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We apply a three-dimensional (3D) approach to investigate the quasistationary states of well-deformed o
emitters. With a splitting of the anisotropic 3D potential into internal and external parts at a separation surface,
the 3D «-cluster decay width is determined by the initial wave function of a true bound state of an anisotropic
harmonic oscillator potential and a nonresonance scattering wave function of Coulomb potential. Substantial
difference between the one-dimensional (1D) and 3D decay width is found for typical o emitters with large

quadrupole and hexadecapole deformations.
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I. INTRODUCTION

The quantum tunneling problem of «-cluster decay pro-
vides insight into not only the quasistationary states of
unstable nuclei but also the nature of « clustering in surround-
ing nuclear medium [1-12]. Much of our understanding of
a-cluster decay comes from the well-established quantum pic-
ture where an « cluster tunnels through the Coulomb barrier
after its formation on the surface of nuclei. The «-clustering
process is rather complex to handle, which in principle in-
volves a quantum four-body problem embedded in nuclear
medium [13-21]. In contrast, the tunneling probability can be
quantitatively estimated from the Wenzel-Kramers-Brillouin
(WKB) approximation by assuming an « cluster interacting
with a spherical daughter nucleus. This assumption is appro-
priate for o emitters with small deformations [3—5]. However,
large deformations could be involved in the «-cluster decay of
heavy nuclei and exotic nuclei far away from the B-stability
line [22-25]. The exact three-dimensional (3D) decay width
of well-deformed « emitters is difficult to obtain by treat-
ing self-consistently both deformation and mixing of angular
momenta. An empirical way to include effect of large defor-
mations is to average the tunneling probabilities of all angles,
which yields an enhanced «-cluster tunneling probability. For
« transitions with measured core excitation energies, the to-
tal wave function of the system can be expanded in terms
of the ground- and excited-state channels and the coupled
Schrddinger equations can be solved [26-28].

The exact solution of quasistationary state with an
anisotropic potential is quite interesting in many quantum
systems [29-35]. In this work, we apply a 3D approach to
investigate the quasistationary state of the a-cluster decay
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problem, namely the 3D two-potential approach (3D-TPA)
[36]. We emphasize that the quasistationary state of «-cluster
decay highly resembles a bound state more than a scattering
state. The anisotropic «-core potential is properly divided into
inner and outer potentials on a separation surface inside the
Coulomb barrier. The formed « cluster is considered to stay
initially in the bound state generated by the inner potential,
and then transforms to a quasistationary state by switching
on the outer potential. Using the time-dependent perturbation
theory, both the decay width and the energy shift of «-cluster
decay can be well defined by inner 3D bound-state wave func-
tion and outer scattering state wave function on the separation
surface. The multidimensional quantum tunneling problem
for well-deformed « emitters is reduced to a problem of true
bound state plus nonresonance scattering state [36]. It is worth
noting that the choice of separation surface does not affect
the final results as long as it is inside the classical forbidden
region. The challenge here is the numerical solution of the
inner 3D bound-state wave function on the separation surface,
whose value is approximately on the order of 10~!3. Although
several numerical methods can be applied to solve the 3D
Schrodinger equation to obtain the bound-state wave function
such as the grid-based approach, the imaginary time propaga-
tion method, and the basis expansion method, however, it is
still an open question of how to obtain accurately the inner
3D bound state wave function at large distances due to the
limitation of matrix size or the number of bases [37,38]. In
this sense, the anisotropic harmonic oscillator potential with
exact solutions is a good choice to simulate the internal o-core
3D potential. The 1D and 3D decay widths are compared for
several typical nonspherical o emitters with large quadrupole
and hexadecapole deformations. Note that the formation pro-
cess of the « cluster on nuclear surface is not touched here,
which in principle does not affect the comparison between 1D
and 3D decay widths.

©2023 American Physical Society
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The paper is organized as follows: In Sec. II, we give the
formalism of 3D two-potential approach for the multidimen-
sional quantum tunneling problem. The anisotropic «-core
effective potential and the choice of separation surface are
introduced in Sec. III. In Sec. IV, both the inner 3D bound-
state wave function and outer scattering state wave function
are explicitly given. In Sec. V, the 3D approach is applied
to several deformed o emitters 230U, 2*Pu, 2*°Cm, ®'Cf,
and >*Fm. The possible theoretical uncertainties are also
discussed. Conclusions are presented in Sec. VI.

II. FORMALISM OF 3D TWO-POTENTIAL APPROACH
FOR MULTIDIMENSIONAL QUANTUM
TUNNELING PROBLEM

The time-dependent perturbation theory is applied to solve
the multidimensional tunneling problems in 3D-TPA [36].
The main integrant is the separation of the 3D «-core potential
V(r) into the inner U(r) and outer W(r) potentials on the
separation surface S

Viry=Uwr) +W(). 1)
The inner potential is

V(r) inner region
Ur) = . (2)
Uy outer region,
where U is the minimal value of V(r) on the separation
surface S. The outer potential is

inner region

0
W(r) = { 3

V(r) — Uy outer region.

The quasistationary state of «-cluster decay can be described
by the time-dependent Schrodinger equation,

., 0 -
ih—|W(t)) = [— —V +V(r)]|\lf(t)>
ot 2
4
= [Ho +W(r)}|‘1’(t)>,

where Hy = — %Vz + U (r) is the Hamiltonian of bound state
|®;) confined in the inner potential U (r), and the correspond-
ing time-independent Schrodinger equation is [—%V2 +
U(r)]|®;) = Ey|®D;). The separation surface S is not necessar-
ily spherical, as long as it is taken between the equipotential
surfaces S| and S,. At ¢ > 0, the “unperturbed” bound state
|®;) is no longer an eigenstate of the total Hamiltonian H =
Hy + W(r), but a wave packet spreading in time due to the
perturbation W (r)

j ; dk
90 = buolge 5+ [ bnlpge B )

@)
where by (¢) and b (¢) are the probability amplitudes of finding
the system in the eigenstates |®;) and |¢k), respectively. The
amplitudes by(¢t) and bg(t) can be found from Eq. (4) with
the initial condition: by(¢) = 1, bx(t) = 0. The energy shift
Re(ep) and the width I' = —2Im(e¢() of the quasistationary
state are directly related to the pole in the complex E plane

using the Green’s function technique [34]:

€ = E — Ey = (&;|W|D;) + (Q;WG(E)W|D).  (6)
The Green’s function G is given by

G(E) = Go(E)[1 + WG(E)], @)
where W = W + Uj is used instead of W to ensure the poten-
tial vanishes for r — co. Go(E) is given by
1-A

E+Uy—K-U(@r)’

Note that the above derivations are general, but the numer-
ical solution of G is difficult and converges very slowly. To
make it feasible within the capacity of computer calculation,
G is expanded in powers of Gy, namely the Green’s function
corresponding to W (r):

G(E) = Gy (E) + Gy (E)U — Up)G(E)
— Gy (E)A[1 + WG(E)). 9)

Go(E) = A =P (Pi|.  (8)

By substituting Eq. (9) into Eq. (6), then retaining the first
order, and assuming that the energy shift is small compared to
Ey, one can replace Gy (E') by Gy, (Ep)

E = Ey + (Qi|W[P;) + (Pi|W Gy (Eg)W D). (10)
The Schrodinger equation of the Green’s function is
[Eo — K — WGy (Egsr, 1) = 8(r — 1)), 11
and the spectral representation for the Green’s function is

G — / loi) (ol dk

W= - ;
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where Ey = h*k%/2u. The |¢y) is the eigenstate correspond-

ing to nonresonance scattering states, which satisfies the
following Schrodinger equation:

(K +W@)]llgk) = Exle)- 13)

One can obtain the total width I" as an integral over the
partial width Iy [36]

12)

dkydk
= / paniiiac (14)
Q)" Vki=k,
where kg = v/2mEy/h*. The partial width 'y is
R o :
I = f &) Ve u(do| . (15)
dpks | Jres K| =ko

where the symbol V, means the gradient on the right minus
the gradient on the left. kK = {k;, k», k3} is the momentum
vector. We note that Eq. (15) is similar to the Bardeen formula
for the tunneling coupling between adjoining wells from a
many-particle point of view, which is widely used in the solid
state and atomic physics [39,40]. Finally, the decay half-life is
given by

hiln2
PT’

where P, is the formation probability of « cluster on nu-
clear surface. Recent microscopic calculation of the «-cluster

Tip = (16)
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formation probability for the ideal Po isotopes has been per-
formed by the quartetting wave function approach (QWFA),
in which the intrinsic motion of the four nucleons forming
the o cluster and the center of mass motion between the
o cluster and the core are correctly treated [18-21]. Em-
pirically, the «-cluster formation probability P, is known

P

J

k() sin deekd(]bk
INCE

to change abruptly across the major shell closures and dif-
fers for even-even, odd-A, and odd-odd nuclei, as indicated
by the experimental systematics. The decay width I can
be directly obtained by using Eqs. (14) and (15); however,
it is more convenient to reformulate I' in the following
way:

2 pm PN
\/0 /0 cDi(raea ¢) Vr (pk(r797 ¢)Rs(9’ ¢)

dR, (6,
X\/[ fg¢ e [[

where R (0, ¢) is the radius of the separation surface S. For
spherical emitters, Eq. (17) reduces exactly to the 1D decay

width I = lf_;J|¢i(R)X1£(R) — Xk (R)$;(R)|* [34].

III. «-CORE 3D EFFECTIVE POTENTIAL
AND SEPARATION SURFACE

The 3D-TPA requires the information on 3D bound-state
wave function deep inside the classical forbidden region
where the wave function decreases exponentially and is
extremely small (of the order of 10~!3). This poses a big chal-
lenge for numerical calculations, even with high-performance
parallel computing. Here we simulate the 3D «-core potential
with an anisotropic harmonic oscillator potential that is of
rotational symmetry. The relevant Hamiltonian is of Nilsson
form, which has a L? correction term [41,42]

hz
H=——V>+V,r0), (18)
2u
with
Voo, 6) — Vi(r, 0) — kwoh[L* — (L*)n] 1 < R;(H)
Ve(r, 0) r>R;0),
(19)

where R(0) describes the boundary condition V;(r, 8) —
kawoh[L? — (L?)5] = Vc(r, 8). The anisotropic harmonic os-
cillator potential with depth parameter D is

Vi(r,0) = ima?*[(rcos0)* + y*(rsin0)’] —D,  (20)

where w, wy, and y read

B 2D 3 2D _ R(0)
"V ulROY/a, 2 T\ ulRo/a P T T R(E)
1)

The deformed Coulomb potential is

1.44Z.7, 3(Ry\>
= f[l + g(T) B2 ;YZm(G)}

18 (Ro\>
o \ r

Ve(r, 0)

dR,(6, )7
d

2

, a7

i| + R%(0, qb)}d@dq&
r=Ry(0.9)

3 ~(Ro\"
x [ — BY0(0) + 35 (7") ,322Y40(9)]- (22)
The half-density radius R() is given by
R(0) = Rol[1 + B2Y20(0) + BaYao(0)], (23)

where the parameter Ry = 1.07A‘1/ 3 [43], and B; and B4 are
quadrupole and hexadecapole deformations, respectively. The
deformed Coulomb potential Ve can be regarded as an
isotropic potential at very large distances. The L? correction
term is introduced to eliminate the angular momentum degen-
eracy, resulting in different depths of potential for different
angular momenta.

The details of the «-core 3D potential Vy(r, 6) are shown
in Fig. 1, in which the inner potential joins with the outer
Coulomb potential at R;(0). The total a-core potential is
divided into two parts by the separation surface S, which
can be chosen between the equipotential surfaces S; and S
with the same energy Ey. Here, we take the separation surface

— 0 Vo(r,0 = 0)[MeV]
= By ri0 =0
20
.g. 0) 7[fm]
—~-40 o L
>
£ 60
~—
<
> -80 —
100 —

O 10 5o

X = rsinf[fm]

20 10 o
Z = rcos 0[fm]
FIG. 1. The a-core 3D potential V,(r, 8) in Cartesian coordinate
system. The inner part of Vy(r, 0) is an anisotropic harmonic oscil-
lator potential, and the outer part of Vy(r, #) a deformed Coulomb
potential. For demonstration, the «-core potential V,(r, 8) with the
angle 6 = 0 is shown in the small panel. r; (8 = 0) and r,(8 = 0) are
the first and second turning points, respectively. R (6 = 0) is the
matching point where V;(r, = 0) — kwoh[L?> — (L*)y] = Ve (r, 6 =
0).
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X = rsin6[fm]

inner
region

i EA
-w

Z = rcosf[fm]

R,(0) = R(6)
outer
region

FIG. 2. The separation of the a-core potential Vy(r, 0) into inner
and outer regions. S; and S, denote the equipotential surfaces with
the same energy Ey. The separation surface S, denoted by the radius
R,(8), is chosen as coinciding with R ().

(a)

0.4 —
0.3 —
0.2

0.1~

\I]i(ra 07 ¢ = O)
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‘Iji(ra 9) ¢ = 0)

0
Z = rcosf[fm]

S as coinciding with R;(6) (see Fig. 2). In this way, one
can minimize the numerical errors associated with ®;(r, 6, ¢)
and ¢(7, 6, ¢). Note that the boundary R () is azimuth
independent (¢ independent). Thus, the separation surface S
is also azimuth independent in our calculations.

IV. INNER 3D BOUND-STATE WAVE FUNCTION AND
OUTER SCATTERING-STATE WAVE FUNCTION

We use the analytical 3D wave function of anisotropic har-
monic oscillator potential as an approximation of ®;(r, 8, ¢),
which is the eigenstate of E corresponding to the inner po-
tential. As a matter of fact, we only need the information
of ®;(r, 0, ¢) on the surface S where the 3D wave function
of anisotropic harmonic oscillator is considered to be a good
approximation for well-deformed « emitters

ime¢
Di(r,0,¢) =V, (r,0)¥, (1,0)—, (24)
¢ r 2T
where
W (r,0) = Nyt BT V2 sin )M~ SO FDR LI (1 in )
(25)

o X =rsinf[fm]
10

10

0
® X = rsinf[fm]

10 -10

FIG. 3. (a) The 3D inner wave function ®,(r, 6, ¢ = 0) of the spherical case with 8, = 0 and B4 = 0. (b) ®;(r, 6, ¢ = 0) of the well-
deformed case with 8, = 0.226, 8, = 0.108. For any ¢, the ®;(r, 6, ¢) has the same shape.
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x10"7 o even number from O to G. Here, n, is taken as n, = 10 as
2r 4 / -0 =7/4 an example.

// —f=n/2 The scattering wave function ¢y (7, 6, ¢) is solved from
i the scattering Schrodinger equation Eq. (13) with the outer
£ I o " potential [see Fig. 3(b)], which has the form [45,46]

@ 0 1 1 1 1
5 20 40 60 8 r(fm] >
v . io % X (r7 9)
X_.], \/ \/ \7& (pk(rvev ¢): 2”2 ;llei lelm(es ¢)Ylm(0k1 ¢k) kr 5
l,m
_ (30)
2 where x(r,0) can be represented by the linear combina-

FIG. 4. The wave function x (r, 6) in the outer potential W (r, 6).
The black, blue, and red curves refer to x (r, 0) with0 = 0,6 = 7 /4,
and 6 = 7 /2, respectively, which almost coincide with each other.

and
W,.(r,0) = N, 12" 2H, (rcos0),  (26)

with parameters 8, , 8., N,;’z, and N, :

ﬁl _ (’nhﬂ)lp’ ﬁz _ ($>1/2’

n,! 1 172
N = (—" ) N =(—) . e
Mo <(n,,+|m|)!> : (ﬁZ”Z@!) (270)

The expectation value Ey is given by [42]

(27a)

Ey = (n;n,m|H|nn,m) = 2n, + m+ Dhiwy

1
+ (nZ + E)ha)

P LY CPPAE & W e
wok > n, 2 m 3 ,
where the depth D can be obtained by matching the value of
experimental decay energy Q, with Ey. The choice of n, and
n, should fulfill the so-called Wildermuth-Tang rule [44]

4
G=2,+n.=Y g (29)
i=1

where G is the global quantum number and g; are the oscillator
quantum numbers of the nucleons forming the « cluster. The
G value is restricted by the Pauli principle. For instance,
G is usually taken as G = 22 for heavy nuclei with neu-
tron numbers N > 126. In principle, n, can be taken as an

tion of the regular F;(r) and irregular G;(r) solutions of
Coulomb potential. The corresponding coefficients in the lin-
ear combination of F;(r) and G;(r) are directly related to
the nonresonant scattering phase shift for the outer potential
W (r) [35]

x (1, 0) =cosé;(0)F;(r) + sin §;(0)G(r), (€20

where the relative phase §; obeys

tan 8,(8) = —FR(0) + aFR(0) 32)
GiR(0) — aGiR:(0)
and
V2l — 00
o= — (33)

The inner wave function ®;(r, 8, ¢) and the outer Coulomb
function y (r, 0) are shown in Figs. 3 and 4, respectively. For
spherical emitters, the inner wave function shown in Fig. 3(a)
is the spherical harmonic oscillator wave function. For well-
deformed emitters, the inner wave function is approximated
by the anisotropic harmonic oscillator wave function as shown
in Fig. 3(b). As for the scattering state, the wave func-
tion x (r, 8) becomes almost isotropic at large distances (see
Fig. 4).

V. COMPARISON BETWEEN 1D AND 3D CASES
AND UNCERTAINTY ANALYSIS

As shown in Table I, all the «-cluster emitters selected in
calculations are well deformed with 8, > 0.22 and far away
from the major shell closures Z = 82 and N = 126. Moreover,
only the « transitions between ground states (0T — OT)
are considered in order to check the validity of 3D-TPA.
There are three adjustable parameters in 3D-TPA that should

TABLE I. Comparison between 1D and 3D «-decay half-lives (in log base 10 and in seconds) for 2*Fm, 2°Cf, 2Cm, **Pu, and 2°U.
The information on both parent and daughter nuclei are listed in columns 1-4. Column 5 gives the experimental «-decay energy Q,. The
theoretical quadrupole and the hexadecapole deformations are listed in columns 6 and 7, respectively. The experimental «-decay half-lives are
given in column 8. In the last two columns, the 1D and 3D «-cluster decay half-lives from TPA are given.

Ap Zp Ad Zd ro (Mev) /32 :34 TExp. TC1£ TC3£
236 U 232 Th 4.572 0.226 0.108 15.003 16.2416 14.9246
244 Pu 240 U 4.6655 0.237 0.061 15.5015 16.5278 15.5721
246 Cm 242 Pu 5.4748 0.249 0.051 11.2615 12.3441 11.2006
250 Cf 246 Cm 6.1284 0.250 0.027 8.6984 9.32804 8.63641
254 Fm 250 Cf 7.307 0.251 0.015 4.1415 4.73273 4.14148
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be determined, namely a,, k, and D. a, is associated with the
angular frequency w of harmonic oscillator. « is the strength
coefficient of orbit correction term. D is the depth of harmonic
oscillator potential, which can be obtained by matching the
experimental decay energy Q, with the energy E; once the
quantum numbers G, n;, m are determined. It is noted that
different quantum numbers G, n,, m can be chosen. Here the
same parameters and quantum numbers are used for all emit-
ters, namely, a, = 0.7883, k = 0.0054, G = 22, n, = 10, and
m = 0.

We show in Table I the comparison between 1D and 3D
a-decay half-lives for typical o emitter 6y, 24Py, 25Cm,
230Cf, and »*Fm. Note that the quadrupole and hexadecapole
deformations are taken from Ref. [47]. O, and experimental
results of a-decay half-lives are taken from Refs. [48,49]. One
can see from Table I that the experimental a-decay half-lives
vary in a quite large range from 10* to 10 s. This is also
helpful for testing the validity of present 3D model for not
only short-lived but also long-lived « emitters. The formation
problem of « cluster on the surface of parent nucleus is not
considered here and its value is assumed to be unity (P, = 1).
This assumption is reasonable because the -cluster formation
probability is known to change dramatically in the vicinity
of shell closures but smoothly in the open-shell region here.
One can see from Table I that deviations of the calculated
a-decay half-lives exist between the 1D case and 3D case.
For all the o emitters considered in this work, the largest
deviation occurs for the decay of 2*°U, which is possibly due
to its small decay energy. In general, the 1D results are all
reduced by taking nuclear deformation into account (shown
also in Fig. 5). Similar conclusions can also be found in
the empirical approaches [4]. More importantly, the 3D-TPA
reproduces nicely the systematics of experimental data with
only one set of parameters. This is quite different from the
1D-TPA without the consideration of deformation, in which
one may need to adjust the parameters such as the depth of
potential for each emitter.

Finally, we discuss the possible theoretical uncertainties of
present 3D-TPA calculations, which mainly come from the
following aspects: (a) the error associated with the approx-
imations such as the replacement of Gy (E) by Gy (Ep) in
3D-TPA. The correction due to this approximation is expected
to be negligible because of very small energy shift from E
to E. (b) The inner 3D wave function is approximated by
the exact solutions of an anisotropic harmonic oscillator po-
tential. We solved numerically the bound-state wave function
corresponding to the inner potential in the spherical case, and
found its value only deviates from the exact result by several
percentages on the separation surface. (c) The scattering wave
function y (r, ) is considered to be isotropic on the separation
surface. We have checked this approximation by taking the
decay of 2*°U as an example and found that the final results
are almost not affected.

18 ' ' ' ——Cal.
24p,, 240 [7 .
16 1
14k 238U 4)234 Th |
B
29 '
6 - .
B4y, 250 O'f
4} O\ﬁ 4

0 0.1 0.2 0.3
P2

FIG. 5. The comparison of «-decay half-lives (in logarithm with
a base 10) in spherical and deformed cases. The red hexagrams refer
to the experimental half-lives and the blue circles the calculated
results from 3D-TPA.

VI. SUMMARY

Large deformation is relevant to the «-cluster decay of
heavy nuclei and nuclides far away from the g-stability line.
In this work, we apply a three-dimensional approach with the
Nilsson-form Hamiltonian to calculate the decay widths of
typical a emitters 230U, 2*Pu, 2*6Cm, 2°Cf, and >*Fm by
dividing the 3D effective potential into a bound-state inner
region and a scattering outer region. The inner wave func-
tion can be well approximated by the exact solution of the
anisotropic harmonic oscillator potential, and the scattering
wave function can be safely considered as isotropic on the
separation surface. Substantial difference is found between 1D
and 3D decay width for favored transitions of these o emitters.
The systematics of experimental «-cluster decay half-lives
is nicely reproduced. In the future, state-of-art numerical
approaches can be applied to evaluate accurately the inner
3D wave function at large distances for arbitrary 3D poten-
tials. Moreover, the combination of the present 3D-TPA and
approaches of clustering such as quartetting wave function
approach should be performed in order to predict reliably the
a-decay half-lives of unknown nuclei far away from the major
shell closures.
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