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The generator coordinate method of a microscopic cluster model is developed to treat the resonance and
scattering of nuclear clusters with complex scaling. We consistently derive the formulation of the complex scaling
for the microscopic cluster model, in which only the relative motions between clusters are transformed in the
generator coordinate wave function. We also reveal the applicability of this method to the cluster wave function.
Furthermore, we demonstrate this framework in the 2α system of 8Be and obtain the solutions of resonance
and nonresonant continuum states. Using these solutions, we calculate the level density, which brings the phase
shifts of the cluster-cluster scattering. This work becomes the foundation in the description of the multicluster
scattering states of nuclei in a microscopic framework with complex scaling.
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I. INTRODUCTION

Clustering is a general phenomenon in nuclei [1–3], in
which some nucleons in nuclei are localized spatially and
form a cluster such as an α particle. A typical case is the 8Be
nucleus, which is unbound and decays into two α particles. By
adding one α particle to 8Be, the 0+

2 state in 12C (Hoyle state)
is known to have a 3α structure and this state is the resonance
located just above the threshold energy of the 3α emission.
Nuclear cluster states are often observed as resonances near
and above the threshold energy of the α-particle emissions [2].

The resonance can be defined as a decaying state by impos-
ing the boundary condition of the outgoing wave [4,5]. Under
this condition, the resonance has a complex energy eigenvalue
and its radial wave function shows diverging behavior in the
asymptotic region. There are several methods of treating reso-
nances with complex energies. The complex scaling method is
one of them, used to describe the resonances in various kinds
of quantum systems [6–13]. In this method, the boundary
condition of a resonance is transformed into the damping
behavior, the same as that of the bound state. Owing to this
property, the complex scaling is a promising way to describe
the resonance of nuclear many-body systems. By using the
Green’s function with complex scaling, many-body scattering
states can be described [11,14–16], and this framework is
useful to investigate many-particle emissions of stable and
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unstable nuclei in photodisintegrations and Coulomb breakup
reactions [11,17,18].

In nuclear cluster models, the resonating group method
(RGM) and the orthogonality condition model (OCM) have
been combined with the complex scaling [8,11,19–22]. In
these methods, the relative motions between clusters are
solved directly, and this property is compatible with the com-
plex scaling to describe the resonances in the dynamics of the
relative motions.

The Bloch-Brink (BB) α cluster model is also a micro-
scopic cluster model [23], and this model is combined with the
generator coordinate method (GCM) as BB + GCM, which is
flexible to treat various nuclear systems with scattering [2,24].
There are works to calculate resonances in GCM introducing
the absorbing boundary potential [25,26]. As an extension
of the BB cluster model, the antisymmetrized molecular dy-
namics (AMD) has been developed [27], and recently the
analytical continuation of the coupling constant (ACCC) was
applied to AMD + GCM [28] to discuss the resonances in
unstable nuclei from the extrapolation of the bound-state
solutions.

It is shown that the GCM for the cluster model is equiv-
alent to RGM [29]; however, in GCM the relative motion is
implicit, which makes it difficult to apply the complex scaling
to GCM. Recently, Zhang et al. described the resonances of
the 2α system of 8Be in BB + GCM with complex scaling
[30]. They transformed the parameters of the generator co-
ordinates in each cluster to the complex-scaled ones instead
of the transformation of the Hamiltonian, and obtained the
complex energy of resonances. This transformation reason-
ably works, but is not straightforward in its derivation. One
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needs to verify this transformation and clarify the condition of
this transformation on the cluster wave function. These points
are essential to develop the resonance treatment of nuclei in
the GCM approach, and this is the main purpose of the present
paper.

The complex scaling method can provide the level density,
the scattering phase shifts, and the various strength functions
via the Green’s function [11,15,16,31,32]. This property of the
complex scaling method enables us to treat many-body scat-
tering states consisting of multiple clusters of nuclei, which
so far have been investigated in OCM using the intercluster
potential [11,33]; however, this has not yet been done in a
microscopic way as in RGM and GCM. It is important to
obtain the level density, phase shifts, and strength functions
with complex scaling in the microscopic description of nu-
clear scattering.

In this paper, we provide a consistent derivation of the
complex scaling for BB + GCM and clarify its physical
meaning in relation to the relative motion between clusters.
We also reveal the applicability of this method to the cluster
wave function. Furthermore, we confirm the reliability of the
method by calculating the level density of the 2α system of
8Be, in which we use the complex-scaled solutions of the
resonant and nonresonant continuum states obtained in GCM.
We finally evaluate the phase shift of the α-α scattering in a
microscopic way. The present work becomes the foundation to
investigate the multicluster scattering phenomena in the GCM
approach with complex scaling.

In Sec. II, we derive the formulation to apply the complex
scaling method to the BB α-cluster model in the GCM calcu-
lations. In Sec. III, we discuss the resonances and scattering
of the 2α system of 8Be. In Sec. IV, we summarize this work.

II. THEORETICAL METHODS

A. Complex scaling method

We describe many-body resonances using the complex
scaling method [6,7,10,11,13]. In this method, the particle
coordinate {r j} and the conjugate momentum {p j} in the
Hamiltonian H and the wave function � are transformed
using a common scaling angle θ with an operator U (θ ) as

U (θ ) : r j → r j eiθ , p j → p j e−iθ , (1)

where j is the index of the degrees of freedom in the sys-
tem and θ is a real positive number. The complex-scaled
Hamiltonian H θ , wave function �θ , and total energy E θ are
given as

H θ = U (θ )HU −1(θ ), �θ = U (θ )� =
∑

n

Cθ
n �n,

E θ = 〈�̃θ |H θ |�θ 〉
〈�̃θ |�θ 〉 . (2)

The wave function �θ is expanded with the basis functions
{�n} with the index n, and {Cθ

n } are the unknown coeffi-
cients to be determined. From the variational principle for the
energy, δE θ = 0, one solves the eigenvalue problem of the
complex-scaled Hamiltonian matrix and obtains E θ and {Cθ

n }.
The wave function �̃θ is the biorthogonal state of �θ [34].

One does not take the complex conjugate in the radial part of
the bra state in the matrix elements.

The energy eigenvalues E θ are obtained for bound, res-
onant, and continuum states in the complex energy plane
according to the so-called ABC theorem [35]. The continuum
states start from the threshold energies of the cluster emis-
sions and are obtained with the complex energies on the lines
rotated down by 2θ from the real energy axis. The energy
eigenvalues of the bound and resonant states are independent
of θ in principle. The resonance has a complex energy of
ER = Er − i�/2, where Er is a resonance energy and � is a
decay width. For the resonance wave function, its asymptotic
behavior becomes the damping form if 2θ > | arg(ER)| [35].
In the numerical calculation, one can identify the resonance
in the complex energy plane from the stationary property of
ER with respect to θ [6,7,10]. In the present calculation, the
continuum states are discretized in the energy eigenvalues due
to the finite number of the basis states.

B. Bloch-Brink α cluster model

We explain the microscopic BB α cluster model for the
Nαα system [23], where Nα is the number of the α parti-
cles and the mass number A = 4Nα . The total wave function
�BB(ν) is a single Slater determinant of A nucleons and is
given as

φγ (ν, r, R) =
(

2ν

π

)3/4

e−ν(r−R)2
χγ , (3)

�α (ν, R) = A
⎧⎨
⎩

4∏
γ=1

φγ (ν, rγ , R)

⎫⎬
⎭, (4)

�BB(ν) = A′
{

Nα∏
i=1

�αi (ν, Ri )

}
. (5)

The single-nucleon wave function φγ (ν, r, R) has a Gaussian
wave packet with a common range parameter ν for all nu-
cleons and the centroid position R, which is a real number.
The spin and isospin part is χγ for p↑, p↓, n↑, and n↓ with
an index γ . The α cluster wave function is �α (ν, R) with a
common R being the generator coordinate of each α cluster.
This wave function is the 0s configuration. The BB wave
function �BB(ν) for the Nαα system has a set of {Ri} with
i = 1, . . . , Nα , the summation of which is zero:

∑Nα

i=1 Ri = 0.
The operator A is the antisymmetrizer for the nucleons in the
α cluster and A′ is the one for the nucleons in the different α

clusters.
We perform the projection of the intrinsic wave function

�BB(ν) on the eigenstates of the angular momentum J with
quantum numbers of M and K , and also the parity (±):

�J±
MK (ν) = PJ

MK P±�BB(ν), (6)

where PJ
MK and P± are the projection operators. The total

energy of the Nαα system is obtained by calculating the ex-
pectation value of the Hamiltonian H given as

H =
A∑

i=1

ti − TCM +
A∑

i< j

vi j, (7)
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where ti and TCM are the kinetic energies of each nucleon and
the center of mass (CM), respectively, and vi j is the two-body
nuclear and Coulomb interactions. This form of the Hamilto-
nian is based on the single-particle motion and is tractable in
the BB wave function.

The single BB wave function is extended to the multi-
configuration in the GCM using various sets of the Gaussian
centroids {Ri} in Eq. (5). We employ a finite number of the BB
basis states with different sets of {Ri} and superpose them in
BB + GCM. The total wave function �GCM is a superposition
of the projected BB basis states denoted as �n, and the total
energy EGCM is given as

�GCM =
NGCM∑
n=1

Cn�n,

EGCM = 〈�̃GCM|H |�GCM〉
〈�̃GCM|�GCM〉 , (8)

where we use the biorthogonal state in the bra state to apply
the complex scaling. From the variational principle for EGCM,
we solve the Hill-Wheeler equation, which results in a gener-
alized eigenvalue problem of the Hamiltonian matrix.

C. Complex-scaled generator coordinate method

We explain the application of the complex scaling method
to the GCM of the multi-α-cluster system. Zhang et al. in-
troduced the transformation of the generator coordinates of
clusters: {Ri} → {Rieiθ } in Eq. (5) [30]. We derive that this
transformation is equivalent to the complex scaling of only the
relative motions between clusters and clarify the condition of
this transformation on applying it to the GCM calculations.

In the nuclear cluster models of RGM and OCM, the rel-
ative wave function between clusters is explicit and directly
transformed with the complex scaling, while the internal wave
functions of clusters are not transformed. On the other hand,
the BB basis state is based on the single-particle picture in
the Slater determinant and the relative wave function does not
appear explicitly. Hence, it is not straightforward to apply the
complex scaling to the BB basis states, and we show here
the one treatment to solve this problem. For this purpose, we
discuss the 2α system of 8Be.

In the complex scaling method, we demand that the α

cluster state is fixed as the 0s configuration and transform
only the relative motion between two α clusters, which can
produce the resonances. In the 2α system, the Hamiltonian H
in Eq. (7) can be written with the internal α cluster part Hα

and the relative motion part Hrel as

H = Hα1 + Hα2 + Hrel,

Hα =
4∑

i=1

ti − TCM,α +
4∑

i< j

vi j, (9)

where TCM,α is the kinetic energy operator for CM of
the α cluster. We first define the complex-scaled Hamil-
tonian H̄ θ for the transformation of only the relative

motion as

H̄ θ = Hα1 + Hα2 + H θ
rel,

H θ
rel = Urel(θ )HrelU

−1
rel (θ ), (10)

where Urel(θ ) is the operator to transform Hrel. In the BB
basis states, it is difficult to calculate the matrix elements of
H̄ θ in the form of Eq. (10). Hence we introduce the inverse
transformation of the complex scaling for Hα1 and Hα2 as

H̄ θ = U −1
α1

(θ )H θ
α1

Uα1 (θ ) + U −1
α2

(θ )H θ
α2

Uα2 (θ ) + H θ
rel,

H θ
αi

= Uαi (θ )HαiU
−1
αi

(θ ), (11)

where i = 1, 2. The operator Uα (θ ) transforms the internal
coordinates and momenta of the α cluster in Hα . This operator
satisfies the following commutation relations owing to the
irrelevant degrees of freedom with i �= j;[

Uαi (θ ), H θ
α j

] = 0,
[
Uαi (θ ), H θ

rel

] = 0,[
Uαi (θ ),Uα j (θ )

] = 0. (12)

Using these relations, H̄ θ can be written as

H̄ θ = U −1
α2

(θ )U −1
α1

(θ )
{
H θ

α1
+ H θ

α2
+ H θ

rel

}
Uα1 (θ )Uα2 (θ )

= U −1
α2

(θ )U −1
α1

(θ ) H θ Uα1 (θ )Uα2 (θ ). (13)

Here H θ is the complex-scaled Hamiltonian transformed from
H in Eq. (7) using Uall(θ ) for all degrees of freedom;

Uall(θ ) = Uα1 (θ )Uα2 (θ )Urel(θ ),

H θ = Uall(θ )H U −1
all (θ ). (14)

The matrix elements of H θ are calculable in the BB basis
states, because all degrees of freedom are commonly trans-
formed with θ .

Next, we operate Uα (θ ) in Eq. (13) to the internal wave
function of the α cluster. Here, we omit the spin-isospin part
for simplicity. The α cluster wave function in Eq. (4) can be
decomposed into the internal and CM parts, and the internal
part �int

α (ν) is given with the Jacobi coordinates {r̃k} and
the corresponding range parameters {ν̃k} with k = 1, 2, and
3 [29], defined as

�int
α (ν) = A

{
3∏

k=1

(
2ν̃k

π

)3/4

e−ν̃k r̃2
k

}
,

r̃k = rk+1 − 1

k

k∑
i=1

ri, ν̃k = k

k + 1
ν. (15)

The operator Uα (θ ) acts on only the internal wave function of
the α cluster:

Uα (θ )�int
α (ν) = A

{
3∏

k=1

e3iθ/2

(
2ν̃k

π

)3/4

e−ν̃k r̃2
k e2iθ

}

= A
{

3∏
k=1

(
2ν̃ke2iθ

π

)3/4

e−(ν̃ke2iθ )r̃2
k

}

= �int
α (νe2iθ ) =: Uα,ν (2θ )�int

α (ν), (16)
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where the factor e3iθ/2 comes from the Jacobian. We define the
operator Uα,ν (2θ ) to transform the range parameter ν to νe2iθ

in the internal wave function of the α cluster. Equation (16)
shows an important property: no other parameters are involved
in the transformation. We can write H̄ θ in Eq. (13) with
Uα,ν (2θ ) supposing the application to the BB wave function
as

H̄ θ = U −1
α2,ν

(2θ )U −1
α1,ν

(2θ ) H θ Uα1,ν (2θ )Uα2,ν (2θ ). (17)

We set the BB wave function of the 2α system with the
generator coordinates R1 = R and R2 = −R and extract the
relative and CM wave functions between 2α [29] as

�BB(ν) = A′{�α1 (ν, R) · �α2 (ν,−R)}
= A′{�int

α1
(ν)�CM

α1
(ν, R) · �int

α2
(ν)�CM

α2
(ν,−R)

}
= A′{�int

α1
(ν)�int

α2
(ν) · �rel(ν)

}
�CM

2α (ν). (18)

The relative and CM wave functions, �rel(ν) and �CM
2α (ν), are

given with the relative and the CM coordinates of r and rG,
respectively, as

�rel(ν) =
(

4ν

π

)3/4

e−2ν(r−2R)2
,

�CM
2α (ν) =

(
16ν

π

)3/4

e−8νr2
G . (19)

We try to apply the complex scaling to �BB(ν) of 2α in
Eq. (18), expanding the antisymmetrization as

Uα1,ν (2θ )Uα2,ν (2θ )�BB(ν)

= �int
α1

(νe2iθ ) · �int
α2

(νe2iθ ) · �rel(ν) · �CM
2α (ν) + · · · .

In this equation, the range parameters are different among the
internal, relative, and CM parts. From this form it is difficult
to calculate the matrix elements with the BB basis states.

It is noticed here that the relative wave function between
clusters is unknown in the GCM calculation, and the super-
position of the relative wave function �rel(ν) in the BB basis
states is the function to be determined. This means that we
can replace this part with �rel(νe2iθ ) for the basis states to be
superposed. Similarly, the CM wave function, �CM

2α (ν), does
not affect any solutions in the GCM calculation, and then we
can replace it with �CM

2α (νe2iθ ). Following these properties,
the internal, relative, and CM parts of the BB wave function
can have the same dependence of νe2iθ and then we can define
the transformed wave function �BB(νe2iθ ) as follows:

Uα1,ν (2θ )Uα2,ν (2θ )�BB(ν)

→ A′{�int
α1

(νe2iθ ) · �int
α2

(νe2iθ ) · �rel(νe2iθ )
}
�CM

2α (νe2iθ )

= A′{�α1 (νe2iθ , R) · �α2 (νe2iθ ,−R)}
= �BB(νe2iθ ) =: Uν (2θ )�BB(ν), (20)

Here we can express the transformed BB wave function in
the Slater determinant because all nucleons have a common
range parameter νe2iθ , and we define the operator Uν (2θ ) for
the total system. Finally, we express H̄ θ in Eq. (17) with

Uν (2θ ) as

H̄ θ = U −1
ν (2θ )H θUν (2θ ). (21)

We use this complex-scaled Hamiltonian H̄ θ in the BB +
GCM calculation. The physical meaning of H̄ θ is that only the
relative motion between clusters is transformed. The matrix
elements of H̄ θ with the BB basis states, �m and �n, are given
as

〈�̃m(ν, R)|H̄ θ |�n(ν, R′)〉
= 〈�̃m(νe2iθ , R)|H θ |�n(νe2iθ , R′)〉
= 〈�̃m(νe2iθ , R)|Uall(θ ) H U −1

all (θ )|�n(νe2iθ , R′)〉, (22)

where we write the two arguments in the BB basis states to
show the operation of the complex scaling. The vectors R and
R′ stand for the sets of generator coordinates {Ri} and {R′

i}
with i = 1, 2 for 2α, respectively. We operate U −1

all (θ ) to the
single-nucleon wave functions {φ} in Eq. (3) having a range
parameter νe2iθ and the generator coordinate Ri in the BB
basis states as

U −1
all (θ )φ(νe2iθ , r, Ri )

= e−3iθ/2

(
2νe2iθ

π

)3/4

e−νe2iθ (re−iθ −Ri )2

=
(

2ν

π

)3/4

e−ν(r−Rieiθ )2 = φ(ν, r, Rie
iθ ). (23)

It is found that the generator coordinate is transformed into
Rieiθ , while the range parameter returns to ν. This transforma-
tion is used in Ref. [30]. We give the complex-scaled matrix
elements of the Hamiltonian, H̄ θ

mn, and norm, N̄θ
mn, as

H̄ θ
mn = 〈�̃m(ν, Reiθ )|H |�n(ν, R′eiθ )〉,

N̄θ
mn = 〈�̃m(ν, Reiθ )|�n(ν, R′eiθ )〉. (24)

We omit the notation of the J± projections for simplicity. The
norm matrix is transformed and then is not positive definite.
The eigenvalue problem to get the total energy E θ

GCM is given
as

NGCM∑
n=1

(
H̄ θ

mn − E θ
GCMN̄θ

mn

)
Cθ

n = 0. (25)

The present framework can be extended to multi–cluster
systems such as 3α to treat many-body resonances in the com-
plex scaling method. The addition of valence nucleons is also
available, such as α + α + n. The condition of the framework
is given in Eq. (16) for the internal wave function of a cluster:
the complex scaling to the physical coordinates is equivalent
to the complex scaling to the range parameter ν. This means
that the internal wave function of a cluster cannot have the
generator coordinates, and then the harmonic oscillator shell
model wave function is applicable as in 16O and 40Ca. This is
because the harmonic oscillator basis function is a function
of

√
νr in the radial part with ν = mω/(2h̄) and satisfies

the condition of Eq. (16). The configuration mixing is also
available with the separation of the CM motion of cluster.
Using the Green’s function with complex scaling, one can
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FIG. 1. Energy eigenvalues of 8Be (0+, 2+, 4+, and 6+) for the full Hamiltonian H̄ θ (solid symbols) and the asymptotic one H̄ θ
0 (open

symbols) in the complex energy plane with θ = 27◦, measured from the α + α threshold energy.

investigate the multicluster scattering states involving the ef-
fect of resonances under the correct boundary condition [11].

D. Level density

In the complex scaling method, the completeness relation
is expressed in terms of the solutions of the bound (B), reso-
nant (R), and nonresonant continuum (C) states [14,34] given
as

1 =
∑

n∈B,R,C

∣∣�θ
n

〉〈
�̃θ

n

∣∣, (26)

where n is the state index. Using the complex-scaled solutions
of {�θ

n , �̃θ
n } and the energy eigenvalues {E θ

n }, one can intro-
duce the complex-scaled Green’s function Gθ (E ):

Gθ (E ) = 1

E − H̄ θ
=

∑
n

∣∣�θ
n

〉〈
�̃θ

n

∣∣
E − E θ

n

. (27)

We apply the complex scaling to the level density ρ(E ) =∑
n δ(E − En) and use Gθ (E ) [15,31,32]. The complex-scaled

level density ρθ (E ) is given as

ρθ (E ) = − 1

π
Im{Tr Gθ (E )} = − 1

π

∑
n

Im

(
1

E − E θ
n

)
.

(28)

We also consider the asymptotic Hamiltonian H̄ θ
0 , omitting

the finite-range interaction between clusters from the full
Hamiltonian H̄ θ . The energy eigenvalues are {E θ

0,n} and the

asymptotic level density ρθ
0 (E ) is given as

ρθ
0 (E ) = − 1

π

∑
n

Im

(
1

E − E θ
0,n

)
. (29)

The difference between ρθ (E ) and ρθ
0 (E ) is the so-called

continuum level density �(E ) representing the effect of the
interaction in the level density. It is shown that �(E ) is ob-
tained independently of θ [15]. It is known that �(E ) has a
relation to the scattering matrix S(E ) [36,37] as

�(E ) = ρθ (E ) − ρθ
0 (E ) = 1

2π
Im

d

dE
ln{det S(E )}. (30)

In the single channel problem, �(E ) gives the derivative of
the phase shift as

�(E ) = 1

π

dδ(E )

dE
. (31)

We obtain the phase shift from the integral of �(E ) as

δ(E ) = π

∫ E

−∞
�(E ′)dE ′. (32)

Using the energy eigenvalues in the complex scaling, one
can evaluate the phase shift of the cluster-cluster scattering.
Numerically, we check the stationary property of the solutions
with respect to the scaling angle θ , because of the finite num-
ber of the basis states. This framework of the level density
can be applied to the many-body scattering states straightfor-
wardly, as in the 3α system [11].
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TABLE I. Resonance parameters of 8Be measured from the α+α

threshold energy in MeV. The experimental data are in the square
brackets [40,41].

J± Energy Decay width

0+ 0.08 <1 × 10−3

[0.0918] [5.57(25) × 10−6]

2+ 2.50 1.27
[3.12(1)] [1.513(15)]

4+ 10.72 6.14
[11.44(15)] [≈ 3.5]

6+ 24.18 31.74
[≈28] [≈ 20]

We define the asymptotic Hamiltonian H0 of the 2α system
[38] before applying the complex scaling:

H0 =
8∑

i=1

ti − TCM +
∑

i< j∈α1

vi j +
∑

i< j∈α2

vi j + Z1Z2e2

rα1α2

. (33)

We include the nuclear and Coulomb interactions in each α

cluster, but omit the nuclear interaction for the intercluster
part. The intercluster Coulomb interaction is replaced with
the point type, where Zi is the charge number of αi and
rα1α2 = |rα1 − rα2 | is the intercluster distance. The coordinate
rα represents the CM position of the α cluster. We also define
the asymptotic BB wave function �BB,0 of 2α, omitting the
antisymmetrization between the nucleons in the different α

clusters [38] as
�BB,0 = �α1 (ν, R1) · �α2 (ν, R2). (34)

We calculate the complex-scaled matrix elements of H̄ θ
0 with

�BB,0 and solve the eigenvalue problem to get the energy
{E θ

0,n}.

III. RESULTS

A. α-α resonances

In this study, we treat the 2α system of 8Be and discuss
the α-α resonances in the GCM calculation. We use the
effective nucleon-nucleon interaction of the Volkov No. 2
central force with Majorana parameter M = 0.6 [20,39] and
the point Coulomb force for protons. In the BB wave func-
tion, we use the range parameter ν = 0.264 fm−2 in Eq. (3),
which minimizes the energy of the α particle, Eα = −27.96
MeV. The matter radius of the α particle is 1.46 fm. For
generator coordinates of the 2α system, we employ 30 basis
states with the mean relative distance between two α clusters
from 2/3 to 20 fm at equal intervals, which are sufficient
to converge the solutions. In particular, the basis states with
long intercluster distances tend to contribute to the contin-
uum level density and phase shift near the α + α threshold
energy.

We solve the complex-scaled eigenvalue problem in
Eq. (25) for 2α of 8Be (0+, 2+, 4+, and 6+). In Fig. 1,
we show the energy eigenvalues {E θ

n } of four spin states in
the complex energy plane with solid symbols. We set the
scaling angle θ = 27◦, which gives the stable solutions of
the energy eigenvalues of resonances and the level density.
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FIG. 2. Two kinds of level densities, ρθ (E ) and ρθ
0 (E ), and the continuum level density �(E ) of 8Be (0+, 2+, 4+, and 6+), measured from

the α+α threshold energy. The upper arrows indicate the resonance energies of 2+, 4+, and 6+ in Table I.
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The continuum states are discretized almost in a straight line
and we find one resonance in each spin state, which deviates
from the continuum states. For the 0+ resonance, its energy
eigenvalue is obtained very close to the α+α threshold energy.
In Table I, we list the resonance energies and decay widths
of four resonances of 8Be in comparison with the experimen-
tal data. One can confirm the good correspondence between
them.

We also calculate the eigenstates of the asymptotic Hamil-
tonian H̄ θ

0 of 2α using the asymptotic BB basis states for level
density. We employ the same parameters of the generator co-
ordinates as used in the calculation with the full Hamiltonian
H̄ θ and set θ = 27◦. In Fig. 1, we show the energy eigenvalues
{E θ

0,n} of four spin states with open symbols as well as {E θ
n }.

B. Level density and phase shift

Using {E θ
n } and {E θ

0,n} of 2α, we calculate two kinds of
level densities, ρθ (E ) and ρθ

0 (E ), respectively, which are used
to evaluate the phase shift of the α-α scattering. In Fig. 2,
we show ρθ (E ) and ρθ

0 (E ), the difference of which gives the
continuum level density �(E ). For 0+, one confirms a very
sharp peak at the zero energy in �(E ) (red line): there are two
peaks in ρθ (E ) (green line), at zero energy and 1 MeV, respec-
tively, and the peak at 1 MeV is subtracted by ρθ

0 (E ) (blue
line) as background coming from the discretized continuum
states, and the remaining peak at zero energy comes from the
resonance contribution. For 2+, there are two peaks in ρθ (E )
(green line), and the one at lower energy is entirely subtracted
by ρθ

0 (E ) (blue line) and the higher peak at 2.5 MeV remains
in �(E ) (red line). The peak in �(E ) represents a resonance
effect and the subtracted peak comes from the discretized
continuum states. For 4+, similarly to 2+, the lower-energy
peak in ρθ (E ) is subtracted by ρθ

0 (E ), and the peak at around
11 MeV remains in �(E ) and represents a resonance effect.
For 6+, ρθ (E ) and ρθ

0 (E ) are very similar and then �(E )
shows a very broad and small peak structure, the peak energy
of which agrees with the resonance energy of 24 MeV.

For four spin states, the peak energies in �(E ) agree with
the resonance energies shown in Table I (arrows in Fig. 2).
Namely, from Eq. (31), the energy at a maximum derivative
in the phase shift fairly indicates the resonance energy. One
can discuss the existence of resonances in the distribution of
�(E ).

Finally, we evaluate the phase shift of the α-α scattering
by integrating �(E ) over energy in Eq. (32). In Fig. 3, we
show the phase shifts of the four spin states, where we put
the arrows at the resonance energies of 2+, 4+, and 6+. The
resulting phase shifts are consistent with the RGM calculation
with R matrix [20] and also fairly reproduce the experimental
data. One can apply the complex-scaled generator coordinate
method to the scattering problem between various nuclear
cluster systems.

IV. SUMMARY

The complex scaling is a useful method to investigate the
resonances in many-body quantum systems in various physics
fields. In this paper, we presented a consistent construction of
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FIG. 3. Phase shifts of the α-α scattering (0+, 2+, 4+, and 6+)
in the center-of-mass frame. The open symbols indicate the experi-
mental data [42]. The upper arrows indicate the resonance energies
of 2+, 4+, and 6+ in Table I.

the formulation of the complex-scaled generator coordinate
method for the microscopic cluster model of nuclei, in which
only the relative motions between clusters are transformed.
We applied the present framework to calculate the level den-
sity in a microscopic way, which connects to the scattering
matrix.

In the generator coordinate method of the Bloch-Brink α

cluster model, the complex scaling is applicable by transform-
ing the generator coordinates of each α cluster. We derive
the equivalence of this method and the transformation of the
relative motions between clusters, while the internal wave
function of the α cluster is not transformed. This frame-
work is extendable to multicluster systems such as 3α and
the addition of valence nucleons, imposing a condition on
the cluster wave function: each cluster does not involve the
internal generator coordinate. The harmonic oscillator shell
model wave function is applicable for clusters as in 16O. The
formulation is desired to be developed to treat various types of
the cluster wave functions of nuclei, such as the α condensate
wave function [43], the antisymmetrized molecular dynamics
(AMD) [27,28], the tensor-optimized AMD [44,45], and the
high-momentum AMD [46,47], the latter two of which can
treat the bare nuclear interaction.

In this paper, we showed the reliability of the method by
solving the α-α scattering problem of 8Be. We obtain the
resonant and nonresonant continuum solutions in the complex
scaling. Using them in the Green’s function, we calculate
the level density and evaluate the scattering phase shifts. We
expect further applications of the present framework to the nu-
clear clustering phenomena involving many-body resonances
because many-body unbound states can be treated in the com-
plex scaling.
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