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Nuclear short-range correlations and the zero-energy eigenstates of the Schrödinger equation
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We present a systematic analysis of the nuclear two- and three-body short-range correlations and their relations
to the zero-energy eigenstates of the Schrödinger equation. To this end we analyze the doublet and triplet
coupled-cluster amplitudes in the high momentum limit, and show that they obey universal equations inde-
pendent of the number of nucleons and their state. Furthermore, we find that these coupled-cluster amplitudes
coincide with the zero-energy Bloch-Horowitz operator. These results illuminate the relations between the nu-
clear many-body theory and the generalized contact formalism, introduced to describe the nuclear two-body short
range correlations, and they might also be helpful for general coupled-cluster computations as the asymptotic
part of the amplitudes is given and shown to be universal.
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I. INTRODUCTION

Nuclear short-range correlations (SRCs) have been stud-
ied extensively over the last few decades (see Refs. [1,2]
for recent reviews). Large momentum-transfer quasielastic
electron and proton scattering reactions are the main exper-
imental tools facilitating these studies [3,4]. In such reactions,
interpreted in a high resolution picture, back-to-back SRC
nucleon pairs were clearly identified [5–10], with a significant
dominance of neutron-proton pairs [9,11–14]. Inclusive reac-
tions where used to study the abundance of such SRC pairs
[15–19]. Currently, ab initio approaches are unable to directly
calculate the cross sections of these reactions, in all but the
lightest nuclei. Nevertheless, qualitatively similar conclusions
were obtained in structure studies, that focused mainly on the
high momentum tail of the nuclear momentum distribution
[20–28]. The study of nuclear three-body SRCs, i.e., three
nucleons at close proximity, is still very preliminary at this
stage [29,30] and their impact on nuclear quantities is still
mostly unknown.

Following Tan’s work on ultracold atoms [31–34], the gen-
eralized contact formalism (GCF) was introduced and utilized
to analyze SRC effects in nuclei [35–38]. It is based on
the scale separation ansatz, assuming a factorization of the
nuclear wave function when two nucleons are close to each
other. The GCF provides a framework to study both nuclear
structure and nuclear reactions, and was successfully tested
against ab initio studies, providing a good description of both
two-body densities at short distance and high-momentum tails
of different momentum distributions [36,39,40]. In addition,
the GCF is found to be in good agreement with exclusive
electron scattering experiments and other reactions sensitive
to SRC pairs [12–14,37,41–45]. As such, the GCF allows for
a quantitative comparison between ab initio calculations and
experimental results, with direct connection to the underlying
nuclear interaction. The GCF results lead to a comprehensive
and consistent picture of nuclear SRCs, where the only tension

is with respect to the analysis of inclusive reactions [46].
Recently, shell-model calculations were combined with the
GCF to calculate nuclear matrix elements for neutrinoless
double beta decay [47], taking into account both short-range
and long-range contributions consistently.

As pointed out, the GCF is based on the asymptotic fac-
torization ansatz for the many-body nuclear wave function �,
when nucleon i is close to nucleon j [36]:

� −−−→
ri j→0

∑
α

ϕα
i j (ri j )A

α
i j (Ri j, {rk}k �=i, j ). (1)

In this picture, particles i and j are strongly interacting, and
therefore are described by a two-body function ϕα

i j , decoupled
from the rest of the system, which is described by the function
Aα

i j . In the GCF, ϕα
i j is assumed to be universal, i.e., inde-

pendent of the nucleus or its many-body state, and is defined
to be the zero-energy solution of the two-body Schrödinger
equation with quantum numbers α, obtained with the same
nucleon-nucleon interaction model used for the many-body
wave function. A similar factorization should hold in momen-
tum space, for pairs with high relative momentum ki j :

�̃(k1, k2, . . . , kA) −−−−→
ki j→∞

∑
α

ϕ̃α
i j (ki j )Ã

α
i j (K i j, {kn}n �=i, j ),

(2)

where ϕ̃α
i j and Ãα

i j are respectively the Fourier transforms of
ϕα

i j and Aα
i j . Based on these asymptotic factorizations, nuclear

contact matrices are defined as

Cαβ
i j = Ni j

〈
Aα

i j

∣∣Aβ
i j

〉
. (3)

Here, i j stands for one of the pairs: proton-proton, neutron-
neutron or neutron-proton, and Ni j is the total number of
i j pairs in the nucleus. The diagonal contact elements Cαα

i j
are proportional to the number of SRC pairs with quantum
number α in a given nuclear state.
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The asymptotic factorization, including the definition of
the universal two-body functions, is the underlying assump-
tion for the GCF predictions, and was verified numerically
using ab-initio calculations [36,39,40]. It is also supported by
the work of Refs. [48–50], based on renormalization group
arguments. In view of its success, the two-body GCF is ex-
pected to be the leading order term of a short-range (or a
high-momentum) expansion of the nuclear wave function.
However, next order corrections are currently not well under-
stood, especially the role of the elusive SRC triplets.

In this work we study the asymptotic form of the nu-
clear wave-function using the coupled-cluster (CC) expansion
[51,52], aiming to put the GCF on a more solid theoretical
grounds. In addition, the CC expansion provides a system-
atic way to include higher order corrections, e.g., three-body
SRCs, beyond the leading two-body SRC term of the asymp-
totic expansion of the many-body wave function. Here, we
limit our attention to Hamiltonians containing only two-body
interaction, postponing the discussion of three-body forces to
future works.

The paper is organized as follows. In Sec. II we provide
a short introduction to the CC expansion method. Then, in
Sec. III we discuss the momentum basis and its merits. The
derivation of the high-momentum asymptotic equations gov-
erning the behavior of two-body and three-body SRCs is
presented in Sec. IV. In Sec. V we focus on two-body correla-
tions and analyze their universal behavior. Three-body effects
are then analyzed in Sec. VI, where we derive the appropriate
universal equation and show its relation to the solution of the
zero-energy three-body problem. For the sake of brevity some
more technical details are presented in the Appendixes.

II. COUPLED CLUSTER THEORY

The general form of a Hamiltonian describing a many-
particle system interacting via two-body potential V̂ is given
by

Ĥ ≡ Ĥ0 + Û + V̂

=
∑

r

εrr†r +
∑
rr′

U r
r′r†r′ + 1

4

∑
rsr′s′

V rs
r′s′r†s†s′r′, (4)

where Ĥ0 is the “zero-order” or unperturbed Hamiltonian
(not necessarily the free Hamiltonian), and Û is the resid-
ual one-body interaction. The operators r, s, . . . are the usual
fermionic ladder operators corresponding to the single particle
eigenstates |r〉, |s〉, . . . of Ĥ0, i.e., Ĥ0|r〉 = εr |r〉, or equiva-
lently

[Ĥ0, r†] = εrr† [Ĥ0, r] = −εrr, (5)

where [Â, B̂] is the regular commutator. They obey the anti-
commutation relations

{r, s} = 0, {r†, s†} = 0, {r†, s} = δrs. (6)

In the following we will use the notation |r1r2 · · · rA〉
to denote normalized antisymmetrized A-body states and
|r1r2 · · · rA) to denote the simple, nonsymmetrized, many-
body states, e.g., |rs〉 = 1√

2
[|rs) − |sr)]. The matrix elements

of the two-body potential V̂ are then given by

V rs
r′s′ = 〈rs|V̂ |r′s′〉 = (rs|V̂ |r′s′) − (rs|V̂ |s′r′). (7)

The starting point of the CC method is a reference Slater-
determinant state |�0〉, composed of A single particle states.
In general, a wave function |�〉 is a linear combination
of all such Slater determinants. These determinants can be
organized in a systematic way, by considering first the de-
terminants obtained replacing a state occupied in |�0〉 with
a state not occupied in |�0〉, then replacing two such states,
and so on. Following the convention of Shavitt and Bartlett
[53], we use the letters i, j, . . . , n to denote “hole” states, i.e.,
single-particle states that are occupied in |�0〉, and the let-
ters a, b, . . . , f to denote “particle” states, i.e., single-particle
states that are not occupied in |�0〉. r, s, . . . ,w will be used to
denote both states. Therefore,

i†|�0〉 = 0 and a|�0〉 = 0. (8)

The interacting many-body state |�〉, an eigenstate of Ĥ , is
written in the CC formulation as

|�〉 = eT̂|�0〉, where T̂ =
∑

n

T̂n, (9)

and

T̂n = 1

n!2

∑
a1...an,i1...in

t a1a2...an
i1i2...in

a†
1a†

2 · · · i2i1 (10)

is the n-particle, n-hole (npnh) cluster operator.
To determine the amplitudes t a1a2···an

i1i2···in , a set of nonlinear
equations, the CC equations, can be obtained by project-
ing the Schrödinger equation on an npnh state |�ab···

i j··· 〉 ≡
a†b† · · · ji|�0〉. The full derivation of the CC equations is
given, e.g., in Ref. [53]. Omitting the one-body potential term
Û and the 1p1h cluster operator T̂1, the two- and three-body
CC equations are given by

0 = 〈
�ab

i j

∣∣V̂ + [Ĥ0, T̂2] + [V̂ , T̂2] + 1
2 [[V̂ , T̂2], T̂2]

+ [V̂ , T̂3] + [V̂ , T̂4]|�0〉, (11)

0 = 〈
�abc

i jk

∣∣[Ĥ0, T̂3] + [V̂ , T̂2] + 1
2 [[V̂ , T̂2], T̂2] + [V̂ , T̂3]

+ [[V̂ , T̂2], T̂3] + [V̂ , T̂4] + [V̂ , T̂5]|�0〉. (12)

III. MOMENTUM BASIS STATES

To study SRCs it is most convenient to work with single-
particle basis states, i.e., the eigenstates of Ĥ0 that have well
defined momentum. This choice is natural for an infinite sys-
tem like nuclear matter—see, e.g., [54,55]—but it might seem
rather odd for describing a bound nucleus which is a compact
object. However, large nuclei have relatively constant density
and far from the surface behave like an infinite nuclear system.
Thus, we set the problem in a box of size L with periodic
boundary conditions. For L larger than the nucleus size, the
wave function and the binding energy approach very fast the
free space (L → ∞) values and we need not worry about the
impact of the boundary conditions on the nuclear SRCs.
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Assuming p = (p1, p2, p3) to be a triad of integers, the
basis states {|p〉}

〈x||p〉 = 1√
	

ei 2π
L x·p, 〈p||p′〉 = δp,p′ , (13)

with 	 = L3, are a complete set of orthonormal states, which
combined with the spin and isospin degrees of freedom
form our single-particle basis. A natural choice for |�0〉, the
starting point of the CC expansion, is a Slater determinant
composed of the A lowest kinetic energy single-particle states.

If there is a well defined Fermi momentum pF , such that all
the hole states are momentum states with momentum smaller
than pF , while particle states have momentum larger than pF ,
then the system is called a closed shell system. To simplify
matters, in the following we shall restrict our the discussion to
such closed shell systems only.

Working with this single-particle momentum basis, Ĥ0 co-
incides with the kinetic energy operator and therefore Û = 0.
The Slater determinant |�0〉, as well as the npnh states |�ab...

i j... 〉,
are products of single-particle momentum states, hence they
are eigenstates of the total center-of-mass (CM) momentum
operator P̂CM. The two-body potential is translationally invari-
ant, hence the CM momentum is a good quantum number, and
the wave function |�〉 is also an eigenstate of P̂CM,

P̂CM|�〉 = P̂CMeT̂|�0〉 = PCM|�〉. (14)

Closing the last equation with 〈�0| and acting with P̂CM once
to the left and once to the right, and noting that 〈�0||�〉 �= 0,
we must conclude that |�0〉 and |�〉 share the same eigenvalue
of the total momentum PCM.

We may now repeat the same argument for the 1p1h states.
Closing Eq. (14) with 〈�a

i | and using 〈�a
i |�〉 = t a

i we get

(pa − pi )t
a
i = 0, (15)

which for all closed shell systems implies [54,56]

t a
i = 0, (16)

because (pa − pi ) �= 0, as pa corresponds to a particle state
while pi to a hole state. Thus, with this choice of basis states,
T̂1 is eliminated from the CC expansion, as was assumed in
Eqs. (11) and (12).

Considering now the 2p2h states, multiplying Eq. (14) by
〈�ab

i j | one gets [55]

(pa + pb − pi − p j )t
ab
i j = 0. (17)

This implies that T̂2 conserves momentum, i.e., t ab
i j = 0 if

pa + pb − pi − p j �= 0. It can be similarly shown that for a
closed shell system all amplitude operators T̂n must conserve
momentum.

IV. COUPLED CLUSTER AMPLITUDES
IN THE HIGH-MOMENTUM LIMIT

SRCs are associated with high-momentum particles. To un-
derstand their role in the many-body wave-function we need
to study the high-momentum behavior of the CC amplitudes
T̂n as dictated by Eqs. (11) and (12). In the following we will
assume a, b, and c to be highly excited states corresponding to

momenta pa, pb, pc 
 pF. We note that in order for the wave
function to be properly normalized the CC amplitudes T̂n must
vanish in this limit, e.g., t abc

i jk → 0 when a, b, c → ∞.
For a system of fermions, we expect the CC amplitudes

to admit the natural hierarchy, where double excitations are
much more significant than three-body excitations which on
their part are more important than the four-body excitations,
etc. It follows that the contributions of [V̂ , T̂3] and [V̂ , T̂4] to
the two-body equation can be neglected. Similarly, the terms
[V̂ , T̂4] and [V̂ , T̂5] can be neglected in the three-body CC
equation.

In order to understand the behavior of the CC amplitudes
in the high-momentum limit, let us inspect the T̂2 equation,
Eq. (11), in the limit pa, pb → ∞. In this case, the leading
terms are the source term V ab

i j and the kinetic energy term
[Ĥ0, T̂2]. Retaining only these terms leads to the well known
asymptotic result

t ab
i j → − 1

Eab
i j

V ab
i j , (18)

where Eab
i j is the excitation energy given by the relation

Ea1a2...an
i1i2...in

≡ (
εa1 + εa2 + · · · εan

) − (
εi1 + · · · + εin

)
. (19)

If, for pa, pb → ∞, the potential matrix elements V ab
i j are

independent of the exact holes states, i.e., V ab
i j ≈ V ab

0i0 j
, with

0i being a zero-momentum state (used loosely to indicate
the lowest momentum state with the same quantum numbers
as the state i), the asymptotic two-body amplitude presented
in Eq. (18) is universal in the limited sense. That is, t ab

i j ≈
− 1

Eab
00

V ab
00 is independent of the number of nucleons A and the

specifics of the nuclear state. On the other hand, it depends
on the potential, therefore its universality is limited. This
form of asymptotic behavior was first suggested by Amado
[57] exploring the asymptotic form of the nuclear momentum
distribution. It turns out, however, that although Eq. (18) is
asymptotically correct, it is valid only at extremely high mo-
mentum, larger than 10 fm−1, making it impractical for actual
calculations [58]. Consequently, in order to get a reasonable
description of the asymptotic nuclear wave function, we must
retain more terms besides the source term and the [Ĥ0, T̂n]
terms in the CC equations.

With the three- and four-body amplitudes neglected, the
CC T̂2 equation, Eq. (11), takes the form

0 = 〈
�ab

i j

∣∣V̂ + [Ĥ0, T̂2] + [V̂ , T̂2] + 1
2 [[V̂ , T̂2], T̂2]|�0〉. (20)

Comparing now the terms [V̂ , T̂2] and [[V̂ , T̂2], T̂2] we note
that for the latter we get the following matrix elements,
ignoring combinatorical factors:

V kl
de t ab

ik t de
jl , V kl

de t ab
kl t de

i j , V kl
de t ad

ik t be
jl , V kl

de t ad
i j t be

kl . (21)

Here, for brevity, we use the Einstein convention assuming
implicit summation on repeated lower and upper indices.
To inspect these terms in the high-momentum pa, pb → ∞
limit it would be insightful to address them in the low
density i, j, k, l → 0 limit, in which case these terms take
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the form

2V 00
de tde

00 t ab
00 and 2V 00

de tad
00 t be

00 . (22)

The first of these terms is nothing but an energy shift, a correc-
tion to the excitation energy Eab

i j , which we can neglect in the
high-momentum limit. We note that the term is zero unless
pd = −pa, pe = −pb, and pb = −pa. This term is clearly
suppressed by a factor of t ab

00 with respect to [V̂ , T̂2], and thus
can be neglected as well.

The definition of high momentum can now take shape. A
momentum will be high momentum if (i) The kinetic energy
is much higher than the potential matrix elements, and (ii) the
momentum is much higher than the Fermi momentum pF.

Note, however, that although the second point can always
exist by considering higher pa, pb, the existence of the first
point depends also on the chosen potential.

Considering now the T̂3 equation, Eq. (12). After neglect-
ing the T̂4, T̂5 as well as the [[V̂ , T̂2], T̂3] � [[V̂ , T̂2], T̂2] terms,
we remain with

0 = 〈
�abc

i jk

∣∣[Ĥ0, T̂3] + [V̂ , T̂2]

+ 1
2 [[V̂ , T̂2], T̂2] + [V̂ , T̂3]|�0〉. (23)

Comparing again the [V̂ , T̂2] and [[V̂ , T̂2], T̂2] terms, we see
that the only terms that survive in the high-momentum/low-
density limit are respectively V ab

e0 t ce
00, and V a0

e f t be
00t c f

00 . Thus as
before, the double commutator term is suppressed by a factor
of t ab

00 and can be neglected.
Summing up, in the limit of high momenta, we expect the

two- and three-body CC amplitudes to obey the equations

0 = 〈
�ab

i j

∣∣[Ĥ0, T̂2] + [V̂ , T̂2] + V̂ |�0〉, (24)

0 = 〈
�abc

i jk

∣∣[Ĥ0, T̂3] + [V̂ , T̂3] + [V̂ , T̂2]|�0〉. (25)

In the following sections we will analyze these equations.

V. THE TWO-BODY AMPLITUDE

In Sec. IV we argued that asymptotically the two-body
CC equation takes the form of Eq. (24). In order to evalu-
ate this equation, we note that there can be no contractions
between the operators a†b† ji that appear in the bra state,
hence all the labels a, b, i, and j have to appear on the am-
plitude and potential operators. Therefore 〈�ab

i j |V̂ |�0〉 = V ab
i j ,

and 〈�ab
i j |[Ĥ0, T̂2]|�0〉 = Eab

i j t ab
i j . To evaluate the commutator

[V̂ , T̂2] = V̂ T̂2 − T̂2V̂ , we note that all the operators of V̂ in
V̂ T̂2 can be moved to the right of T̂2 and then the term will
cancel with T̂2V̂ . In the process, all possible contractions be-
tween V̂ and T̂2 will arise, i.e., at least one contraction should
be made between them. This commutators yield five distinct
terms, that combined with the potential and the Ĥ0 terms result
in the linear coupled-cluster doublets (CCD) equation

0 =V ab
i j + Eab

i j t ab
i j + 1

2V ab
de tde

i j

+ 1
2V kl

i j t ab
kl + V ak

id t bd
jk + V ak

kd tbd
i j + V lk

ik t ab
jl

+ permutations. (26)

The term “permutations” stands for antisymmetrization with
respect to the indices ab or i j when not placed on the same

matrix elements. The summation V kv
kw is performed only on

hole states because the string r†s of V̂ , where both r, s are
particle operators, is already normal ordered and therefore its
contraction is zero.

In the limit of high momentum/low density, the second line
of (26) takes the form of either V 00

00 t ab
00 or V a0

a0 t ab
00 . In both cases

these terms enter as small corrections to the excitation energy.
It follows that these terms can be neglected for large pa, pb

with respect to the terms appearing on the first line.
Refining this argument, due to momentum conservation we

expect that in the limit pa, pb → ∞ all the T̂2 terms on the
second and third lines of Eq. (26) will be either exactly or
at least approximately equal to t ab

i j since the hole states carry
only low momentum of the order of pF and we assume weak
momenta dependance on the hole states’ quantum numbers.
For example, in V ak

id t bd
jk the momentum pd associated with the

state d must be of the order pd = pa + OpF, implying that
t bd

jk ≈ t ba
i j . Comparing these terms to the term Eab

i j t ab
i j , we see

that for large enough excitations

Eab
i j 


∑
kl

V kl
i j ,

∑
kd

V ak
id ,

∑
kd

V ak
kd ,

∑
kl

V lk
ik ,

and these terms can be neglected. It is important to observe
that the neglected terms are all intensive and do not scale with
the size of the system.

The resulting two-body amplitude equation is then

0 = t ab
i j + 1

Eab
i j

V ab
i j + 1

2Eab
i j

V ab
de tde

i j , (27)

which is nothing but the particle-particle ladder approxima-
tion of the CCD equation, applied for example in Ref. [54] to
estimate the nuclear matter equation of state. In the following
we will use the notation T̂ ∞

2 to denote the solution of Eq. (27)
in the nonsymmetrized basis with Ei j ≡ εi + ε j → 0. As it is
a linear equation, T̂ ∞

2 is unique. We will show in Appendix A
that indeed 〈ab|T̂2|i j〉 → 〈ab|T̂ ∞

2 |i j〉 as pa, pb → ∞.
We can now discuss the properties of T̂ ∞

2 . As stated above,
the cluster operator T̂ ∞

2 is defined as the solution of the equa-
tion

0 = (t∞)ab
i j + 1

Eab
V ab

i j + 1

2Eab
V ab

de (t∞)de
i j , (28)

where Eab = εa + εb. A similar result was derived by
Zabolitzky in Ref. [58]. To analyze this equation, it is
convenient to introduce the particle-particle and hole-hole
projection operators,

Q2 =
∑
de

|de)(de|, P2 =
∑
lm

|lm)(lm|, (29)

and the Green’s function

Ĝ0(E ) = 1

E − Ĥ0 + iε
. (30)

Eqaution (28) can then be written as

T̂ ∞
2 = Q2Ĝ0(0)V̂ T̂ ∞

2 + Q2Ĝ0(0)V̂ P2, (31)
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and formally solved to yield

T̂ ∞
2 = 1

1 − Q2Ĝ0(0)V̂
Q2Ĝ0(0)V̂ P2. (32)

Clearly, P2T̂ ∞
2 = T̂ ∞

2 Q2 = 0 as expected from a cluster oper-
ator. Using the relation Q2Ĥ0P2 = 0 the solution (32) can be
rewritten as (see Appendix B)

T̂ ∞
2 = 1

Q2(0 + iε − Ĥ )Q2
Q2ĤP2. (33)

Before proceeding, we note that P2 is not equivalent to Q̄2 =
1 − Q2, the complement of Q2, as Q̄2 must include not only
hole-hole states but also particle-hole states. For infinite nu-
clear matter we expect, however, that T̂ ∞

2 is translationally
invariant and therefore we can consider only pairs with zero
CM momentum. For such pairs, there are no particle-hole
contributions and we can replace P2 by Q̄2. In this subspace

T̂ ∞
2 = 1

Q2(0 + iε − Ĥ )Q2
Q2ĤQ̄2. (34)

Comparing now Eq. (34) with the Bloch-Horowitz equa-
tions [59],

Q̄2|�〉 = 1

Q̄2(E + iε − Ĥ )Q̄2
Q̄2ĤQ2|�〉 (35)

Q2|�〉 = 1

Q2(E + iε − Ĥ )Q2
Q2ĤQ̄2|�〉, (36)

it is clear that T̂ ∞
2 is nothing but the zero-energy two-body

Bloch-Horowitz operator

ÔB.H.
2 = 1

Q2(0 + iε − Ĥ )Q2
Q2ĤQ̄2. (37)

This operator fulfills the relation ÔB.H.
2 |�2〉 = Q2|�2〉 for any

zero energy eigenstate |�2〉 that obeys Ĥ |�2〉 = 0. It follows
that if Ĥ |�2〉 = 0 and P̂CM|�2〉 = 0, then

Q2|�2〉 = T̂ ∞
2 |�2〉. (38)

Inspecting Eqs. (33) and (38), we can conclude that (i)
the asymptotic two-body behavior of T̂2, and therefore of
the many-body wave function, is related to the zero-energy
solutions of the two-body problem, and (ii) the relation to
the zero-energy solutions at the high-momentum/low-density
limit shows the universality of the asymptotic behavior in the
limited sense, as system dependencies will enter as a small
correction.

VI. THE THREE-BODY AMPLITUDE

As we have argued in Sec. IV, the behavior of the three-
body amplitude T̂3 at high momentum is dictated by Eq. (25).
Explicitly, this equation takes the form

0 = Eabc
i jk t abc

i jk − V la
i j t bc

kl − V ab
id t cd

jk

+ 1
2V ab

de t cde
i jk + 1

2V lm
i j t abc

klm + V al
dl t bcd

i jk + V al
id t bcd

jkl + V lm
il t abc

jkm

+ permutations. (39)

Here, the first term on the right-hand side (rhs) is due to
[Ĥ0, T̂3], the next two terms come from the [V̂ , T̂2] commu-
tator, and the next five are due to the [V̂ , T̂3] commutator.
The term “permutations” stands for antisymmetrization with
respect to the indices abc or i jk when not placed on the
same matrix elements. Due to momentum conservation, for
very large pa the potential matrix elements V la

i j must vanish,
leaving V ab

id t cd
jk as the only source term. In addition, all terms

coming from the [V̂ , T̂3] commutator, except for the first term
in the second line (and its corresponding permutations), are
approximately proportional to t abc

i jk . Therefore, for excitation
energy Eabc

i jk large enough

Eabc
i jk 


∑
lm

V lm
i j ,

∑
ld

V al
dl ,

∑
ld

V al
id ,

∑
ml

V lm
il , (40)

and the corresponding terms can be neglected in comparison
to the free term Eabc

i jk t abc
i jk . As a consequence only the terms

1
2V ab

de t cde
i jk remain. Utilizing these observations, and defin-

ing the symmetrization operator Ŝ123 ≡ 1 + (123) + (132)
where (123) is the permutation operator, Eq. (39) takes the
form

0 = t abc
i jk + Ŝabc

(Ŝi jk
(
V ab

id tdc
jk

))
Eabc

i jk

+ Ŝabc
(
V ab

de t cde
i jk

)
2Eabc

i jk

. (41)

As in the two-body case we define T̂ ∞
3 to be the solution

of Eq. (41) in the limit Eabc
i jk → Eabc and t dc

jk → (t∞)dc
jk . We

show in Appendix C that 〈abc|T̂3|i jk〉 → 〈abc|T̂ ∞
3 |i jk〉 as

pa, pb, pc → ∞.
To analyze T̂ ∞

3 we write Eq. (41) in first quantization using
the nonsymmetrized basis defined above. In the three-body
case, the relation between the antisymmetrized matrix ele-
ments and the nonsymmetrized ones is

〈rst |Ô|uvw〉 = Ŝuvw[(rst |Ô|uvw) − (rst |Ô|vuw)], (42)

and for a two-body operator closed by three-particle states

(rst |Ô2|uvw) ≡
3∑

i=1

(rst |Ô2(i)|uvw), (43)

where Ô2(i) does not act on the ith particles, e.g.,
(rst |Ô2(3)|uvw) = (rs|Ô2|uv)δt,w. With the projection oper-
ators

Q3 =
∑
de f

|de f )(de f |, P3 =
∑
lmn

|lmn)(lmn|, (44)

the asymptotic equation for T̂ ∞
3 can be written as

T̂ ∞
3 = Q3Ĝ0(0)V̂ T̂ ∞

3 + Q3Ĝ0(0)V̂ T̂ ∞
2 P3

= 1

1 − Q3Ĝ0(0)V̂
Q3Ĝ0(0)V̂ T̂ ∞

2 P3

= 1

Q3(0 + iε − Ĥ )Q3
Q3Ĥ T̂ ∞

2 P3. (45)

Comparing Eq. (45) with the three-body Bloch-Horowitz
equations [59] and noting that for two-body interactions
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Q3HQ̄3 = Q3H (Q1P2 + Q2P1) with Q̄3 = 1 − Q3

Q̄3|�〉 = 1

Q̄3(E + iε − Ĥ )Q̄3
Q̄3ĤQ3|�〉, (46)

Q3|�〉 = 1

Q3(E + iε − Ĥ )Q3
Q3ĤQ̄3|�〉, (47)

we can connect T̂ ∞
3 to the zero-energy Bloch-Horowitz opera-

tor. Specifically, if |�3〉 is a zero-energy three-body eigenstate
of Ĥ , and if there is a three-hole state |α3〉 such that

T̂ ∞
2 |α3〉 ≈ (Q1P2 + Q2P1)|�3〉, (48)

then

T̂ ∞
3 |α3〉 ≈ Q3|�3〉 (49)

and we can identify the matrix elements of T̂ ∞
3 with the Q3

components of the zero-energy solutions of the Schrödinger
equation. In the next section we will argue that Eq. (49)
approximately holds.

Here we wish to remark that if we would include a
three-body potential into our formalism it would change
the kernel and the source term of the asymptotic equa-
tion. Its importance to three-body correlations will be
decided by its relative strength with respect to the two-body
potential.

The three-body zero-energy eigenstate

We first note that a zero-energy three-body eigenstate of the
Schrödinger equation, Ĥ |�3〉 = 0, can be formally expanded
in the CC method as

|�3〉 = N−1
3 e

ˆ̃T|�0〉 = N−1
3 (1 + ˆ̃T2 + ˆ̃T3)|�̃0〉, (50)

where ˆ̃T2,
ˆ̃T3 are the three-body cluster operators, and

N 2
3 = 1 + Tr( ˆ̃T †

2
ˆ̃T2) + Tr( ˆ̃T †

3
ˆ̃T3) (51)

is a normalization factor. Working with the momentum basis,
we note that whereas the A-body operators T̂k are defined
with respect to the A-body Fermi level pF, the three-body
operators ˆ̃T2,

ˆ̃T3 are defined with respect to a three-body ref-
erence state, which we denote as |000〉 to indicate that it
corresponds to single-particle states with momentum which
is either zero or very close to zero. We note that in this case
the state |000〉 acts as a closed-shell state as the other possible
Slater-determinants with zero momenta holes have different
conserved quantum numbers, such as Ĵz, and cannot contribute
to |�3〉. It follows that

|�3〉 =N−1
3

(
|000〉 + 1

2

∑
lm

t̃ lm
00 |lm0〉 + 1

2

∑
de

t̃ de
00 |de0〉 + 1

6

∑
lmn

t̃ lmn
000 |lmn〉 + 1

2

∑
dlm

t̃ dlm
000 |dlm〉 + 1

2

∑
del

t̃ del
000|del〉

+1

6

∑
de f

t̃ de f
000 |de f 〉

⎞
⎠. (52)

Here, we keep labeling the states according to the A-body Fermi level, e.g., d, e, f correspond to particle states while l, m, n
correspond to hole states. As a result, terms such as |dl0〉 cannot appear in the expansion, as momentum conservation implies
that if the state d is above the Fermi level then so must be l .

Before substituting the three-body wave function (52) into the Q-space Bloch-Horowitz equation (47) we note that (i) the
operator Q̄3 kills the 3p0h states |de f 〉, and (ii) for two-body interactions the term Q3ĤQ̄3 annihilates the 0p3h states, thus

Q3ĤQ̄3|�3〉 = Q3ĤQ̄3

∣∣� (1p,2p)
3

〉
, (53)

where

∣∣� (1p,2p)
3

〉 ≡ (Q1P2 + Q2P1)|�3〉 = N−1
3

2

(∑
de

t̃ de
00 |de0〉 +

∑
del

t̃ del
000|del〉 +

∑
dlm

t̃ dlm
000 |dlm〉

)
. (54)

Inspecting Eq. (54), we note that the last term on the
rhs is zero unless pd < 2pF. It follows that this term must
vanish if we consider a very dilute A-body system, i.e., the
limit pF → 0. Interestingly, in this limit also the first two
terms coincide as t̃ del

000 → t̃ de0
000 with l → 0. Hence, in the

limit pF → 0, Q3ĤQ̄3|�3〉 ≈ 2N−1
3 Q3Ĥ ˆ̃T2|000〉. Recalling

now that Eq. (41) is an asymptotic equation derived in the
limit pa, pb, pc → ∞, and that in this limit ˆ̃T2 → T̂ ∞

2 , we
may conclude that for i, j, k = 0 the asymptotic three-body
cluster operator T̂ ∞

3 , Eq. (45), can be redefined replacing T̂ ∞
2

with ˆ̃T2. The resulting operator admits

T̂ ∞
3 |α3〉 ≈ Q3|�3〉 (55)

with |α3〉 ≡ 2N−1
3 |000〉.

Considering now nuclear matter in the limit of dense mat-
ter (i.e., pF very large compared to the Fermi momentum
at saturation density), we have 1

2

∑
de t̃ de

00 |de0〉 → T̂ ∞
2 |000〉.

Under this condition we also expect that the 2p1h terms
1
2

∑
del t̃ del

000|del〉 are dominated by two-body rather than three-
body correlations, i.e., most contributions will come from
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states with pl � pd , pe. Therefore there is a three-hole state
|α(2p)

3 〉 such that 1
2

∑
del t̃ del

000|del〉 ≈ T̂ ∞
2 |α(2p)

3 〉. The 1p2h term
1
2

∑
dlm t̃ dlm

000 |dlm〉 is clearly zero if the momentum of state d ,
pd , is larger than 2pF. We also expect that the main contribu-
tion of this term will appear when pd , pl ≈ pF and the third
momentum is approximately zero. Here again we can find
a 0p3h state such that 1

2

∑
dlm t̃ dlm

000 |dlm〉 ≈ T̂ ∞
2 |α(1p)

3 〉. This
observation implies that there is a 0p3h state α3 such that∣∣� (1p,2p)

3

〉 ≈ T̂ ∞
2 |α3〉, (56)

and hence also in this limit

T̂ ∞
3 |α3〉 ≈ Q3|�3〉. (57)

This relation holds also for any value of pF if we consider the
most asymptotic high-momentum contribution to T̂ ∞

3 , hence
we expect it to approximately hold for finite nuclei as well.

Summarizing this discussion we conclude that, as in the
two-body case, (i) the asymptotic high-momentum behavior
of T̂3 is related to a three-body zero-energy eigenfunc-
tion of the Schrödinger equation, and (ii) at the high-
momentum/low-density limit, the asymptotic behavior is
universal in the limited sense.

VII. SUMMARY

The CC method was utilized to set a more rigorous founda-
tion for the successful GCF. To this end we have computed the
two- and three-body cluster operators in the high-momentum
limit and showed that they act as the Bloch-Horowitz oper-
ators for the two- and three-body zero-energy eigenstates of
the Schrödinger equation. We therefore concluded that the
two- and trhee-body cluster operators in the high-momentum/

low-density limit are universal in the limited sense, i.e.,
they do not depend on the system but do depend on the
potential.

The presented method is systematic and opens up the path
for including higher order corrections to the GCF. A more

complete discussion regarding the asymptotic wave function
factorization is postponed to a forthcoming article. We note
that our results may be useful for general CC computations,
as asymptotic expressions or approximations for the cluster
operators.
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APPENDIX A: THE ASYMPTOTICS OF T̂2

To show that indeed the full two-body amplitude T̂2 coin-
cides with T̂ ∞

2 in the limit pa, pb → ∞, we seek an iterative
solution for Eq. (11) [53]. To this end we denote by T̂ (k)

2
the approximate solution of T̂2 after k iterations. Taking the
asymptotic solution to be our initial guess T̂ (0)

2 = T̂ ∞
2 , we can

write

T̂ (k)
2 = T̂ ∞

2 + �T̂ (1)
2 + �T̂ (2)

2 + · · · + �T̂ (k)
2 , (A1)

where the kth correction �T̂ (k)
2 is obtained by substituting

T̂2 = T̂ (k−1)
2 + �T̂ (k)

2 in (11) and solving the linearized equa-
tion.

The equation for �T̂ (1)
2 reads

0 = 〈
�ab

i j

∣∣V̂ + [Ĥ0, T̂ ∞
2 ] + [

Ĥ0,�T̂ (1)
2

] + [V̂ , T̂ ∞
2 ]

+ [
V̂ ,�T̂ (1)

2

] + 1
2 [[V̂ , T̂ ∞

2 ], T̂ ∞
2 ] + [V̂ , T̂3] + [V̂ , T̂4]

+ 1
2

[
[V̂ , T̂ ∞

2 ],�T̂ (1)
2

] + 1
2

[[
V̂ ,�T̂ (1)

2

]
, T̂ ∞

2

]|�0〉 (A2)

Utilizing Eq. (28) we obtain

�t (1)ab
i j = − (V̂ T̂ ∞

2 )res

Eab
i j

+ Ei j

Eab
i j

(t∞)ab
i j − 1

Eab
i j

〈
�ab

i j

∣∣[V̂ ,�T̂ (1)
2

] + 1

2
[[V̂ , T̂ ∞

2 ], T̂ ∞
2 ] + [V̂ , T̂3] + [V̂ , T̂4]

+ 1

2

[
[V̂ , T̂ ∞

2 ],�T̂ (1)
2

] + 1

2

[[
V̂ ,�T̂ (1)

2

]
, T̂ ∞

2

]|�0〉, (A3)

where (V̂ T̂ ∞
2 )res stands for the terms that appear in (26) but are not included in (28). Asymptotically, as pa, pb → ∞, the source

terms should dominate:

�t (1)ab
i j → − (V̂ T̂ ∞

2 )res

Eab
i j

+ Ei j

Eab
i j

(t∞)ab
i j − 1

Eab
i j

〈
�ab

i j

∣∣1

2
[[V̂ , T̂ ∞

2 ], T̂ ∞
2 ] + [V̂ , T̂3] + [V̂ , T̂4]|�0〉. (A4)

Using the momentum arguments presented above and using
the inherent hierarchy, the three- and four-body terms and
(V̂ T̂ ∞

2 )res are suppressed by a factor 〈V̂ 〉/Eab
i j (or Ei j/Eab

i j )

compared to T̂ ∞
2 . Hence asymptotically �T̂ (1)

2 � T̂ ∞
2 . By

iterating the process one can see that asymptotically the

higher order k > 1 corrections are suppressed by a factor
of the order (〈V̂ 〉/Eab

i j )k . This completes the iterative proof
that t ab

i j → (t∞)ab
i j , and therefore in the high-momentum limit

we can replace the two-body cluster operator T̂2 with the
operator T̂ ∞

2 .
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APPENDIX B: T̂ ∞
2 AS THE BLOCH-HOROWITZ

OPERATOR

Recalling that Ĝ0(E ) = 1
E+iε−Ĥ0

and that it commutes with
the projection operators Q2, P2, we can write for the Q2 sub-
space

T̂ ∞
2 = 1

1 − Q2Ĝ0(E )V̂
Q2Ĝ0(E )ĤP2

= 1

Q2 − Ĝ0(E )Q2V̂ Q2
Ĝ0(E )Q2ĤP2

= 1

Q2(E + iε − Ĥ0 − V̂ )Q2
Q2ĤP2

= 1

Q2(E + iε − Ĥ )Q2
Q2ĤP2. (B1)

Taking the value E = 0 it can be rewritten as

T̂ ∞
2 = 1

Q2(0 − Ĥ )Q2
Q2ĤP2. (B2)

APPENDIX C: THE ASYMPTOTICS OF T̂3

To show that t abc
i jk → (t∞)abc

i jk as pa, pb, pc → ∞, we substi-

tute T̂3 = T̂ ∞
3 + �T̂3 in Eq. (12) and solve for �T̂3 after using

the definition of T̂ ∞
3 in Eq. (45). Moreover, as explained at

Sec. IV, 1
2 [[V̂ , T̂2], T̂2] � [V̂ , T̂2] in the limit pa, pb, pc → ∞,

hence the equation for �t abc
i jk becomes

�t abc
i jk = − (V̂ T̂ ∞

3 )res

Eabc
i jk

+ Ei jk

Eabc
i jk

(t∞)abc
i jk

− 1

Eabc
i jk

〈
�abc

i jk

∣∣[Ĥ0,�T̂3] + [V̂ ,�T̂2] + [V̂ ,�T̂3]

+ 1

2
[[V̂ , T̂2],�T̂3] + [V̂ , T̂4] + [V̂ , T̂5]|�0〉, (C1)

where (V̂ T̂ ∞
3 )res stands for the terms that appear in (39) but

are not included in (41) and �T̂2 = T̂2 − T̂ ∞
2 . Asymptotically,

the source terms should dominate, and thus

�t abc
i jk → − (V̂ T̂ ∞

3 )res

Eabc
i jk

+ Ei jk

Eabc
i jk

(t∞)abc
i jk − 1

Eabc
i jk

× 〈
�abc

i jk

∣∣[V̂ ,�T̂2] + [V̂ , T̂4] + [V̂ , T̂5]|�0〉. (C2)

The terms in the first row are trivially much smaller than
(t∞)abc

i jk . Also, the four- and five-body terms are also much
smaller than (t∞)abc

i jk due to hierarchy and the suppression of

the factor 1
Eabc

i jk
. For the term [V̂ ,�T̂2] we can use the results of

the previous section (�t )cd
jk � (t∞)cd

jk and note, from Eq. (45),

that (t∞)abc
i jk ∼ − 1

Eabc
i jk
Ŝabc[Ŝi jk[V ab

id (t∞)cd
jk ]]. Altogether we

get the desired result (�t )abc
i jk � (t∞)abc

i jk , i.e., t abc
i jk → (t∞)abc

i jk .
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