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Matter density distributions of 20,22Ne and 24,26Mg extracted through proton
elastic scattering at 0.8 GeV
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Reported small-angle differential cross sections of proton elastic scattering off 20,22Ne and 24,26Mg at 0.8 GeV
were analyzed with the Glauber model. Matter density distributions of 20,22Ne and 24,26Mg were determined
based on the two-parameter Fermi density model, and the corresponding root-mean-square point-matter radii
are 2.891(52) fm, 2.895(104) fm, 2.935(20) fm, and 2.946(21) fm. The occupation number effects of the 2s
orbital on inner density were probed by the matter density difference between 22Ne and 24Mg. Combined with
the experimental occupation numbers, the relativistic Hartree-Bogoliubov calculations with the DD-ME2 and
PC-PK1 interactions describe the obtained density difference trend, and indicate that there may be a bubble
structure in 24Mg.
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I. INTRODUCTION

Atomic nuclei are quantum many-body systems consisting
of interacting neutrons and protons. Radial density distri-
butions of the constituent nucleons are one of the most
fundamental properties of atomic nuclei. The root-mean-
square (rms) radii reflecting the size of nuclei are related
to the density distributions. They play an extremely impor-
tant role in nuclear structure and astrophysics investigations
[1–7]. The small difference of neutron and proton radii in
a nucleus, known as the halo and skin phenomena [8], has
a direct relationship with the large neutron star radius [9].
Furthermore, the density distribution difference of neighbor-
ing nuclei is also a sensitive tool for probing occupation
number and radial wave function in single-particle orbital via
δρ(r) = ∑

δnnl j |R(r)nl j |2 [10–17], where nnl j and R(r)nl j are
the occupation number and the radial wave function for each
orbital, respectively. For example, the radial wave function for
the 3s orbital was determined by the charge density difference
between 206Pb and 205Ti [12].

The single-particle radial density distributions for the s
orbitals have a common character, that is to say, there are
density peaks in the center of nuclei [12]. So the occupa-
tion numbers of the s orbitals are essential to understand the
anomalous low densities in the interior of nuclei [18–24].
The low densities are known as the bubble structure, and
were first raised by Wilson in 1946 [25]. In the sd shell,
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for instance, 34Si [18,19,26] and 46Ar [23] were expected
to have the bubble structures. But as authors in Ref. [24]
concluded that it is difficult to make a reliable prediction,
due to the unknown single-particle information. The deformed
Ne and Mg isotopes in the middle sd shell were widely
investigated [22,27–31]. The obtained nucleon occupation
numbers of 1.5 for the 2s orbital were reduced to about
0.34 from 22Ne to 24Mg by adding two valence protons
[22]. This would result in a decreasing of the inner mat-
ter density, as a result, a bubble structure in 24Mg may be
formed.

Experimentally, matter density distributions in nuclei
can be also precisely extracted from such as interaction
cross sections [8,32,33] and hadron-scattering cross sec-
tions [11,34–36] based on reaction models, although the
model-independent parity violating electron nucleus scatter-
ing has been developed to measure the spatial distributions
of neutrons in nuclei [37]. For example, the matter radii
of the Ne and Mg isotopes were extracted through the in-
teraction cross sections [32,33]. As known, the small-angle
differential cross sections of proton-nucleus elastic scattering
are from peripheral collisions, and are sensitive to surface
matter density distributions. Especially, thanks to the high
reaction cross sections, the small-angle elastic scatterings can
be precisely measured. Consequently, different facilities, such
as the hydrogen-filled ionization chamber IKAR [2,38,39] and
the in-ring reaction facility (IRRF) based internal gas-jet tar-
get [11,36,40–43] were developed to measure the small-angle
elastic scattering differential cross sections for matter density
distribution determinations.

2469-9985/2023/107(6)/064310(6) 064310-1 ©2023 American Physical Society

https://orcid.org/0009-0000-7328-6060
https://orcid.org/0000-0003-2162-5109
https://orcid.org/0000-0002-3309-2832
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.064310&domain=pdf&date_stamp=2023-06-20
https://doi.org/10.1103/PhysRevC.107.064310


Z. H. LI et al. PHYSICAL REVIEW C 107, 064310 (2023)

Precise determination of inner density distribution is
difficult [12]. However, the inner density difference of neigh-
boring nuclei can be touched by the surface density according
to the nucleon number conservation. Recently, a significant
inner core rearrangement effect from 56Ni to 58Ni was found
via their surface matter density distributions, which were
determined by the small-angle differential cross sections of
proton-nucleus elastic scattering [11]. To study the influence
of occupation numbers on density distributions, we extracted
the matter density distributions of 20,22Ne and 24,26Mg from
the small-angle differential cross sections of proton-nucleus
elastic scattering in this work. These data would be helpful to
clarify the mentioned radius inconsistency for 22Na [44].

II. DETERMINATION OF MATTER
DENSITY DISTRIBUTION

The used experimental differential cross sections of proton
elastic scattering off 20,22Ne and 24,26Mg at 0.8 GeV were
taken from the EXFOR database [45]. They were measured at
the high resolution spectrometer (HRS) at the Clinton P. An-
derson Meson Physics Facility (LAMPF) of the Los Alamos
Scientific Laboratory [30,31]. Compared to the absolute nor-
malization uncertainties of about 10%, a relative precision
of about 1% was achieved for the small-angle differential
cross sections. More details on experiments can be found in
Refs. [30,31].

Proton-nucleus elastic scatterings can provide useful in-
formation on matter density distributions in nuclei through
appropriate reaction models [35,46]. To extract matter den-
sity distributions, following the methods in Refs. [11,38,39],
the small-angle differential cross sections were fitted by a
procedure based on the Glauber multiple-scattering theory
[47] in this work. More details on the Glauber procedure can
be found in Refs. [39,46] and references cited therein. The
differential cross sections of proton-nucleus elastic scattering
were calculated in the Glauber model via [39]

dσ

d�
(θ ) = |Fel(q)|2 , (1)

where the elastic scattering amplitude Fel (q) is a function of
the matter density ρ(r) and the proton-nucleon (pN) profile
function γpN . The γpN is related to the free pN scattering
amplitude fpN (q) as

γpN (b) = 1

2π ik

∫
exp(−iqb) fpN (q)d2q . (2)

As known, the effects of the spin-orbit can be neglected
in the small-angle region [46]. Thus, the calculations of the
scattering amplitude in the Glauber model can be performed
with less parameters. Only the scalar parts of the pN scattering
amplitudes were taken into account, the fpN (q) was calculated
by the standard high-energy parametrization as

fpN (q) = ik

4π
σpN (1 − iαpN )exp

(−q2βpN

2

)
, (3)

where σpN , αpN , and βpN are the total cross sections, ratios
of the real to imaginary parts of the forward-scattering am-
plitudes, and slope parameters for proton-proton (pp) and

TABLE I. The obtained R, a, and rms point-matter radii Rm

for 20,22Ne and 24,26Mg in this work. The reported matter radii Rlit
m

[33] are also listed. The errors in parentheses are only statistical
uncertainties.

Nucleus R (fm) a (fm) Rm (fm) Rlit
m (fm)

20Ne 2.422(67) 0.592(30) 2.891(52) 2.870(30) [33]
22Ne 2.396(170) 0.598(66) 2.895(104)
24Mg 2.860(55) 0.518(21) 2.935(20) 2.790(150) [33]
26Mg 2.904(57) 0.512(22) 2.946(21) 2.990(40) [27]

proton-neutron (pn) channels, respectively. We noted that
different α and β values were once used to describe the
proton-nucleus elastic scattering differential cross sections at
0.8 GeV [13,14]. The σpN and αpN in the energy range from
about 0.4 GeV to 1 GeV were evaluated in Ref. [39]. The
reliability of these data at ≈700 MeV have been verified
[38,39]. In this work, the adopted values were taken from
Refs. [39,48], where σpp = 4.70(2) fm2, σpn = 3.80(2) fm2,
αpp = −0.02(6), αpn = −0.34(6), and βpp = βpn = 0.20(5)
fm2. The errors are standard deviations of the reported data in
Refs. [13,14,39,48,49].

Similar to the charge density distributions of 20,22Ne and
24,26Mg [50], we also used the two-parameter Fermi (2pF)
model to describe the surface matter density distributions in
the present work,

ρ(r) = ρ(0)
1

1 + exp
(

r−R
a

) , (4)

where ρ(0) is the density normalization factor. R and a are
the half-density radius and the diffuseness parameter, respec-
tively.

The absolute normalization uncertainties for the used dif-
ferential cross sections are relatively large. To reduce the
effects of the normalization uncertainties, the matter den-
sity distributions were extracted by fitting relative differential
cross sections dσ

d�
(θ )re. This method has been used to deter-

mine the matter radius of 16O [51]. Consequently, in the χ2-fit
procedure, R, a, and cross section normalization parameter L0

were used as free parameters, and adjusted to make χ2 achieve
minimum. The matter density distributions ρ(r) were deter-
mined by the obtained R and a. Subsequently, the rms matter
radii can be calculated via Rm = [

∫
ρ(r)r4dr/

∫
ρ(r)r2dr]1/2.

The χ2 function was defined as

χ2 =
N0∑
i

[
L0

dσ
d�

(θi )re − dσ
d�

(θi )cal
]2

[
L0�

dσ
d�

(θi )re
]2 , (5)

where N0 and � dσ
d�

(θ )re are the number of data points and
the uncertainties of the measured differential cross sections,
respectively. The dσ

d�
(θ )cal are the differential cross sec-

tions calculated by the Glauber model.
Figure 1 shows the best fits for the relative differential

cross sections as a function of scattering angle θ in the
center-of-mass frame. The determined 2pF parameters and the
rms point-matter radii for 20,22Ne and 24,26Mg are tabulated
in Table I. Figures 2 and 3 show the obtained 2pF matter
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FIG. 1. The best fit of the relative differential cross sections as
a function of scattering angle θ in the center-of-mass frame. The
relative differential cross sections were normalized by multiplying
with L0 to the absolute cross sections calculated by the Glauber
model.

density distributions for 22Ne and 24Mg. Statistical uncertain-
ties were standard deviations of the corresponding data. These
data were obtained by fitting hundreds of randomly sampling
differential cross sections based on the Gaussian distribution
within dσ

d�
(θi ) ± 2� dσ

d�
(θi ). The errors of the experimental dif-

ferential cross sections were scaled to make the normalized χn

of the best fit equals 1. Uncertainties of the input parameters
σpN , αpN , and βpN would result in systematic errors of about
0.08 fm, 0.05 fm, 0.03 fm, and 0.03 fm for 20Ne, 22Ne, 24Mg,
and 26Mg, respectively.

III. DISCUSSION

The obtained matter radii in this work for 20Ne and 24Mg,
respectively, are 2.891(52) fm and 2.935(20) fm. They are
consistent with the results extracted through the interaction
cross sections [32,33], see Table I. Otherwise, since 20Ne and
24Mg have equal neutron and proton numbers, their matter and
proton radii would be almost identical. Our matter radii agree
very well with the proton radii of 2.889 fm and 2.942 fm for
20Ne and 24Mg, which were deduced from the charge radii

FIG. 2. Comparison of the obtained 2pF matter density distribu-
tion (black) and theoretical results for 22Ne. Red and blue dashed
lines denote the theoretical distributions calculated by the PC-PK1
and DD-ME2 interactions, respectively. Red and blue solid lines are
for the PC-PK1 and DD-ME2 calculations with the experimental
occupation numbers, respectively. The error bars are only statistical
errors, which were caused by the statistical uncertainties of the exper-
imental differential cross sections. The used small-angle differential
cross sections are not sensitive to deriving experimentally the central
density profiles.

via R2
p = R2

ch − r2
p − N

Z r2
n − 3h̄2

4m2
pc2 [52]. The charge radius Rch,

proton charge radius rp, and squared charge radius of neutron
r2

n were taken from Ref. [53]. The Darwin-Foldy correction
factor 3h̄2

4m2
pc2 was 0.033 fm2 [52]. These consistencies indicate

a reliability of this work.
Compared to 20Ne and 24Mg, the reported matter radius of

2.720(40) fm for the neighboring self-conjugate nuclei 22Na
[32,33] is smaller than by about 0.2 fm. This large deviation
is not observed by the systematic trend of the charge radii [53],

FIG. 3. Same as Fig. 2, but for 24Mg.
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FIG. 4. Density distribution difference between 22Ne and 24Mg,
which was obtained based on the 2pF density model. The insert
shows the rearrangement of nucleons from 22Ne to 24Mg deduced
by their density difference, where dr is 0.1 fm. Red and blue dashed
lines denote the theoretical distributions calculated by the PC-PK1
and DD-ME2 interactions, respectively. Red and blue solid lines are
for the PC-PK1 and DD-ME2 calculations with the experimental
occupation numbers, respectively. The gray areas show the statistical
uncertainties.

which would be caused by an admixture of the isomer state in
the beam [32]. If we adjust the systematic deviation of about
0.2 fm, the mentioned inconsistent issue for 22Na in Ref. [44]
is resolved.

The obtained matter density difference between 22Ne and
24Mg, ρ(r)24Mg − ρ(r)22Ne, is shown in Fig. 4, which is 2pF
density model-dependent. In this work, only the surface
density distributions were precisely determined, because the
small-angle differential cross sections are not sensitive to de-
riving experimentally the central density profiles of nuclei. In
general, the surface density range can be distinguished from
the inner region by radial r at which the density falls to 90%
of the central density [54]. Compared to 22Ne, the densities
in surface are higher for 24Mg. In order to make it easier to
understand, the density difference was convert into nucleon
numbers via N = 4π

∑
δρ(r)r2dr. As shown in the insert in

Fig. 4, about 2.63(22) extra nucleons are distributed in the
radial r range from about 2 fm to 8 fm. According to the
nucleon number conservation, if nucleon number increases
in one place, decreases in the other region can be expected.
Subtracting two valance protons, we can infer that about 0.63
nucleons in the inner r range from 0 fm to 2 fm are transferred
into the surface region from 22Ne to 24Mg. Due to the decrease
of the inner nucleons, the densities in the interior for 24Mg are
lower, compared to 22Ne, see Fig. 4.

To check the effects of the 2pF density model, we also
employed the sum-of-Gaussians (SOG) method to fit the dif-
ferential cross sections. That is to say, the matter densities
were described by the summation of the multi-Gaussian func-
tions at arbitrary radius ri range from 0 fm to the maximum
radial radius Rmax. Since the number of data points N0 are

FIG. 5. Same as Fig. 4, but the experimental results were ob-
tained by using the SOG method.

about 10 for the used differential cross sections, only five
Gaussian functions were used to describe density distributions
in this work. In the SOG analysis, the common width of the
Gaussians γ and the maximum arbitrary radii Rmax were fixed
to be 1.4 fm and 4 fm, respectively. More details on the SOG
analysis see Ref. [11]. Compared to the result based on the
2pF density model, as shown in Fig. 5, a similar conclusion
was obtained.

Nucleon rearrangement directly reflects the variation of
occupation numbers. The single-particle occupation numbers
of the surface states for 22Ne and 24Mg were determined by
direct reactions with the French and MacFarlane’s sum rules
in Ref. [22]. The reported nucleon occupation numbers of the
1d5/2, 2s1/2, and 1d3/2 orbitals are 4.5, 1.5, and 0.0 for 22Ne,
and 5.95, 0.34, and 1.72 for 24Mg [22], respectively. They are
the sum of the neutron and proton occupation numbers on
corresponding orbitals. The nucleons of the 1d orbital are dis-
tributed in surface. However, the nucleon density distribution
of the 2s orbital has two peaks, one is in the interior and the
other one is in the surface of nuclei. Thus, the changes of the
nucleon occupation numbers of the 2s1/2 orbitals from 1.5 for
22Ne to 0.34 for 24Mg would result in density decreasing in
interior. As a result, the inner density in 24Mg becomes lower.
The nucleon rearrangement of the 2s1/2 orbital can explain our
density difference.

Theoretically, the influences of single-particle structure on
density distributions were investigated by the mean-field mod-
els [55–58]. In this work, the relativistic Hartree-Bogoliubov
(RHB) with the DD-ME2 [59] and PC-PK1 interactions [60]
were used to quantitatively calculate the density differences.
The predicted nucleon occupation numbers of the 2s1/2 orbital
by the DD-ME2 and PC-PK1 interactions are 0.11 and 0.13
for 22Ne, and 0.09 and 0.10 for 24Mg, respectively. Com-
pared to the experimental occupation numbers [22], they are
very small. As shown in Fig. 4, the calculations with the
experimental occupation numbers describe the trend of the
density difference between 22Ne and 24Mg better than the pre-
dicted occupation numbers. In particular, the calculated matter
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density for 24Mg with the experimental occupation numbers
[22] shows a lower density in the interior, which is different
from the distribution of 22Ne, see Figs. 2 and 3. This indicates
that 24Mg may have a bubble structure in interior. However,
due to the reported occupation numbers without errors [22],
the effect of occupation number uncertainties on the calcu-
lated densities can not be studied. Otherwise, the correlations
beyond the mean field also can modify the density distribu-
tions [61]. As a result, theoretical calculations with precise
occupation numbers and appropriate correlations beyond the
mean field [61] are helpful to further confirm the bubble
structure in 24Mg.

IV. SUMMARY

We extracted the matter density distributions of 20,22Ne
and 24,26Mg from the reported small-angle differential cross

sections of proton elastic scattering at 0.8 GeV by using the
Glauber model. Based on the two-parameter Fermi density
model, the obtained matter radii are 2.891(52) fm, 2.895(104)
fm, 2.935(20) fm, and 2.946(21) fm for 20Ne, 22Ne, 24Mg,
and 26Mg, respectively. The matter density difference between
22Ne and 24Mg was discussed. Combined with the experimen-
tal occupation numbers, the relativistic Hartree-Bogoliubov
(RHB) calculations with the DD-ME2 and PC-PK1 interac-
tions describe the trend of the density difference, and suggest
that there may be a bubble structure in 24Mg.
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