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Complex scaled nonlocalized cluster model with continuum level density
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In a recent work [H. Zhang, D. Bai, Z. Wang, and Z. Ren, Phys. Rev. C 105, 054317 (2022)], the complex
scaled nonlocalized cluster model (CSNLCM) is proposed to study the resonant cluster states. In this work, we
improve CSNLCM by combining it with the continuum level density (CLD). While the original CSNLCM gives
the structural observables for resonant cluster states, the improved model (named CSNLCM-CLD) can give both
the scattering observables such as phase shifts and the resonance observables. We take the α + α system as an
example to validate the formalism of CSNLCM-CLD and benchmark the theoretical results with the conventional
microscopic R-matrix method. Good agreement is achieved, which shows the reliability of CSNLCM-
CLD. There is also good agreement between our improved model (CSNLCM-CLD) and the experimental
data.
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I. INTRODUCTION

The study of resonance is one of the most important topics
in nuclear physics [1]. Several methods have been proposed
to study resonant states based on bound-state-like techniques.
The main merit of this kind of techniques is that the sophis-
ticated models and computer codes for bound-state problems
may be applied to resonances with only moderate modifica-
tions. Among these bound-state-like techniques, the complex
scaling method (CSM) [2–4] is particularly popular. It was
proposed in the 1970s and has been applied to atomic and
nuclear physics extensively [5–10]. In CSM, resonant states of
quantum systems are transformed into bound states via com-
plex scaling transformations, without changing their complex
eigenenergies. By expanding and diagonalizing the complex
scaled Hamiltonian with the appropriate L2 basis functions
[11], different physical observables could often be extracted
in a reliable way.

The nonlocalized cluster model is a popular microscopic
cluster model based on the picture of nonlocalized clustering.
In contrast to the traditional picture of localized clustering,
nuclear clusters in the nonlocalized cluster model are not
fixed to specific geometric positions but can move freely in a
hypothetic nuclear container. The nonlocalized cluster model
has been applied successfully to cluster states in various light
nuclei. Very recently, it was further combined with CSM to
give an improved treatment on resonant cluster states lying
above disintegration thresholds. For the later convenience,
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we name this new model the complex scaled nonlocalized
cluster model (CSNLCM). It inherits the merits of both the
nonlocalized cluster model and CSM and is especially useful
when the resonant cluster state has a large decay width.

In this work, we continue to improve CSNLCM by com-
bining it with the continuum level density (CLD) [12–17].
Expressed using the complex scaled Green’s function [18],
CLD can be related directly to the S matrix [19] for the scat-
tering process between nuclear clusters. Therefore, the hybrid
new model CSNLCM-CLD allows a simultaneous extraction
of both the structural observables and the scattering observ-
ables within a unified framework of nonlocalized clustering
[20] plus CSM. To validate the reliability of CSNLCM-CLD
explicitly, we take the α + α system as a proof-of-concept
example. Various physical observables are calculated and
compared with CSNLCM [21] for the resonant states and the
microscopic R-matrix theory [22–25] for both resonant and
scattering states.

The rest parts are organized as follows: In Sec. II, we
introduce the framework of CSNLCM-CLD for the α + α

system, along with the microscopic R-matrix method which is
adopted as a benchmark. In Sec. III, the numerical results are
presented and discussed. Section IV summarizes the article.
Some useful technical details are listed in the Appendix.

II. THEORETICAL FORMALISM

A. Complex scaled nonlocalized cluster model (CSNLCM)

The theoretical framework of the complex scaled nonlo-
calized cluster model (CSNLCM) has been described in [21]
and here we only list some of the main parts. The THSR
wave function can be expressed as a superposition of Brink
wave functions, which are used in the generator coordinate
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method, �B(R1, . . . , Rn):

�nα (βx, βy, βz ) =
∫

d3R1 · · · d3Rn exp
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)}
�B(R1, . . . , Rn),

�B(R1, . . . , Rn) = det{φ0s(r1 − R1)χσ1τ1 · · ·φ0s(r4n − Rn)χσ4nτ4n}, (1)

After angular momentum projection the wave function with certain angular momentum is:

�J
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∫
d	 DJ∗

MK (	)R̂(	)�nα (βx, βy, βz )

=
∫

d	DJ∗
MK (	)

∫
d3R1 · · · d3Rn exp

(
−

n∑
i=1

∑
k=x,y,z

(R(	)Ri)2
k

β2
k

)
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Where 	 is the Euler angle, DJ
MK is the Wigner D function, R̂(	) is the rotation operator, and R(	) represents the 3 × 3 rotation

matrix corresponding to the rotation operator R̂(	).
By transforming R1 and R2 into the center-of-mass coordinate RG and the relative coordinate R:

R1 = RG + R/2, R2 = RG − R/2. (3)

The THSR wave function of the 2α system is written as
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φ(α1)φ(α2)

]
, (4)

where XG = (X1 + X2)/2 and r = X1 − X2, here Xi denotes the center-of-mass coordinate of the ith α cluster αi. If we let RG

be zero and so avoid the integration of RG in Eq.(4), we obtain a new wave function denoted by �2α (βx, βy, βz ):

�2α (βx, βy, βz ) = 4!
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=
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d3R exp
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)
�B(R/2,−R/2). (5)

In this work we only handle the case of axially symmetric
deformation with the z axis being the symmetry axis, namely
βx = βy �= βz.

In this case, the correct internal wave function with good
angular momentum can be defined as

�J
2α (βx = βy, βz ) =

∫
d cos(ζ )PJ ( cos(ζ ))R̂y(ζ )

× �2α (βx = βy, βz ), (6)

where PJ is the Legendre polynomial of order J .
On account of the center-of-mass motion in the wave func-

tion �J
2α (βx = βy, βz ), the Hamiltonian H we use in this work

is written as

H = T − TG + VN + VC, (7)

where T is the total kinetic energy, TG is the center-of-mass
kinetic energy, VN is the effective two-body nuclear interaction
energy, and VC is the Coulomb interaction energy. We adopt
the Volkov No. 1 potential as the effective two-body nuclear

potential, which has the form

VN = 1

2

8∑
i �= j

{(1 − M ) − MPσ Pτ }i j

2∑
n=1

Vn exp

(
− r2

i j

a2
n

)
, (8)

where the parameters Vn and an are a1 = 1.60 fm, a2 =
0.82 fm, V1 = −83.34 MeV, V2 = 144.86 MeV and M is the
Majorana exchange parameter. The Coulomb interaction can
be written as

VC = 1

2

8∑
i �= j

(
1

2
+ tzi

)(
1

2
+ tz j

)
e2

ri j
, (9)

where the isospin z component equals tz = +1/2 for the pro-
ton and tz = −1/2 for the neutron.

Applying the method of complex scaling we can obtain a
similarity transformation from the conventional Hamiltonian
as follows:

H (r, θ ) = U (θ )H (r)U (θ )−1, (10)
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where U (θ ) is defined as

U (θ ) f (r) = exp
(
i 3

2θ
)

f (r exp(iθ )), 0 < θ < π/2. (11)

In CSNLCM the complex scaling can be introduced by
βθ = eiθβ, or another equivalent calculation scheme with
complex scaled operators:

T → exp(−2iθ )T,

V (r) → V (r exp(iθ )), (12)

b → exp(−iθ )b.

B. Continuum level density (CLD)

1. CLD

The level density ρ(E ) of the Hamiltonian H is defined by

ρ(E ) =
∑

i

∫
δ(E − Ei ), (13)

where Ei are eigenvalues of H , and summation and inte-
gration are taken for discrete and continuous eigenvalues,
respectively. This definition of the level density can also be
expressed with Green’s function:

ρ(E ) = − 1

π
Im

{
Tr

[
1

E + i0 − H

]}
. (14)

When the Hamiltonian is described by a sum of an asymp-
totic term H0 and the short-range interaction V (H = H0 + V ),
the CLD [denoted by �(E )] for an energy E is expressed
in terms of balance between the density ρ(E ) obtained from
the Hamiltonian H and the level density ρ0(E ) of continuum
states obtained from the asymptotic Hamiltonian H0 as

�(E ) = ρ(E ) − ρ0(E )

= − 1

π
Im

[
Tr

{
1

E + i0 − H
− 1

E + i0 − H0

}]
.

(15)

On the other hand, �(E ) is known to be connected with the
scattering S matrix S(E ) as

�(E ) = 1

2π
Im

d

dE
ln{det S(E )}. (16)

Specially, the scattering S-matrix is expressed for a single
channel system as S(E ) = e2iδ(E ), where δ(E ) is the scattering
phase shift. In such special case we obtain the simplified CLD

�(E ) = 1

π

dδ

dE
, (17)

with this relation, we can calculate the scattering phase shift
from CLD in the form of an integral formula

δ(E ) = π

∫ E

−∞
�(E ′)dE ′. (18)

2. CS-CLD

More specifically, if the energy spectrum is obtained within
the N-basis functions in the CSM. The CS-CLD is expressed

in the following form:

�θ
N (E ) =

NB∑
b

δ(E − Eb) + 1

π

Nθ
R∑

r

�r/2

(E − Er )2 + �2
r /4

+ 1

π

Nθ
C =N−NB−Nθ

R∑
C

εI
C(

E − εR
C

)2 + εI
C

2

− 1

π

N∑
C

ε0I
C(

E − ε0R
C

)2 + ε0I
C

2
, (19)

where Eb, Er − i�r/2, and εR − iεI are eigenvalues of com-
plex scaled Hamiltonian H (θ ), and ε0R − iε0I are eigenvalues
of complex scaled asymptotic Hamiltonian H0(θ ). NB repre-
sents the number of the bound state and Nθ

R represents the
number of the resonant state.

Therefore with Eq. (18) we can calculate the phase shift
within the N-basis functions in the CSM as

δθ
N (E ) = π

∫ E

−∞
�θ

N (E )

= NBπ +
Nθ

R∑
r=1

∫ E

0
dE

�r/2

(E − Er )2 + �2
r /4

+
∫ E

0
dE

[ Nθ
C∑

C=1

εI
C(

E − εR
C

)2 + εI
C

2

−
N∑

C=1

ε0I
C(

E − ε0R
C

)2 + ε0I
C

2

]
= NBπ+δR(E )+δC (E ),

(20)

where the resonance and nonresonance phase shifts are given
as

δR(E ) =
Nθ

R∑
r=1

δr (E ), δC (E ) =
Nθ

C∑
c=1

δc(E ) −
N∑

c=1

δ0
c (E ),

(21)
where

δr (E ) = cot−1 Er − E

�r/2
− cot−1 Er

�r/2
,

δc(E ) = cot−1 εR
c − E

εI
c

− cot−1 εR
c

εI
c

,

δ0
c (E ) = cot−1 ε0R

c − E

ε0I
c

− cot−1 ε0R
c

ε0I
c

. (22)

C. R-matrix method

According to the R-matrix theory the whole space is sep-
arated by the channel radius a into the interior and exterior
regions, where the channel radius is chosen to be large enough
to guarantee that the short-range nuclear interaction and the
antisymmetrization could be almost neglected between the
two α clusters in the exterior region.
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Therefore, in the exterior region the Hamiltonian becomes

Hext
L =Hα1 + Hα2 + Tr + Z2

αe2

r
,

Tr = h̄2

2μ

[
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ L(L + 1)

r2

]
, (23)

where Hα1 and Hα2 represent the intrinsic Hamiltonian of the
two α clusters.

In the interior region the wave functions still retain the form
of the antisymmetrized cluster wave functions (β⊥ = βx =
βy):

� int
L (β⊥, βz ) =

∫∫
dβ⊥dβz fL(β⊥, βz )�L(β⊥, βz )

=
∑
mn

f̃L(β⊥,m, βz,n)�L(β⊥,m, βz,n) (24)

The weight function fL(β⊥, βz ) and the corresponding dis-
cretized representation f̃L(β⊥,m, βz,n) can be determined by
the introduction of the Bloch-Schrödinger equation:

(HL + L(B) − E )� int
L = L(B)�ext

L , (25)

where the Bloch operator L(B) reads

L(B) = 8!

2!4!4!

h̄2

2μa
δ(r − a)

(
d

dr
r − B

)
; (26)

the parameter B can take arbitrary values including complex
numbers. The exterior wave function �ext

L takes the following
form for the scattering and resonant states, respectively:

�ext
L (E ) = 1√

8!/4!/4!/2!
gext

L (r)φ(α1)φ(α2), (27)

gext
L (r) =

{
OL(η, kr)/r, scattering state,
[IL(η, kr) − SL(E )OL(η, kr)]/r, resonant state,

(28)

where IL(η, kr) and OL(η, kr) represent the incoming and
outgoing Coulomb-Hankel functions, respectively, where

k =
√

2μE

h̄

is the wave number,

η = Z2
αe2

h̄

√
μ

2E

is the Coulomb-Sommerfeld parameter, and μ is the two-body
reduced mass. SL(E ) is the scattering S matrix mentioned in
Sec. II B 1.

Substituting Eq. (24) into Eq. (25) gives∑
m′n′

C(B, E )mn,m′n′ f̂L(β⊥,m′ , βz,n′ )

= 〈�L(β⊥,m, βz,n)|L(B)
∣∣�ext

L (E )
〉

(29)

where the C matrix is defined by

C(B, E )mn,m′n′ = (�L(β⊥,m, βz,n)|HL + L(B)

− E |�L(β⊥,m′ , βz,n′ )) (30)

The round brackets “()′′ above refer to the matrix element
corresponding to the internal space.

For the resonant states we take

B = ka
O′

L (η, ka)

OL (η, ka)
, (31)

such that the right-hand side of Eq. (29) will vanish, which
makes the original equation a generalized eigenvalue problem:∑
m′n′

(�L(β⊥,m, βz,n)|HL+L(B)|�L(β⊥,m′ , βz,n′ )) f̃L(β⊥,m′ ,βz,n′)

= E
∑
m′n′

(�L(β⊥,m, βz,n)|�L(β⊥,m′ , βz,n′ )) f̃L(β⊥,m′ , βz,n′ ).

(32)

For the scattering states B is taken as 0 for simplicity. With
the defined C matrix the R- and S-matrix elements are given
by

RL = h̄2a

2μ

∑
mn,m′n′

�L(β⊥,m, βz,n, a)C−1(0, E )mn,m′n′

× �L(β⊥,m′ , βz,n′ , a),

SL = IL(ka) − kaI ′
L(ka)RL

OL(ka) − kaO′
L(ka)RL

, (33)

where a is the channel radius and �(β⊥, βz, r) is the relative
wave function of two α clusters, whose explicit form is shown
in the Appendix.

The interior matrix elements in Eq. (32) can be calculated by subtracting the exterior contributions from the whole-space
matrix elements. Explicitly, we have

(�L(β⊥, βz )|�L(β ′
⊥, β ′

z )) = 〈�L(β⊥, βz )| |�L(β ′
⊥, β ′

z )〉 −
∫ ∞

a
dr r2�L(β⊥, βz, r)�L(β ′

⊥, β ′
z, r),

(�L(β⊥, βz )|HL|�L(β ′
⊥, β ′

z )) = 〈�L(β⊥, βz )| HL |�L(β ′
⊥, β ′

z )〉 −
∫ ∞

a
dr r2�L(β⊥, βz, r)H ext

L �L(β ′
⊥, β ′

z, r),

(�L(β⊥, βz )|L(B)|�L(β ′
⊥, β ′

z )) = h̄2a

2μ
�L(β⊥, βz, a)

[
�L(β ′

⊥, β ′
z, a) + a

d

da
�L(β ′

⊥, β ′
z, a)

]
− h̄2a

2μ
B�L(β⊥, βz, a)�L(β ′

⊥, β ′
z, a).

(34)
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FIG. 1. (a) The phase shifts for S wave obtained from CSNLCM-CLD and the R-matrix method, which are represented by the dashed
and solid lines, respectively. In the CSNLCM-CLD the parameters of the THSR wave functions are βx (= βy ) = 0.1, 1, 2, 3, 4, 5, 6, 7, 8 fm,
βz = tan( π

8 )β⊥. In the numerical calculations, the complex scaling angle is taken to be 0.4538 rad. In the R-matrix method the parameters of
the THSR wave functions are β⊥/b2 = 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, βz = tan( π

8 )β⊥ fm. The channel radius a is taken as 7 fm.
(b) The phase shifts for D wave. The complex scaling angle is taken to be 0.4014 rad. Other parameters are the same as (a). (c) The phase
shifts for G wave. The complex scaling angle is taken to be 0.4887 rad. Other parameters are the same as (a). (d) The phase shifts obtained by
R-matrix method. The experiment data are taken from [26].

III. NUMERICAL RESULTS

In the part of the nonlocalized cluster model, we use all
the same parameters as the original ones in [21], namely b =
1.36 fm, Majorana exchange parameter M = 0.573, and we
adopt the Volkov No.1 force as the effective two-body nuclear
interaction. In addition, in this work we still only handle the
case of axially symmetric deformation with the z axis being
the symmetry axis, namely βx = βy �= βz.

Figures 1(a)–1(c) display the phase shifts obtained by
CSNLCM-CLD, where the phase shifts calculated through
conventional microscopic R-matrix method are also plotted. It
can be seen that the phase shift curves obtained by CSNLCM-
CLD are basically consistent with those calculated through the
R-matrix method.

In Fig. 1(d) we show the phase shifts of the S, D, and
G waves obtained by the R-matrix method, as well as the

experimental data, where the results of the theoretical method
agree well with the experimental data.

The resonance energies of 8Be extracted from the cor-
responding phase shifts are listed in Table I, where the
numerical results obtained by CSNLCM and R-matrix method
are also given as a comparison. We can find that the resonant
energies and decay widths from different methods are in good
agreement except for the decay width of the 0+ state, whose
experimental value is 5.57 × 10−6 MeV. In previous work
we have pointed out that this accuracy cannot be achieved
for the width of the 0+ state for the CSNLCM. Now using
CSNLCM-CLD we obtain a decay width of about 0.01 MeV,
while the R-matrix method gives a width of the order of 10−7

MeV. Through the calculations (the iterative algorithm and
the systematic calculation of the channel radius a) we can
find that the results of the R-matrix method are very stable

TABLE I. Resonant energies and decay widths for the low-lying resonances of 8Be. The theoretical values are given by different methods
I, II, III: CSNLCM, CSNLCM-CLD, microscopic R-matrix, respectively. The experimental data are taken from [27].

Experimental values I II III

L Er (MeV) � (MeV) Er � Er � Er �

0 0.0918 5.57 × 10−6 0.0976 0.094 0.010 0.09780 0.2776(−6)
2 3.12 1.513 2.6237 1.2471 2.65 1.34 2.624 1.248
4 11.44 ≈3.5 11.0846 4.9731 11.11 4.98 11.156 4.876
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TABLE II. Iteration solutions of the Bloch-Schrödinger equation for the low-lying resonant states of 8Be [a = 7 fm; β⊥/b2 =
0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11; βz = tan( π

8 )β⊥].

Iterations L = 0 L = 2 L = 4

1 0.1 3 15 − 2i
2 0.09021 − 9.182(−6)i 2.834 − 0.591i 11.130 − 1.496i
3 0.09942 + 1.900(−6)i 2.682 − 0.666i 10.773 − 2.236i
4 0.09745 − 0.6289(−6)i 2.627 − 0.649i 10.942 − 2.590i
...

...
...

...

19 0.09780 − 0.1389(−6)i 2.623 − 0.623i 11.156 − 2.438i
20 0.09780 − 0.1388(−6)i 2.624 − 0.623i 11.156 − 2.438i
21 0.09780 − 0.1388(−6)i 2.624 − 0.624i
22 0.09780 − 0.1388(−6)i 2.624 − 0.624i
...

...
...

...

result 0.09780 − 0.1388(−6)i 2.624 − 0.624i 11.156 − 2.438i

and reliable. The unreliability of the width of the 0+ state
obtained by CSNLCM-CLD is mainly due to the selection of
the basis functions, which may cause some anomalies in the
energy spectrum. The insufficient number of basis functions
in CSNLCM will also have a significant impact on the decay
width. In addition, the matrix singularities caused by adding
basis functions in the nonlocalized cluster model will affect
the numerical accuracy. Nevertheless, the CSNLCM-CLD is
still reliable for resonant states with broad widths and is in
general agreement with the results obtained by other theoreti-
cal methods.

For resonant states, the Bloch-Schrödinger equation be-
comes a generalized eigenvalue problem, which could be
solved by the iteration method. Therefore we should choose
a proper initial value to reduce the time of iteration; of course,
if we already know the resonance energies and widths in ad-
vance we can choose an initial value nearby, which allows the
number of iterations required for the calculation to be lower.
However, for unknown systems the analytical continuation in
coupling constant (ACCC) method [28] will be very helpful,
providing more appropriate initial values. The estimation us-
ing the ACCC method can be done conveniently (with the help
of the special properties of the Volkov potential), but instead
of going into the details and listing the corresponding results
here, we only give the iterations without the ACCC method
in Table II for the THSR framework. The corresponding pa-
rameters are all listed in Table II, where the channel radius
a is taken as 7 fm. Such a channel radius is large enough
for the α + α system to guarantee that nuclear effects are
negligible.

IV. CONCLUSIONS

We combine the CSNLCM with the continuum level den-
sity (CLD), which can be approximately estimated using the
eigenvalues of the full and free Hamiltonian. The CLD and
scattering S matrix are connected, making it simple to deduce
the scattering phase shifts from the CLD. We also use the
R-matrix method to determine the scattering phase shifts and
resonance energies for comparison.

Comparing the two methods of CSNLCM-CLD and R
matrix we can find that the phase shift curves obtained by
both methods are essentially consistent but the CLD results
are more unstable in comparison and have some shortcomings
in details. In particular, for the 0+ state, the CLD method
does not give an accurate decay width, whereas the R-matrix
method gives a stable and accurate value. Since the energy
spectrum determines all the final results of CLD, the instabil-
ity is mostly caused by the selection of the basis functions;
if the selected basis functions are not good enough then there
may be some anomalies in the energy spectrum. Even if we
can eliminate these anomalies, the insufficient number of basis
functions will have an impact on the results. In addition to
these factors, the matrix singularities caused by adding more
basis functions in the microscopic cluster model will also
affect the numerical accuracy. However, we can see that the
resonant energies extracted from the phase shifts obtained
by CSNLCM-CLD are still pretty consistent with those from
other approaches.

In this work we have applied the CSNLCM-CLD to
two-cluster system α + α as a proof-of-concept example to
validate the good reliability of CSNLCM-CLD, and this
methodology is the same for other two-body or two-cluster
systems. In addition, CLD can be extended to study the res-
onant states in few-body systems [6]. For example, we can
systematically apply this hybrid new model to the isotopes
of Be such as 9Be [29],10Be, and 11Be [30], or we can more
generally consider neutron rich nuclei [31,32] to study their
resonance and scattering properties.
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APPENDIX

The relative wave functions of α-α in nonlocalized cluster model are as follows:

�(β⊥, βz, r) = (2π )3/2βxβyβz

(
2

π

)3/4 b3/2

(b2 + 2β2
⊥)

(
b2 + 2β2

z

)1/2 exp

(
− r2

⊥
b2 + 2β2

⊥

)
exp

(
− r2

z

b2 + 2β2
z

)

= (2π )3/2βxβyβz

(
2

π

)3/4 b3/2

(b2 + 2β2
⊥)

(
b2 + 2β2

z

)1/2 exp

(
− r2

b2 + 2β2
⊥

)
exp

(
−r2 cos2(θ )

2(β2
⊥ − β2

z )

(b2 + 2β2
⊥)

(
b2 + 2β2

z

))
.

(A1)

In order to describe physical states with the definite angular momentum, furthermore, we consider the partial-wave expansion
of the relative wave function �:

�L(β⊥, βz, r) = (2π )3/2βxβyβz

(
2

π

)3/4 b3/2

(b2 + 2β2
⊥)

(
b2 + 2β2

z

)1/2 exp

(
− r2

b2 + 2β2
⊥

)

×
∫

d cos(θ )PL( cos(θ )) exp

(
−r2 cos2(θ )

2
(
β2

⊥ − β2
z

)
(b2 + 2β2

⊥)
(
b2 + 2β2

z

))
. (A2)

Here we may assume that the parameter β⊥ is larger than the parameter βz (such an assumption is reasonable and feasible
due to the approximate symmetry of the two parameters), so that after the angular momentum projection we only need to use the
error function where the independent variable is real and not the one where the independent variable is imaginary. In addition,
after such assumption the choice of the parameters will be very convenient, namely, we directly adopt the linear-dependent
parameters: βz = kβ⊥, where 0 < k < 1/2.

In the above equation, the integral part can be obtained as∫
d cos(θ )PL( cos(θ )) exp

(
−r2 cos2(θ )

2(β2
⊥ − β2

z )

(b2 + 2β2
⊥)

(
b2 + 2β2

z

))
=

∫
dxPL(x) exp(−Ax2), (A3)

where A = 2(β2
⊥−β2

z )r2

(b2+2β2
⊥ )(b2+2β2

z )
and the Legendre function PL(x)

(L = 0, 2, 4, 6) reads

P0(x) = 1,

P2(x) = 3x2 − 1

2
,

P4(x) = 35x4 − 30x2 + 3

8
,

P6(x) = 231x6 − 315x4 + 105x2 − 5

16
. (A4)

Therefore we only need the following integral results:

∫ 1

−1
dx exp(−Ax2) =

√
π erf(

√
A)√

A∫ 1

−1
dxx2 exp(−Ax2) = −e−A

A
+

√
π erf(

√
A)

2
√

A
3

∫ 1

−1
dxx4 exp(−Ax2) = −(3 + 2A)e−A

2A2
+ 3

√
π erf(

√
A)

4
√

A
5∫ 1

−1
dxx6 exp(−Ax2) = −(15 + 10A + 4A2)e−A

4A3

+ 15
√

π erf(
√

A)

8
√

A
7 . (A5)

For the integral equations (denoted as e0, e2, e4, e6) in
Eq. (A5) we have the relations

e4 = 3e2

2A
+ e2 − e0

2A
,

e6 = 5e4

2A
+ e2 − e0

2A
. (A6)

Generally e2n = (2n−1)e2n−2

2A + e2 − e0
2A (n = 2, 3, . . . ); with

this trick we can easily obtain the asymptotic relative wave
functions of 4+ and higher states from those of 0+ and 2+
states.
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