. Both the simulated measured f (E ′

d ) and underly-
ing F (Ed ) are shown there.

A measurement carried out over a specific beam time, with
finite statistics, can be viewed as a member of an ensemble
of measurements ran over the same time. We next attempt
to simulate such an ensemble using only information in an
individual generated data set, following the Poisson distribu-
tion sampling discussed earlier, Eq. (7), to get f ∗(E ′

d ). To the
individual f ∗, we apply the RL deblurring algorithm to get an
estimate of F . With this, we arrive at an ensemble of restored
F that reflects uncertainties inherent in f , within the method-
ology we adopt. In Fig. 5, we further show the characteristics
of the ensemble of restored F , for each simulated data set,
specifically the average values for the bins and 68% and 95%
uncertainty ranges. It can be observed that the distributions of
the restored values are generally consistent with the input F .
Even if the data set is noisy, the three peaks emerge in each
case.

We complement the above resampling results by showing
in Fig. 6 a distribution of restored F resulting from averaging
over the distributions of restored F from a number of individ-
ual data simulations such as in Fig. 5. It can be seen that the
average over a large number of ensembles begins to approach
the input F suggesting a faithful nature of the restored F
even for finite statistics at the level of smoothness expected
for decay spectra and accuracy that may be aimed at currently.

The TM with binning for the measured decay energy as
well as the RL algorithm with smoothing will generate cor-
relations in results for different bins in the restored energy
spectrum. Such correlations can limit the resolution that one
can aim at for the restored spectrum. In resampling, we can
test the emergence of the interbin correlations. This is demon-
strated in Fig. 7 which shows bin to bin Pearson correlation
matrix built from the restored spectrum shown in Fig. 5(d).
A solid line in the figure guides the eye to show the average
behavior for the width of the main peak in the correlation. Be-
yond variation tied to specific assumptions on the underlying
spectrum, the width generally increases with the decay energy,
starting at about 0.4 MeV at low Ed and rising to 1.1 MeV at
Ed ≈ 10 MeV.

V. DEBLURRING 26O DECAY ENERGY SPECTRUM

In the experiment [1,27], two-neutron unbound 26O was
produced via one-proton knockout from a 27F beam. The 26O
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FIG. 5. Restoration for four different examples of simulated data sets when Poisson noise is active. The sampled original spectrum is the
same for each set and event statistics behind each set is similar to that believed to be behind the real data analyzed in this work. The points
represent the individually sampled sets with counts scaled up by a factor of 400. The dark blue and light blue bands illustrate the σ and 2σ

uncertainties resulting from spectra restoration with error sampling. In each panel, the dashed blue line represents the mean in the restoration
ensemble for the set. The original spectrum (solid orange line) has three resonance peaks located at 0.3, 2, and 4.5 MeV with respective widths
of 0.3, 0.85, and 1.3 MeV. Generally, we succeed in restoring the structures in the original spectrum using the RL algorithm. Binning of
0.2 MeV was used for the processed spectra.

nucleus decayed to 24O +n + n, and position and time-of-
flight measurements of the daughter products were carried out
in order to assess their momenta. The momenta for 24O and
two neutrons, measured in coincidence, were used to recon-

FIG. 6. Outcome of averaging over restored distributions from
24 such simulations as in Fig. 5. The overall mean (dots) and the
original spectrum (solid) are largely on top of each other.

struct the decay energy spectrum for 26O using the invariant
mass technique.

Previous invariant mass measurements have observed the
ground state of 26O decaying directly into 24O and neutrons
very near threshold [1,2,29,30]. A recent experiment mea-
sured the half-life of this state to be 5 ps [27]. An excited state,
26O(2+), was also measured with a decay energy of 1.28 MeV
above threshold [29]. Indications of a high-lying excited state,
at around 4 MeV, were reported in Ref. [2], but Ref. [29]
found no evidence of that state. Panel (a) of Fig. 8 shows the
energy spectrum of the three-body decay of 26O as recorded
in the experiment performed at NSCL [1]. Only the first peak,
from those mentioned above, is easily seen. The deblurring
technique discussed in the previous section helps to extract
more information from the measured decay energy spectrum.
Panel (b) of Fig. 8 displays the spectrum restored from the
measured spectrum of the 26O system, using the deblurring
method, Eq. (4) with an energy-dependent smoothing param-
eter of Eq. (8). The bumps evident in the restored spectrum
near 0 MeV and 1.3 MeV, respectively, can be recognized as
the J = 0+ and 2+ states of 26O nucleus identified in Ref. [29].
We associate the broad peak between 4 and 6 MeV with
the third 26O state observed in [2]. Panel (b) in Fig. 8 in-
cludes peaks that DNN attributed to the original spectrum and
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FIG. 7. Contour plot of bin to bin Pearson correlation matrix for
the restored spectrum when carrying out resampling for the case of
the simulated spectrum in Fig. 5(d). The solid line guides the eye
to indicate average behavior of the width for the main peak in the
correlation—the finer details with energy can depend on the assumed
original spectrum and even particular simulation. On average, the
width grows with energy.

corresponding contributions of those peaks to the observed
spectrum. We discuss the DNN analysis of decay energy spec-
trum next.

In comparing our method with traditional methods,
we have performed χ -square minimization by fitting the
measured decay energy spectrum with the resolution-folded
BW distribution (see Sec. IV). We started with one peak BW
function, and gradually increased the number of peaks to five.
Each peak is described by three parameters, i.e., amplitude,
peak position, and peak width, which implies that the number
of fit parameters is three times the number of peaks. In Fig. 9,
we present the values of χ -square per degree of freedom,
χ2/ndf, versus the number of peaks, n. A decrease in χ2/ndf
may be observed from n = 1 to n = 3 and then an increase
from n = 3 to 5, which implies that three peaks are sufficient
to describe the data.

It is important to emphasize that the deblurring method
does not require any assumption about the number of peaks in
the spectrum in order to carry out the restoration, whereas, in
the χ -square approach as well as DNN (to be discussed in the
next section), one needs to invoke some peaks explicitly (or
parameters) in the model. From its side, the deblurring method
can suggest the type and number and type of parameters
needed in the χ -square fitting or DNN.

FIG. 8. Analysis of the measured three-body decay energy spectrum for 26O → 24O + 2n. (a) shows the spectrum measured using invariant
mass spectroscopy [1,27]. (b) shows the deblurred spectrum, as well as the peaks identified for the spectrum with the deep neural network
(DNN). Resonances behind the peaks in the spectrum near 0 and 1.3 MeV were also identified for 26O in Ref. [29] (0+ and 2+ states,
respectively). Indications of a third peak at about 4 MeV were reported by Caesar et al. [2]. (c) displays contributions from the three peaks
identified by DNN, and shown in (b), to the measured spectrum, i.e., after blurring caused by the apparatus. Combination of those contributions
(dashed line) matches closely the data (points). The width of the energy bin in processing the spectra is 0.2 MeV.
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FIG. 9. χ -square per degree of freedom versus the number of
peaks included in the fit to the experimental decay energy spectrum
[shown in Fig. 8(a)]. The horizontal axis represents the number
of peaks, n, and each peak is described by three parameters (see
the text for details). Increasing the number of peaks is equivalent
to increasing the number of parameters for fitting. It may be seen
that the three-peak case yields the minimal χ -square per degree of
freedom.

VI. DNN ARCHITECTURE TO DISCOVER
RESONANCE STATES

Alongside the deblurring method, we built a machine
learning (ML) tool to classify the number of peaks in the
observed decay energy spectrum. A fully connected DNN,
schematically illustrated in Fig. 10, is defined with the
equations

A(l+1)
i = b(l+1)

i +
∑
j+1

W (l+1)
i j a(l )

j , (10)

a(l ) = Z (A(l ) ), (11)

FIG. 10. The figure shows a schematic illustration of deep neu-
ron network architecture designed for the classification model. In
the present work the input (at the input layer) is the decay energy
spectrum, and at the output layer, is a labeled (class) value which
tells the number of states in the spectrum. The parameters used to
train and test the model are displayed in Table I.

where a(l ) and A(l+1) are the input and output layers
and W (l+1)

i j and b(l+1) are the weights and bias of the
(l + 1)th layer. The nonlinear activation function is
Z (x) = ReLu = max(0, x). The Relu [31] is commonly
used as the activation function in neural network models. The
function f (x)i = Softmax = exi∑N

i exi
is used in the output layer

to normalize or scale the output so that it may be interpreted
as a probability [32]. We implement the network using the
categorical cross-entropy loss function, L = −∑N

i yi log(ỹi ),

TABLE I. The table shows the hyperparameters used to design the DNN classification model and our assumptions to generate the training
data set. The first part of the table displays parameters that made the DNN architecture (i.e., numbers of layers and neurons in each layer). The
second part (middle) shows other hyperparameters and also shows the positions of the peaks (Ei) used in Breit-Wigner distribution, Eq. (9)
which was multiplied with TM to obtain the training set. The last part consists of classes, C1, C2, C3, C4, and C5 created in such a way that
each class has distributions with a number of peaks and/or features different from other classes.

DNN architecture
Layers Number of neurons Activation function

Input layer 50 ReLU
1st hidden layer 300 ReLU
2nd hidden layer 500 ReLU
Output layer 5 Softmax

Other hyperparameters Peak location (MeV) Peak width (MeV)
Optimizer (Adam) 0.00 � E1 � 0.30 0.08 � �1 � 0.50
Epoch number (200) 1.10 < E2 � 1.80 0.50 < �2 � 1.10
Batch number (20) 1.90 < E3 � 2.70 1.10 < �3 � 1.30
Learning rate (0.004) 2.70 < E4 � 4.00 1.30 < �4 � 1.80
Learning rate (0.004) 4.00 < E5 � 6.00 1.80 < �5 � 2.10

prediction of DNN classifier on experimental data
Class Description
label Peak position (resonances states)
1. C1 E1 and E2

2. C2 E1, E2, and E3

3. C3 E1, E2, and E5

4. C4 E1, E2, E3, and E5

5. C5 elsewhere
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that is suitable for a multiclass classification problem [33].
Here, yi is the ith actual value and ỹi is the ith predicted value
(output of the DNN). Then, the adaptive moment estimate
(Adam) algorithm [34], a popular optimizer in DNN models,
is used to solve for the optimal weights Wi j . The architecture
and training specifications of the DNN model are displayed
in Table I and the network design is shown in Fig. 10.

The DNN classifier is trained using simulated data sets
to learn plausible patterns in the decay energy spectra. The
data set is simulated by by folding Breit-Wigner line shapes,
Eq. (9), with the TM in order to resemble the experimental
spectra. We then distort the folded distribution according to
Poisson noise to produce a noisy distribution similar to exper-
imental measurements. Note that we utilize the bins, which
consist of 50 bins spanning from 0 to 10 MeV, each with
a width of 0.2 MeV, as inputs to the DNN. The parameters
Ei and �i in Eq. (9), with i = 1, . . . , 5, are randomly drawn
from a uniform distribution. In this work, we consider the
parameters to stem from the range of values displayed in
Table I.

We divided the training data set into five classes of spectra
according to the number of resonances contributing to the
decay energy spectrum. The first class, C1, assumed two res-
onance states with energies E1 and E2. The second class, C2,
assumed three resonances at E1, E2, and E3. The third class,
C3, assumed three resonances at E1, E2, and E5. The fourth
class, C4, assumed four resonances at E1, E2, E3, and E5. The
class C5 contained any other spectrum that does not belong
in the first four classes. For convenience, we assign to class
C5 four kinds of spectra: spectra with one peak at E0, spectra
with two peaks at E0 and E2, spectra with three peaks at E0,
E3, and E4 and spectra with four peaks at E0, E1, E2, E3, and
E4. It is important to note that, in choosing values for E1,2,3,5,
we made sure to include all the 26O states that were previously
reported (see Refs. [2,29]). The mean values of E1,2,3,4,5 have
been equal to about 0.15, 1.50, 2.40, 3.35, and 5.00 MeV,
respectively.

We generated 6000 spectra for each class, producing a
data set containing 30000 simulated spectra to train and test
the model. From these, 60% of the data set was used for
training, and 40% was used for testing. The optimal model
was achieved for the values of the parameters displayed in
Table I. The model’s performance was evaluated based on
the training/testing accuracy curves illustrated in panel (a) of
Fig. 11.

The performance of the DNN classifier, as shown in panel
(a) of Fig. 11, was assessed in terms of accuracy. The accu-
racy, as the metric used to evaluate the classification model,
is the number of correct predictions out of the total number
of predictions. An accuracy equal to 1 stands for the perfect
performance of a model, and 0 stands for complete failure.
As shown in the figure, the model achieves an accuracy be-
tween 0.7 and 0.75 after training for 40 epochs. Panel (b)
in Fig. 11 displays the confusion matrix, which gives infor-
mation about the classifier’s performance in assigning each
simulated spectrum to the correct class. The elements on the
diagonal represent a normalized number of ideally classified
spectra, and the off-diagonal elements represent the misclas-
sified spectra. The first and the second classes show a high

FIG. 11. DNN model to identify resonance states from measured
decay energy spectrum. (a) indicates the training and testing accuracy
of the model. The curves converge at ≈0.75 on both data sets, which
means the model predicts 75% of the data set correctly. (b) represents
the confusion matrix which tells how well the DNN classifier was
able to classify spectra: C1, C2, C3, C4, and C5 are five classes we
used to train the model, and the detail about each class is discussed in
the text and Table I. (c) displays the ratio of distributions predicted to
belong in a given category (Ci, i =1, 2, 3, 4, 5) over the total number
of distributions used in the DNN model prediction. The ratio helps
to estimate the class where the measured spectrum fits. We found
that C3 has the highest fraction, which suggests that there is a high
chance for the experimental decay energy spectrum of 26O system
decaying 24O +2n from invariant mass spectroscopy measurements
belongs to C3.

number of misclassified spectra because those two classes
have similar peaks in the low energy regime (<2.5 MeV).
Hence, it is harder for the network to distinguish them, espe-
cially when the data set fluctuates significantly. Each element
of the confusion matrix is estimated from representative test
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sets, counting the number of distributions assigned to each
class and normalized by the number of spectra in that class.

After the DNN is trained, we use it to in classify the ex-
perimental spectrum. For example, if the assigned class is C1,
this means that the spectrum is perceived to have two states
around the positions described before. If it is C4, the spectrum
is recognized as having four peaks.

However, we only have one measured decay energy spec-
trum from the experiment investigating the three-body decay
of 26O into 24O and 2n. A fair prediction is expected, when
enough samples are passed to the DNN model. For that rea-
son, we carry out error resampling for the measured spectrum
to obtain a data set that one can use in the model prediction.
With this process, we have generated 10000 samples of dis-
tributions and estimated the classes to which each spectrum
from the resampling belongs. We evaluated the number of
distributions predicted to be in a given class as a fraction
of the distributions in that class per the total number of dis-
tributions, see panel (c) of Fig. 11. With this, the number
of resonance states most likely there in the measured decay
energy spectrum corresponds to the class with the highest
fractional value. As evident in Fig. 11(c), more than 75% of
the total distributions used in the prediction belong to class C3,
which suggests within our statistical framework the presence
of three peaks in the measured spectrum. The locations of
those peaks are approximately equal to the mean values of
parameters Ei of C3 at 0.15, 1.50, and 5.00 MeV. The mean
values of half-widths with which the classifier sorts the three
peaks, are, respectively, 0.29, 0.80, and 1.85 MeV. Finally,
these peaks correspond to the resonance states of 26O reported
in Refs. [2,29].

VII. CONCLUSIONS AND OUTLOOK

We applied the deblurring method, successful in optics and
employing the RL algorithm, to the restoration of the energy
spectrum from the three-body decay of 26O. As presented
here, the algorithm requires only the measured distribution in
energy and the TM, with elements only labeled by energy, to
operate. Two-dimensional distributions of photons are typi-
cally employed in optics and such and higher dimensions in
nuclear applications can be envisioned. The inversion implicit
in the algorithm is largely stabilized by the positive-definite
probabilistic nature of the measured and restored distributions
and of the TM elements. When significant noise is present
in the deblurred distribution, though, a short wavelength in-

stability may develop in the restored distribution in the limit
of many restoration iterations. With the relative noise grow-
ing with energy, due to fewer counts there, we stabilize that
instability with an energy-dependent regularization in the in-
dividual restoration steps.

Ahead of the data, we tested the method in the restora-
tion of a simulated decay energy spectrum without and with
significant noise, as was illustrated in Figs. 4 and 5. Then,
we applied the method to the measured energy spectrum of
the three-body decay of 26O. Three peaks were observed in
restored spectrum. Two of those were found in the low energy
region, at about 0.15 and 1.5 MeV, which may be tied to the
previously identified (0+) and (2+) states of 26O. The third
peak is located between 4 and 6 MeV in the restored spectrum,
and such a peak was previously reported in Ref. [2].

Moreover, we built a deep neural network classification
model with the same purpose as the deblurring technique:
to identify resonance states of 26O from the measured de-
cay energy spectrum. The DNN model estimates presence of
three peaks in the spectrum at approximate mean positions of
0.15 MeV, 1.50 MeV for the first and second peaks, and at
about 5.00 MeV for the third. The half-widths of these three
peaks have been found to be approximately 0.29 MeV, 0.80
MeV, and 1.85 MeV, respectively. The agreement between the
two methods used in our analyses suggests that there may be
three resonance states of 26O impacting the measured decay
energy spectrum. In addition, the result from χ -square mini-
mization, shown in Fig. 9, suggests that three peaks suffice to
describe the data.

Possible nuclear applications of the deblurring method
we described, besides recovering decay energy spectra, and
the aforementioned 3D distributions in heavy-ion collisions,
can include restoration of emitting source distribution from
particle correlations in heavy-ion collisions. The emitting
source function gives information about spatial geome-
try and time development of the final stages of reactions
[35–38], as well as their phase-space [39] and thermodynamic
characteristics [40].
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